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Abstract: There have been relatively few publications using linear regression models to predict a continuous response based on 
microarray expression profiles. Standard linear regression methods are problematic when the number of predictor variables exceeds the 
number of cases. We have evaluated three linear regression algorithms that can be used for the prediction of a continuous response based 
on high dimensional gene expression data. The three algorithms are the least angle regression (LAR), the least absolute shrinkage and 
selection operator (LASSO), and the averaged linear regression method (ALM). All methods are tested using simulations based on a real 
gene expression dataset and analyses of two sets of real gene expression data and using an unbiased complete cross validation approach. 
Our results show that the LASSO algorithm often provides a model with somewhat lower prediction error than the LAR method, but 
both of them perform more efficiently than the ALM predictor. We have developed a plug-in for BRB-ArrayTools that implements the 
LAR and the LASSO algorithms with complete cross-validation.
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Background
DNA microarray technology has been proven to be 
a powerful tool for exploring gene expression pat-
terns in biological systems in the past decade. Many 
medical applications of microarrays involve class 
prediction, that is, prediction of a categorical class 
or phenotype based on the expression profile of the 
patient. The classes often represent diagnostic cat-
egories or binary treatment response. For example, 
Wang et al1 developed a gene-expression based pre-
dictor of whether a patient with advanced melanoma 
would respond to IL2-based treatment.

Challenges are experienced where the develop-
ment and validation of predictive models for settings 
where the number of candidate predictors ( p) is much 
larger than the number of cases (n). Many algorithms 
have been studied for developing and evaluating 
gene-expression-based predictors of a categorical 
class variable. Classification methods widely used 
include the compound covariate predictor,2 diagonal 
linear discriminant analysis,3 nearest neighbor4 and 
shrunken centroid methods,5 support vector machines,6 
and random forests,7 all of which are available in 
the BRB-ArrayTools software, provided without 
charge for non commercial purposes by the National 
Cancer Institute.8 Sophisticated methods of complete 
cross-validation or bootstrap re-sampling efficiently 
utilize the data and avoid biased estimates of predic-
tive accuracy.9 Methods for predicting survival risk 
based on censored survival times and microarray data 
have been described by several authors and recently 
compared by Bovelstad et al.10 Methods of complete 
cross-validation are much less developed for such set-
tings and most published studies involving survival 
prediction transform the outcome data into discrete 
categories (see the review by Dupuy & Simon).11

There have been relatively few publications using 
linear regression models to predict a continuous 
response based on microarray expression profiles. 
Standard linear regression methods are problematic 
when the number of predictor variables exceeds the 
number of cases because X’X is singular, where X is 
the design matrix. Software available to biomedical 
investigators has not included the more sophisticated 
methods needed for developing and properly validating 
continuous response models in the p . n setting. One 
example of such a study is that of Bibikova et al12 who 

identified a group of 16 genes significantly associated 
with Gleason scores for prostatic carcinomas. They 
avoided the p . n problem by first identifying 16 genes 
which individually appeared predictive of the Gleason 
score, and then fitting single variable linear regression 
models for each of the 16 genes. The final predicted 
Gleason grade for each sample was the average of 
16 independently derived predicted values from 
each model. Although this method has the merit of 
simplicity, the method of validation they used was 
problematic and consequently their model requires 
further validation with an independent data set.

To properly estimate the accuracy of a prediction 
model, the test set cannot be used for selecting the 
genes to be included in the model or for estimating 
the parameters of the model. This key principle of 
separating the data used for model development from 
the data used for model validation must be carefully 
observed in using either a split-sample or cross vali-
dation approach of estimating prediction accuracy. 
The simulation study13 shows the importance of cross 
validating all steps of model building in estimating 
the error rate, especially the feature selection step 
that is often overlooked. Enormous bias in estima-
tion of prediction error can result if the full dataset is 
used for gene selection and sample splitting or cross-
validation applied to fitting a model based on those 
selected genes. Unfortunately, the survey by Dupuy 
and Simon11 indicated that improper use of incom-
plete cross-validation is prevalent in the published 
literature with class prediction methods and this prob-
lem also occurred in the study of Bibikova et al.12

