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Multi-echo fMRI data acquisition has been widely investigated and suggested to optimize

sensitivity for detecting the BOLD signal. Several methods have also been proposed for

the combination of data with different echo times. The aim of the present study was

to investigate whether these advanced echo combination methods provide advantages

over the simple averaging of echoes when state-of-the-art group-level random-effect

analyses are performed. Both resting-state and task-based dual-echo fMRI data were

collected from 27 healthy adult individuals (14 male, mean age = 25.75 years) using

standard echo-planar acquisition methods at 3T. Both resting-state and task-based

data were subjected to a standard image pre-processing pipeline. Subsequently the

two echoes were combined as a weighted average, using four different strategies for

calculating the weights: (1) simple arithmetic averaging, (2) BOLD sensitivity weighting,

(3) temporal-signal-to-noise ratio weighting and (4) temporal BOLD sensitivity weighting.

Our results clearly show that the simple averaging of data with the different echoes

is sufficient. Advanced echo combination methods may provide advantages on a

single-subject level but when considering random-effects group level statistics they

provide no benefit regarding sensitivity (i.e., group-level t-values) compared to the simple

echo-averaging approach. One possible reason for the lack of clear advantages may

be that apart from increasing the average BOLD sensitivity at the single-subject level,

the advanced weighted averaging methods also inflate the inter-subject variance. As the

echo combinationmethods provide very similar results, the recommendation is to choose

between them depending on the availability of time for collecting additional resting-state

data or whether subject-level or group-level analyses are planned.

Keywords: fMRI, multi-echo, random-effects analysis, signal dropout, EPI, inter-subject variance

INTRODUCTION

Increases in blood oxygenation level dependent (BOLD) signal in functional magnetic resonance
imaging (fMRI) are only transient and thus it is advantageous to acquire fMRI data with high
temporal resolution. Most often echo planar imaging (EPI) (Mansfield, 1977; Stehling et al., 1991;
Ordidge, 1999) is used for data acquisition, and accordingly, fMRI experiments must contend with
all the shortcomings of EPI methods (Fischer and Ladebeck, 1998; Turner and Ordidge, 2000).
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In particular, susceptibility-induced magnetic field gradients
within the head can lead to a signal dropout, hence eliminating
the possibility of observing the BOLD signal in these areas
(Ojemann et al., 1997). A number of approaches have been
proposed to recover this lost signal. For example, prescribing
oblique slices (Deichmann et al., 2003), employing z-shimming
(Ordidge et al., 1994; Weiskopf et al., 2006) or acquiring images
at higher resolution (Weiskopf et al., 2007) avoid the signal
drop-out depending on whether TE is shifted in the phase or
frequency encoding direction by the local susceptibility gradient.
These methods however are not necessarily advantageous in all
voxels containing brain tissue and may even be disadvantageous
for voxels that are not in the vicinity of susceptibility induced
magnetic field gradients.

Multi-echo fMRI acquisitions propose to sample the BOLD
response in all voxels in an image volume by acquiring several
EPIs with varying echo times (TEs) after each excitation (Posse
et al., 1999). The final time-series is formed as a weighted average
of data obtained with the different TEs where the weights are
specific for each voxel to provide the highest sensitivity for
detecting the BOLD signal (Posse et al., 1999; Poser et al.,
2006). As few as two images with different TEs have been used
previously (Glover and Law, 2001; Schwarzbauer et al., 2010).

Despite this convincing argument, the actual demonstration
in multi-subject experiments, targeting average group effects is
still lacking. Surprisingly, a recent study (Kirilina et al., 2016)
reported that several advanced fMRI acquisition methods failed
to provide the expected advantages in random effects group-
level analyses (Friston et al., 2007). They contrasted the standard
2D single echo fMRI acquisition method against 3D and multi-
echo variants. Even though both 3D and multi-echo acquisition
methods had been shown to provide advantages in experiments
involving individual subjects, the group-level results indicated
that multi-echo acquisition methods only provided an advantage
in areas with susceptibility-related signal drop out (e.g., the
orbitofrontal cortex) (Kirilina et al., 2016). Hence, the aims of the
present paper are twofold:

(1) Ascertain that optimal combination of dual-echo fMRI data
increases BOLD sensitivity on an individual level.

(2) Investigate whether the so-achieved optimal BOLD
sensitivity carries over to random-effects group-level
analyses.

Herein we address these two aims by assessing fMRI activation
maps on the single-subject and group level using various
combinations of dual-echo data sets obtained at 3 Tesla.

MATERIALS AND METHODS

Volunteers
The Kantonale Ethics Komitee (i.e., regional ethics committee)
of Zurich approved involvement of the human volunteers and

Abbreviations: AVE, echo averaging; BS, BOLD sensitivity (weighting); GM,

gray matter tissue segment of the brain; tSNR, temporal signal to noise ratio

(weighting); tBS, temporal BOLD sensitivity (weighting); STD, standard deviation;

ptBS, pseudo temporal BOLD sensitivity; TE, echo time.

each participant signed a written informed consent before the
experiment.