We have evaluated three linear regression algo-
rithms that can be used for prediction of a continuous 
response based on high dimensional gene expression 
data. The first two algorithms are Least Angle Regres-
sion (LAR)14 and LASSO.15 LASSO is a penalized 
regression method. It identifies regression coeffi-
cients for all genes to minimize a weighted average of 
mean squared prediction error for cases in the training 
set plus the sum of absolute values of all regression 
coefficients. The weighting factor is optimized by 
cross-validation. LAR can be viewed as an acceler-
ated version of forward stagewise regression.16,17 The 
algorithm developed by Efron et al14 is highly efficient 
and can also be used to find the LASSO solution. Both 
methods develop relatively parsimonious models and 
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do not require the prior step of gene selection. There 
have been many applications of LASSO in different 
fields such as on protein mass spectrometry data18 and 
SNP data.19 To our knowledge, the use of these mod-
els with gene expression profiles to predict continuous 
outcome have not been reported. The third algorithm 
we evaluated is the averaged linear regression (ALM) 
method used in Bibikova et al.12 We used an unbiased 
complete cross validation approach in order to get a 
correct error estimate for the model. All methods were 
tested using simulations in which the gene expression 
levels were based on a real dataset and analysis of 
two sets of real gene expression data.

Methods
Data sets
We simulated continuous response yi by applying 
the following formula to the publicly available gene 
expression dataset of Beer et al,20 which is curated in 
the BRB-ArrayTools Data Archive.21

	
y x xi ij

j
ij

j
ij= - +

= =
∑ ∑

1

5

6
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ε � (1)

where εij∼N(0, σ2). Various values of noise variance 
were used for the simulations. The value of σ is cal-
culated from the real data, which is 0.63 on the log 2 
scale; xij are the expression levels for sample i (from 
1 to 96) in the first ten genes with no missing values. 
Independent Gaussian noise is added. The data set 
contains 86 lung cancer samples and 10 normal sam-
ples using the Affymetrix HuGeneFL chip with 7129 
probe sets. We filtered out probe sets with missing 
data, so the final data set contained 3501 probe sets.

The first real data set we analyzed with the three 
algorithms relates gene expression to cytotoxic activ-
ity of the anti-cancer agent paclitaxel in lung cancer 
cell lines.22 The data set contains 29 lung cancer cell 
lines with 22,282 transcripts (HG-U133 A, Affyme-
trix, Santa Clara, CA). The drug activity data is 
measured as growth inhibitory activity GI50. The log 
2 based GI50 is used as continuous response. One cell 
line (H69) is excluded in this study because its GI50 
is beyond the detection limit.

The second real data set used to evaluate the 
algorithms relates gene expression, measured with a 

DASL array, to the Gleason score of human prostate 
cancers.12 The data set contains 70 prostate tumor 
patients with Gleason scores. There are 512 genes on 
each chip. Since the pre-processing steps in that paper 
were not described in sufficient detail for our applica-
tion, we use the summary of Intensity data generated 
by the Illumina’s BeadArray package as gene mea-
surement input.

Algorithms
LAR and LASSO
For a linear regression model in microarray gene 
expression data,

	 Y X= +β ε � (2)

where Y is the outcome vector with length n, X is 
an n by p matrix of expression levels of p genes and 
n samples, β is the regression coefficient vector, and 
ε is the normal noise vector. LASSO is designed to 
minimize

	 1

ˆ ˆ
p

j
j

Y X β θ β
=

- + ∑

where Y X- β  denotes the sum of squares of 
residuals, the summation is over the genes j = 1,…,p, 
and θ is a positive scalar.