Thirty (mean age= 24.8 years, std= 1.8 years, 15 male) right-
handed, non-smoking, medication-free volunteers participated
in the study. Each had normal eyesight and no history of
neurological disorders. The MRI or the physiological data from
three participants were compromised due to computer disk error
or physiological sensor failure. Because the physiological data
were used for correcting time-series artifacts, henceforth this
paper pertains to the remaining 27 participants (14 male, mean
age= 25.75 years, std= 1.77 years).

Data Acquisition
All MRI data were acquired on a 3T Philips Achieva scanner
(Philips Healthcare, Best, The Netherlands) equipped with an 8-
channel receive-only head coil and single-channel body transmit
coil. For both the resting-state and the task-based fMRI data sets
36 axial slices were collected at 2.6 mm thickness using single-
shot double-echo GE-EPI with twofold SENSE acceleration
(Pruessmann et al., 1999) in the phase encoding direction and
TE1/TE2 = 17/44 ms, TR = 2.6 s, FOV 200 × 200 mm2,
in-plane resolution 2.5 × 2.5 mm2, slice gap 0.6 mm. The
total EPI readout duration for each echo was 24.792 ms. For
each subject the resting-state data set contained 116 image
volumes while the task-based fMRI data were acquired twice,
each set containing 282 image volumes. Cardiac and respiratory
signals were concurrently acquired via electrocardiogram and a
breathing belt, respectively, to allow for removal of fluctuations
caused by cardiac pulsation and breathing from the fMRI time-
series as part of the image pre-processing pipeline.

During the task-based experiment subjects in the scanner
played a competitive game against a human opponent outside
of the scanner. Each trial consisted of a jittered choice and
feedback epoch, in which the subject in the scanner could either
win money or not depending on his/her choice and the choice
of the opponent outside of the scanner. This quantity is the
parametric modulator of interest, denoted as “reward.” Reward
in this game is contingent on the player’s ability to predict
his opponent’s behavior on any given round in order to be
rewarded. Scanned participants played 160 trials of the inspection
game in two sessions of 80 trials paired with another player
seated in an adjacent room. Each trial began with a fixation-
cross presented for 1.25 to 8 s, followed by a decision screen
featuring two pictograms describing choice options. Participants
had up to 2 s to make their decision and played simultaneously.
Decisions were confirmed with a red square, which was displayed
for a minimum of 100 ms, and up to the time it took for
both answers to be recorded. After each player made his or her
decision, a fixation cross was presented for 1.25 to 8 s, following
which the feedback screen was displayed for 2.5 s. The average
duration of a trial summed up to 9 s. fMRI contrast sensitivity was
optimized by simulating optimal task ITIs. In total, the task lasted
25min. It is noteworthy that the “reward”-based analysis elicits
robust BOLD responses in dopamergetic pathways (Nucleus
Accumbens, Substantia Nigra, Ventral Tegmental Area) and
orbitofrontal cortex. We direct the interested reader toward
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Neurosynth (Yarkoni et al., 2011) for a meta-analytic overview
for the term “Reward” across 671 studies as of October 24, 2016.

fMRI Regressors
The fMRI dataset used for comparing echo combination
procedures was modeled with regressors capturing latent
variables from a computational model described previously
(Hampton et al., 2008). Briefly, Expected Value of the Chosen
option refers to the subject’s prediction about his/her probability
of winning the given his choice. First-order prediction error refers
to the subject’s estimate of observing a certain action from the
opponent, given the opponent’s history of choices. Influence
update refers to the estimated effect of the player’s choice on the
opponent’s model of the player.

SPM Design Matrix
Our design matrix included the onset of the decision period with
expected value of the chosen options as parametric modulator
and the onset of the feedback epoch with reward, first-order
prediction error, and influence update as parametric modulators.
Orthogonalization was turned off in order to capture the
variance uniquely explained by each factor. In addition, we
included, as nuisance regressors, all six movement parameters
and physiological fluctuations related to heart rate, and breathing
with the procedure described below. We constructed a boxcar
epoch function whose duration corresponds to the reaction time
of the decision to optimally account for variability in decision
time. The feedback epoch was modeled using stick functions.

Pre-processing of fMRI Time-Series Data
For pre-processing and statistical analysis SPM12 (Wellcome
Trust Centre for Neuroimaging, UCL, UK), and Matlab (The
MathWorks, MA, USA) were used.

First, physiological time-series were transformed following
the RETROICOR procedure (Glover et al., 2000), as
implemented in TAPAS, an open source software package
(http://www.translationalneuromodeling.org/tapas) that uses
Fourier expansions of various orders for the phases of cardiac
pulsation (3rd order), respiration (4th order), and cardio-
respiratory interaction (1st order) (Harvey et al., 2008).
A cardio-respiratory interaction refers to the respiratory
time-series multiplied by the cardiac time-series to form
the interaction term. This is done in order to account for
physiological noise not captured by the respective main effects
of breathing and heart rate. Subsequently both the resting-state
time-series and the two runs of the task-based datasets were
realigned with Matlab such that all but the first volumes with
short TE were rigid body aligned to the first image and the
resulting realignment parameters were used to transform the
long TE images identically. Finally, second-order polynomial
de-trending was performed right after re-alignment but before
calculation of the weights (see “Echo combinations of resting-state
fMRI data” below).

Additionally, a high-pass filter with a cut-off frequency
of 1/128 s was applied to the task-based data after echo
combination, co-registration and normalization and immediately
before the first-level statistical analysis.

Generation of Gray Matter Mask
To extract voxel values specific to the gray matter (GM) segment
of the brain a binary mask was created by segmenting (Ashburner
and Friston, 2005) and normalizing the T1-weighted anatomical
image of each subject in SPM. Subsequently the GM segment was
smoothed by a 6-mm isotropic Gaussian kernel and thresholded
to contain only voxels with a GM probability of at least at 0.35.
Finally, each individual’s GM mask was multiplied together to
arrive at a group GM mask. The histograms and scatter plots of
Figures 3–5 were produced after multiplying the t-value maps,
contrast maps and total variance maps voxel-wise by this final
GMmask.

Echo Combinations of Resting-State fMRI
Data
The realigned and de-trended resting-state dual echo dataset of
each subject was combined voxel-wise as a normalized weighted
average of the two echoes to provide a single time-series, where
time is represented by t

type_data(t) =
w1 · S1(t)+ w2 · S2(t)

w1 + w2
(1)

where S1(t) and S2(t) are the signal amplitude of a given voxel
in the same spatial and temporal position acquired with TE1 and
TE2, respectively, while w1 and w2 are the corresponding weights
and type is one of “AVE,” “BS,” “tSNR,” or “tBS” representing the
four different methods of echo combinations for calculating the
weights (see below). Note, the weights, w1 and w2, are calculated
separately for each time point in Echo combination method #2
below. For the other three echo combination methods they are
identical for all time points in the time series.

Echo combination #1 (AVE): The first echo combination was
a simple average of the two datasets so that the weights were
identical for all voxels at all-time points (i.e., w1 = w2 = 1).

Echo combination #2 (BS): In the second method the weights
were calculated voxel-wise and for each time point (t) as

w1(t) = S1(t) · TE1 (2a)

w2(t) = S2(t) · TE2 (2b)

where S1(t) and S2(t) are defined as in Equation (1) above. This
is commonly considered BOLD sensitivity (BS) weighting (Posse
et al., 1999; Deichmann et al., 2002).

Echo combination #3 (tSNR): The third method used the
temporal signal-to-noise ratio (tSNR) as weights calculated
separately for the two TEs by dividing the temporal mean of a
voxel time-series with its temporal standard deviation

w1 = tSNR1 (3a)

w2 = tSNR2 (3b)

where tSNR1 and tSNR2 are the voxel-wise temporal signal-
to-noise values for short (TE1) and long (TE2) echo data
respectively.
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Echo combination #4 (tBS): The final scheme merges
Echo combinations #2 and #3 as in Poser et al. (2006) and is
termed temporal BOLD sensitivity (tBS)

w1 = tBS1 = tSNR1 · TE1 (4a)

w2 = tBS2 = tSNR2 · TE2 (4b)

where tBS1 and tBS2 are the temporal-BOLD-contrast-to-noise
ratio values, while tSNR1 and tSNR2 are as in Echo combination
#3 above.

In each of the above echo combination methods the result is a
single time-series of resting-state fMRI data. BOLD sensitivity is
often defined as in Equation (2) above (Deichmann et al., 2002)
and used to quantitatively compare fMRI protocols. Because the
datasets have no single effective TE after dual-echo combination
(e.g., AVE_data), a pseudo measure of the temporal BOLD
sensitivity (ptBS) was calculated as

type_ptBS =
mean

{

w1·S1·TE1+w2·S2·TE1
w1+w2

}

std
{

w1·S1+w2·S2
w1+w2

} (5)

where type is one of “AVE,” “BS,” “tSNR,” or “tBS” to represent one
of the four echo combination methods above, w1 and w2 are the
pair of weights of the corresponding type of echo combination
method, S1 and S2 are voxel signal intensities for the short (TE1)
and long (TE2), respectively, and both the mean and the standard
deviation are calculated across time. Note that in the case BS-
based echo combination method the ptBS measure will depend
on the square of the voxel signal and that in this case each time
point will have a unique weight.

In order to create group-averaged results the AVE_ptBS map
was co-registered to the corresponding T1-weigthed anatomical
image for each subject. Given that each of the four types of
ptBS maps are calculated from the same data these maps are
perfectly aligned. Therefore, the coregistration parameters from
AVE_ptBSwere used for the other three ptBSmaps. Subsequently
the T1-weighted anatomical image was normalized in SPM12
to the Montreal Neurological Institute (MNI) template and the
normalization parameters were written onto each ptBS map. No
spatial smoothing was applied to the normalized images.

Echo Combinations of Task-Based fMRI
Data
Similarly to the resting-state data, realigned and de-trended
task-based time-series with two TEs were also combined as a
weighted sum using Equation (1). Echo combinations #1 and #2
were performed by using the task-based data for calculating
weights, w1 and w2, as well as extracting S1 and S2.

In Echo combinations #3 and #4 participant-specific resting-
state data were used to calculate the weights, w1 and w2, but the
task-based data were used for extracting S1 and S2 for Equation
(1). This is because Echo combinations #3 and #4 rely on tSNR
(Equations 3a,b) for calculating the weights. Hence to avoid
including the BOLD response of the task-based time-series into
the calculation of the temporal standard deviation, and in turn
the weights, the resting-state data were used. More specifically,

the tSNR1 map of TE1 derived from the resting-state data was
realigned with the temporal mean of the realigned task-based
data with TE1. These movement parameters were then applied
to the tSNR2 map to bring it in line with the corresponding
task-based data with TE2.

The four combined task-based datasets were corrected for the
different timing of the slice acquisition by temporal interpolation
relative to the acquisition time of the slice in the center of
the volume using the standard slice time correction method in
SPM12 (Sladky et al., 2011).

All four slice-time corrected time-series were normalized
to the (MNI) template detailed as follows. The time-mean
of the echo averaging combination was co-registered to the
T1-weighted anatomical image and the estimated parameters
were applied to all volumes of all four combined time-series.
Normalization to MNI space was performed based on the
anatomical image using the standard method in SPM12. All
volumes were interpolated to the isotropic resolution of 3
mm during the normalization step and were subsequently
smoothed with an isotropic Gaussian kernel with 6mm
FWHM.

Quantification of Resting-State fMRI Data
To quantitatively assess the possible advantages of the four
different echo combinationmethods, voxel-wise mean and voxel-
wise standard deviation were computed across the subjects
for each of the four normalized ptBS maps. Voxel-wise ratio
of the resulting mean and SD maps were calculated for all
combinationmethods.AVE_ptBSwas considered the reference to
which the other 3 echo combinations were compared. To extract
group-level quantitative results, each of the four ptBS maps was
multiplied by the group GM mask and the mean and standard
deviation were calculated from voxels within the mask

Extracting Three Regions of Interest
The ROIs were generated with http://www.neurosynth.org
(Yarkoni et al., 2011) using a default threshold for reverse
reference. The first ROI corresponds to the keyword “Reward”
(671 studies, 2291 activations). The second ROI we used
keywords “Default Mode” (516 studies, 18723 activations). For
the third ROI we isolated the orbitofrontal cluster from the first
ROI to obtain reward-related orbitofrontal activations. Each of
these ROIs was multiplied with the GM mask. The resulting
intersection was then applied to the t-value difference maps
before generation of the histograms.

Statistical Analysis of Task-Based fMRI
Data
Single subject general linear model (GLM) analysis was
performed separately on each of four pre-processed combined
time-series datasets (i.e., AVE_data, BS_data, tSNR_data,
tBS_data) of each subject. This GLM included, 8 regressors and
24 covariates (physiology and movement) per session. Analysis
was performed for one contrast defined as the sum of the two
predictors representing reward in the two runs contrasted to
baseline.
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Random-effects group-level analyses were performed
separately for each echo-weighting method using the
corresponding single-subject contrast maps.

We calculated voxel-wise t-value differences between the
simple echo averaging and the other three echo combination
methods. Scatter plots of these t value difference maps were
created from voxels inside the GM mask. Histograms were
created both from within the entire GM mask as well as from
within the three ROIs of interest.

To further scrutinize the effects of echo combinationmethods,
additional analyses were performed on the t-values obtained
from random-effects statistical analyses (Friston et al., 2007). By
definition these t-values are affected by both the mean contrast
values as well as the parameter variance. In order to disentangle
the two driving factors for the different echo combinations,
histograms of voxel-wise differences of contrast and variance
maps were also generated for the values of

100 ·
contrasttype − contrastAVE

contrasttype + contrastAVE
· 2 (6a)

100 ·
variancetype − varianceAVE

variancetype + varianceAVE
· 2 (6b)

where AVE represents the echo averaging method while type
represents one of the other three methods for combining the
dual-echo data (BS, tSNR, tBS). Both the contrast maps and the
variance maps were multiplied by the GMmask before histogram
calculations.

To estimate and compare the relative contributions of inter-
subject vs. intra-subject variance we followed the procedure
outlined in Kirilina et al. (2016), which is based on the fact
that he total variance of the random effects statistical analysis is
expressible as a sum of inter-subject and intra-subject variance
components.

Thus far, comparisons of group-level analysis results of
statistical analyses were presented. We also performed three
separate statistical analyses to compare the advanced echo
combination methods with AVE. First, first-level analysis was
performed for each subject by treating each the four echo-
weighting methods as four different sessions. To remove any
overall scaling and/or change in the variance of the resulting
parameter maps between the combinations, the parameters were
voxel-wise divided by their inter-subject standard deviation,
separately for each echo combination. Next, from the rescaled
first-level parameters three contrast maps were calculated
for each subject by taking the difference of the parameters
representing reward in one of the advanced echo combination
method vs. that of AVE. Finally, standard group-level random-
effects analysis was performed on these contrast maps separately.

RESULTS

Resting-State fMRI Data
According to the top two rows of Figure 1, the advanced echo
combination methods have clear benefit on BOLD sensitivity
of the resting-state data as assessed by the type_ptBS measure
(Equation 5) for the advanced echo combination methods BS

and tBS but not for tSNR. Out of the four examined echo-
weighting strategies the BOLD sensitivity (BS) weighting of
Echo combination #2 produces the time-series with the highest
sensitivity when averaged across the entire group. The tBS
method of echo combination also produces the expected
improvement, which confirms the findings of Poser et al. (2006).
For the mean values of the four ptBS maps from within the GM
mask please see Table 1.

Note however that the center two rows of Figure 1 indicate
a similar tendency (especially in the GM of the brain) in
the standard deviation of the ptBS maps across the subjects,
forecasting that a group-level statistical analysis may not benefit
from the increased BOLD sensitivity of the advanced echo
combination methods (i.e., BS, tSNR, tBS). The actual group
standard deviation values within the GM mask for the four
ptBS maps are listed in Table 1. Calculating the voxel-wise ratio
supports this hypothesis (bottom two rows of Figure 1).

Task-Based fMRI Data
Figure 2A shows the t-value map of the group-level random
effects-analysis on the time-series data in which the echoes
were simply averaged (i.e., AVE_data). The group-level results
were highly similar when using the time-series data resulting
from the other three echo-weighting strategies (data not shown).
In Figure 2B the color code in each voxel indicates the echo
combination method that provides the largest t-value. Within the
GM mask the actual percentages were 14.5% for AVE, 24.0% for
BS, 23.3% for tSNR and 38.2% tBS. Thus, neither of the four echo
combinationmethods comes out as the major winner, not even in
the orbitofrontal cortex, where multi-echo data has been shown
to provide increased sensitivity (Kirilina et al., 2016).

The scatter plots in Figure 3 show the t-value of each voxel
within the GM mask from the group-level statistical analyses.
In each of the three subplots the t-value from the average
echo combination (i.e., using AVE_data) is plotted along the
horizontal axis against that resulting from the statistical analysis
of each of the other three echo combination methods (BS_data,
tSNR_data and tBS_data) plotted along the vertical axis. Because
all points fall in the vicinity of the identity line, neither of the
echo combinationmethods seems superior to simple averaging. It
must be noted that the spread around the identity line is broader
for the statistical analysis based on BS_data.

In Figure 4 the histograms of the voxel-wise t-value
differences of the random-effects group-level analyses within
the GM segment are centered on zero (mean ± [STD],
−0.11 ± [0.50] for BS, −0.03 ± [0.22] for tSNR, and 0.03
± [0.15] for tBS), which is their expected value if the echo
combination methods provide equivalent statistical results.
However, the spreads of the histograms are not the same,
showing that the spatial variance of t-values is dependent on
the echo combination method, with tBS weighting showing
the smallest variation (i.e., using tBS_data produces statistical
results, which are most like that based on AVE_data). It is worth
mentioning that the distributions of histogram differences are
not symmetric. Skewness also depends on the echo combination
strategy with BS weighting resulting in the highest asymmetry.
The tails of these histograms represent the voxels where
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FIGURE 1 | Group results of the different echo combinations of the resting-state dual echo fMRI data. The columns represent the four different echo

combination methods, where, the pseudo BOLD sensitivity measure (Equation 5) (from left to right AVE_ptBS, BS_ptBS, tSNR, ptBS, and tBS_ptBS) from each

individual in the group is normalized to a common space and subsequently the mean (top) and standard deviation (middle) across the whole group as well as the

ratio of mean and standard deviation (bottom) are presented. Note that if for a given echo combination an increase is observed in the average BOLD sensitivity, this

increase is accompanied by a similar inflation of the standard deviation across the group (especially so within the gray matter). This is also evident from the ratio

images, which are highly similar regardless of the echo combination method used.

the group-level statistical t-values differ between the echo
combination strategies. The anatomical pattern of the histograms
tails is presented in the bottom of Figure 4 as maximum
intensity plots. Differences between the echo combination

methods are only apparent in the inferior part of the brain
but the spatial arrangement of these differences precludes any
possible recommendation in the optimal echo combination
method.
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TABLE 1 | The mean and standard deviation of ptBS values from the

resting-state data.

AVE BS tSNR tBS

Mean 2537.7 2800.7 2408.5 2637.8

STD 803.7 899.1 733.7 829.7

Ratio 3.2 3.1 3.3 3.2

STD, standard deviation; Ratio = mean / STD.

The group-level t-values are defined by both themean contrast
(i.e., the mean effect size across subjects) and the parameter
variance. Further scrutiny into the t-value histograms from above
indicates that, unlike the t-values themselves, the contrast is
actually dependent on the method used for echo combination
(mean ± [STD], −0.03 ± [0.15] for BS, −0.06 ± [0.12] for
tSNR, and 0.06 ± [0.07] for tBS). Figure 5A shows that tBS
weighting results in increased contrast while tSNR weighting and
BS weighting have decreased mean contrast compared to echo
averaging.

The reason for comparable t-values across the different echo
combination methods can be concluded from the total variance
differences in histograms (Figure 5B) (mean ± [STD], −0.03 ±

[0.22] for BS,−0.12± [0.20] for tSNR, and 0.11± [0.11] for tBS).
Based on these it can be argued that the increased spatial variance
of t-values of BS weighting strategy originates from its parameter
variance, as its histogram shows an asymmetric “tail” in positive
direction, according to the similar “tail” on t-value differences
histogram in negative direction in Figure 4.

The ratio of inter-subject vs. intra-subject variance
components in Figure 6 is spatially heterogeneous. In many
large connected areas across the brain the intra-subject variance
component is outweighed by inter-subject variance. In some
smaller connected areas intra-subject variance is the dominant
variance component.

The actual value of both the intra-subject and the inter-
subject variance components depends on the echo combination
methods. In Figure 7 the variance components of data derived
from the simple echo averaging (i.e., AVE_data) are related
to those derived from the other three echo combination
methods (i.e., BS_data, tSNR_data, tBS_data) where the intra-
subject (Figure 7A) and inter-subject (Figure 7B) variance
components vary similarly for a given echo combinationmethod.
Furthermore, these results from the group-level random-effect
analyses of the task-based data corroborate that found in the
resting-state data (Figure 1) in that an increase in inter-subject
variance always follows the seemingly beneficial advanced echo
combination method.

Figure 8 displays the histograms of the voxel-wise t-value
differences of the random-effects group-level analyses within the
three ROIs (reward activation areas, default mode network, and
orbitofrontal cortex). All of them are centered near zero with
their mean inside the [–STD, +STD] interval, which is the result
expected if the combination methods are equivalent at group
level (Table 2). Similarly to the results when considering the
entire GM segment (Figures 3, 4), the variance of t-values is
dependent on the echo combination method, with tBS weighting

showing the smallest variation, and BS weighting showing the
largest variation in all ROIs.

The group-level paired t-tests between the advanced echo
combinations and the echo averaging also show that there is
nearly no difference between combination methods: after the
FWE correction (p= 0.05) there are less than 30 significant voxels
scattered around all the brain, in all combination pairs (advanced
vs. AVE), for both positive and negative t-contrasts.

DISCUSSION

We have investigated whether there is an optimal way of
combining dual-echo fMRI data for random-effects group-level
analysis. Surprisingly, we found that the simple averaging of
the echoes (AVE) performs at least as well as any of the
other more advanced methods. Although, the proposal for
these advanced echo combination methods seems well founded
theoretically and BS weighting and tBS weighting even result in
an improved BOLD sensitivity (Deichmann et al., 2002; Poser
et al., 2006), we found that any benefit in BOLD sensitivity on the
individual level is eradicated by inter-subject variance in group-
level analyses. Without significant reduction of the inter-subject
variance component the slight benefits of the advanced echo
combination methods will not carry over to the group level and
thus the simple averaging of data from the different echoes will
be sufficient.

It is important to point out that the aim of this paper does not
include investigating whether multi-echo acquisitions do better
or worse than single-echo variants. Although, in a very recent
effort investigators reported a benefit of multi-echo acquisitions
only in the orbitofrontal cortex (Kirilina et al., 2016), the aim of
the present study was to consider solely multi-echo fMRI data
and identify an optimal echo combination method if one exists.
However, the results indicate that advanced echo combination
methods do not provide a clear significant benefit over simply
averaging the images that were collected with different echoes.
Although the color plot at the bottom of Figure 2 indicates that
in about 38% of the voxels tBS is the optimal echo combination
method care must be taken because in 62% of the voxels it is not
the best method. Furthermore, even in the orbitofrontal cortex,
where multi-echo acquisition methods are superior to that of
single echo methods (Poser et al., 2006; Kirilina et al., 2016) there
are connected regions of voxels where one of the other three echo
averaging methods provides the highest t-value.

Even in voxels where a robust BOLD response was detected,
the advanced echo combinations failed to provide a benefit. It
should be noted that elicitation of ventro-striatal brain activity
by reward is among the most robust and documented fMRI
findings in neuroscience (Wang et al., 2016). With such a large
BOLD response one would expect more sensitivity in detecting
differences between the different echo combination methods if
such differences existed.

Task-based fMRI data were put through a standard
preprocessing pipeline that included spatial smoothing of
the images before commencing the statistical analysis, while
resting-state data were left unsmoothed. This distinction is
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FIGURE 2 | Random effect analysis results of the task-based fMRI data. (A) Displays the t map from the statistical analysis based on the AVE_data (Equation

1). The robust BOLD response in the ventral striatum is detected as expected. Panel (B) is a synthetic image where each voxel is marked by a color (blue = AVE,
green = BS, red = tSNR and yellow = tBS) that represents the echo combination method that produced the largest t-value in that voxel. In about 38% of the voxels

within the GM mask, tBS echo combination provides the highest t-values.

FIGURE 3 | Scatter plots of the voxel-wise t-values from random effects statistical analyses on data from the four different echo combination methods.

The red line is the identity line. Voxel-wise t-values resulting from the analysis based on the AVE_data are displayed on the horizontal axis in each subplot. From left to

right the vertical axis displays the t-values resulting from the statistical analysis based on BS_data, tSNR_data and tBS_data. Only voxels within the GM mask were

considered. Because all points fall near the identity line, neither echo combination method can be declared superior to that of the simple averaging of echoes.
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FIGURE 4 | Histograms and spatial distribution of voxels where the group-level random-effects t-values differ among echo combination methods. On

the top the same data are displayed as in Figure 3, but instead of scatter plots, histograms of differences of t-value are given for the three advanced echo

combination methods (BS, tSNR, tBS) relative to the t-values obtained from the statistical analysis using data obtained by simple averaging (i.e., AVE_data). In the

bottom maximum intensity projections are shown in all three orthogonal orientations for the left and right tails of the corresponding histograms above. Below each

histogram the left column of images marks voxels where averaging the echoes produces a higher t-value, while in the right column of images the particular echo

combination method (BS, tSNR, tBS weighting) wins over averaging. The differences are confined to the inferior aspects of the brain and in very few voxels is there an

advantage using the advanced echo combination methods.

due to the fact that the resting-state data were only used for
investigating the effects of echo combination methods on
the BOLD sensitivity (Deichmann et al., 2002; Poser et al.,
2006) (i.e., type_ptBS in Eq. [5]) and to calculate the tSNR for
Echo combinations #3 and #4—but no other statistical analyses
were performed.

We noted that the spread around the identity line is widest
in Figure 3 when using BS_data for the statistical analysis.
Interpretation of this finding is difficult. One may venture to
speculate that the BOLD sensitivity weighting provides the least
reliable t-values upon statistical analysis. However, there is no
indication that AVE_data should be taken as gold standard.
Here we chose to compare all other echo combination methods
against the simple averaging of echoes simply because we wanted

to investigate the relative advantages of more involved echo
combination methods. As such, we do not mean to advocate
that echo averaging is the best method. From the results of these
investigations it seems that any of the echo combination methods
would do just as well if for other reasons a method other than the
simple average were desirable.

There are numerous sources of inter-subject variance—e.g.,
scanner instability, quality of image normalization processes,
subject motion, respiration-induced magnetic field variations,
pulsatile motion of brain due to cardiac action as well
as differences in subject-dependent EPI distortion, vascular
arborization in GM and cortical folding patters, to name a
few. The variance component arriving from most of these
sources can be reduced in principle. For example, using magnetic
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FIGURE 5 | Investigating the distribution of the components of voxel-wise t-value. Both the effect size (A) and the parameter variance (B) differ between the

results obtained by simple averaging the two echoes (AVE) and the other three echo combination methods (BS, tSNR, tBS). Although, the average effect size can be

clearly modulated by the different echo combination methods, variance is modulated similarly—leading to an unaffected t-value on average (see Figures 3, 4).

AVE_con and AVE_var represent respectively the effect size and variance of the group-level random-effects statistical results performed on AVE_data. Similarly,

BS_con, tSNR_con, tBS_con for effect size and BS_var, tSNR_var, tBS_var for variance when using data from the other three echo combination methods (BS_data,

tSNR_data, tBS_data).

FIGURE 6 | Ratio of inter-subject vs. intra-subject variance components for each of the four echo combination methods. In each case the inter-subject

variance outweighs the intra-subject variance in large connected regions of GM. The spatial pattern is very similar across the four echo combination methods. AVE, BS,
tSNR and tBS indicate the four echo combination methods. The top row displays mid-sagittal slices while the bottom row shows axial slices through the basal ganglia.
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FIGURE 7 | Relating the intra-subject (A) and inter-subject (B) variance components of the three advanced echo combination methods to that of the simple

average. AVE, BS, tSNR, and tBS indicate the four echo combination methods. In general, using BS or tSNR weighting results in slightly smaller inter-subject and

inter-subject variance components than that of the AVE weighting, while tBS weighting results in an increase in both variance components.

field probes (De Zanche et al., 2008) the effects of scanner
instability or breathing on the quality of EPI images can be
reduced (Kasper et al., 2014). Other possibilities are prospective
motion correction, that has been shown to provide a benefit for
collecting fMRI time-series data (Maclaren et al., 2013; Haeberlin
et al., 2014; Todd et al., 2015), or improved shimming, that

would reduce individualized susceptibility-induced distortions
and drop-out artifacts. However, we may need to concede that
some of the variance components, such as pulsatile brain motion
or variability in brain tissue vascularization, remain beyond the
experimenters’ control. We stress that some sources of variance
are of particular interest to researchers. Indeed, inter-individual
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FIGURE 8 | Histograms of the voxel-wise difference in the group-level random-effects t-values among echo combination methods within specific

ROIs. Across the columns, each of the three advanced echo combination methods (BS, tSNR, tBS) is compared against that of averaging the data. The three ROIs

correspond to a Reward task (top row), the resting-state default-mode network (middle row) and the reward task activations within the orbitofrontal cortex (bottom

row). Similar to the case when the entire GM segment was considered (Figure 4), the histograms are centered closed to zero and well within 1 standard deviation in

each case. The limits on the horizontal axis are identical in each column but each row (i.e., each ROI) has an appropriate and unique limit.

variations in bold response may carry important information
regarding variations in the underlying cognitive processes.
However, within the scope of this manuscript we did not
disentangle these noise components from the aforementioned
variance. The current study included healthy adult volunteers
and used state-of-the-art acquisition and image processing
methods. In particular, we did not find excessive movement
artifacts, nor did we use prospective motion correction or
magnetic field monitoring methods. As such, the conclusions are
expected to represent well the published fMRI literature.

Note also that in Echo combination #2, (BS), the weights
are calculated separately for each time point based on the
voxel signal at that time point. This can lead to an unwanted
amplification of the variance in the final, combined dataset
because the variance from each signal component will propagate
as the square. Perhaps it is for this reason that this weighting
method provides the lowest t-values in the group-level analysis.

It must be mentioned that apart from simply combining the
echoes, as in this paper, multi-echo fMRI data can be used in

additional ways to improve the sensitivity of the measurement
to effects of interest. One example is employing independent
component analysis to rid the data from unwanted slow drifts
while maintaining slow BOLD activity patterns (Evans et al.,
2015).

It is known that the effect of T2∗ relaxation during the
EPI readout period leads to blurring of the images in the
phase-encoding direction because the subsequent lines of data
are collected with monotonically decreasing signal intensity,
as governed by T2∗ relaxation. This effect is common for all
multi-echo acquisition methods using EPI for data collection.
Nonetheless, we mention it here for completeness because it is
important that the weights are calculated from anisotropically
blurred voxels.

One limitation of this study may be the number of echoes
acquired. Multi-echo data usually includes more than two echoes
and sometimes as many as six (Poser et al., 2006). It may
limit the generalization of the results. For example, we could
not use the T2∗ weighting method. Nonetheless, the fact that
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TABLE 2 | The mean and standard deviation of the histogram of t-value

differences when the advanced echo combination methods are compared

to that of the AVE.

BS tSNR tBS

Reward −0.36 ± [0.88] 0.12 ± [0.38] 0.08 ± [0.20]

DMN 0.01 ± [0.31] −0.02 ± [0.19] 0.04 ± [0.12]

OFC −0.24 ± [0.78] 0.21 ± [0.37] 0.16 ± [0.31]

Numerical values are given as mean ± [standard deviation], DMN, default-mode network;
OFC, orbitofrontal cortex.

inter-subject variance outweighs the benefits of advanced echo
combinations is likely to remain the main conclusion for T2∗

weighted echo combinations as well. Secondly, we collected a
relatively short resting-state data set (∼5 min). It has been
shown that the reliability of functional connectivity measures
improves significantly with longer acquisition (Birn et al.,
2013). Because we only used the resting-state data to calculate
weights for the echo combination, our results are unlikely to
be negatively affected by the shorter acquisition. Finally, a
notable advantage of multi-echo data, which we could not take
advantage of, is the possibility of de-noising the time series
which can lead to reduced inter-subject variance (Lombardo
et al., 2016). However, there are settings in which collecting more
than two echoes is not possible and hence dual-echo acquisition
is not unprecedented (Glover and Law, 2001; Schwarzbauer
et al., 2010). In those cases our results are clearly relevant.
In particular, we chose to use two echoes for several practical
reasons. First, we limited the SENSE acceleration factor at the
modest value of 2 S, we required full brain coverage. Finally,
for the task-based experiment a reasonably short repetition
time was needed. With these considerations the protocol had
reasonable acquisition parameters with the extra benefit of having
additional data with short TE from which signal could be

recovered in areas that were otherwise contaminated by drop-out
artifacts.

In conclusion, we could not identify clear benefits that
would make the advanced echo combination methods preferable
for group-level random-effects statistical analyses, because the
inter-subject variance component washes out any benefit that
more intricate echo combination methods may provide on an
individual level. It is important to point out that we chose
the simplest echo averaging method as a reference only for
convenience and would not like to advocate it in all cases. On the
one hand, simple echo combination methods remove the need
for collecting additional resting-state data and may be preferable
in cases when time is of essence. On the other hand, if the
resting-state fMRI data is available and/or subject-level analyses
are planned the BS or tBS echo averaging method will slightly
increase the sensitivity of the experiment.
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