LASSO is a regression with an L1 penalty. LAR 
can be viewed as a version of forward stagewise 
regression that uses mathematical formulas to accel-
erate the computation.17 It first selects the predictor 
most correlated with the response. It brings that pre-
dictor into the model only to the extent that it remains 
most correlated with the response. At each stage, the 
variable most correlated with the residuals of the 
current model is included.17

The LARS algorithm builds a sequence of models 
in a stepwise manner which are indexed in terms of a 
parameter representing the fraction (f) of algorithmic 
steps relative to the model containing n genes, where 
n is the number of samples. The LARS algorithm can 
also be used to generate a sequence of models con-
taining increasing numbers of variables; each model 
representing a linear model which is a Lasso solution. 
That is, the LARS algorithm can be used to generate 
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a sequence of models, each of which minimizes the 
sum of squared residuals plus a weight times the sum 
of absolute values of the regression coefficients. The 
models of the sequence correspond to decreasing val-
ues of the weight penalty.

The weighting factors for LAR and LASSO are 
optimized by cross-validation. The LARS algorithm 
can be used to generate a sequence of models indexed 
by a tuning parameter f. For each value of f, a cross-
validated estimate of the squared prediction error is 
obtained for each round of the cross-validation. After 
the entire sequence of models is built, the final model 
can be selected based on the f value for which the esti-
mated total squared prediction error is minimized.

We use the ‘LARS’ function with method ‘LASSO’ 
and ‘LAR’ in the library of the R statistical package. 
We have implemented it into BRB-ArrayTools8 as a 
plug-in.

Averaged linear regression predictor (ALM)
The algorithm was proposed in Bibikova et al.12 We 
implemented their approach but incorporated a com-
plete cross validation step so that model error can be 
correctly estimated.

With K-fold validation, the samples are randomly 
partitioned into K (approximately) equal size groups 
S1,S2,…,SK. One of the K subsets is omitted, say 
subset k. We fitted a simple linear model for each 
gene using a training set consisting of samples in the 
union of the other K-1 subsets, denoted Sk . For each 
gene j = 1, …, M (M is the total number of genes), 
we fitted the univariate linear regression model 
y xij kj kj ij ij= + +α β ε  for all samples, i S k∈ .  where εij 
are independent Gaussian errors. This provides esti-
mates of the regression parameters α∧ , β

∧ , and a sig-
nificance level for testing the hypothesis βkj = 0 .

Only the variables that have significance levels 
less than a threshold are selected. The threshold can 
either be pre-specified or optimized by cross valida-
tion within the training set Sk . The predicted continu-
ous outcome for a sample i* in the omitted subset Sk 
is the average.

	
* *

1 ˆˆˆ ( )i kj kj i j
k

y x
m

α β= +∑
�

(3)

where the summation is over the genes j whose 
significance levels in the training set Sk  is less than 

the threshold and mk is the number of such genes. The 
prediction errors are recorded for the samples in this 
subset Sk . This is done K times, omitting each of the 
K subsets one at a time and the errors for the sam-
ples in each subset are obtained and totaled into an 
overall error.

Cross validation
When comparing different regression algorithms, we 
use 10-fold cross validation. Each time, 10% of the sam-
ples are omitted, the model is built using the remaining 
90% of the samples. The prediction errors are recorded 
for the samples withheld. This is done 10 times, omit-
ting each of the 10 subsets one at a time and the errors 
for the samples in each subset are obtained and totaled 
into an overall error. The flow chart of the cross valida-
tion approach is shown in Figure 1.

Results
Simulated data with no noise
We first evaluated the three linear regression algo-
rithms using simulated data. The simulated response 
was first generated as described in the methods section 
with no noise added. Figure 2A shows the relation-
ship between the 10 fold cross-validated estimate of 
prediction error and model size for the LASSO mod-
els. The confidence bars are output by the R function 
‘cv.lars’. The global minimum occurs for a model 
with 10 variables and a squared prediction error of 
approximately 0.04. Figure 2B shows the relationship 
of predicted and observed response for the LASSO 
model containing 10 variables. These 10 variables are 
exactly the 10 genes used to generate the data and 
their coefficients are almost the same as used in gen-
erating the data (Table 1). The R2 between the pre-
dicted and observed response is 0.99.

For LAR models, the cross-validated prediction 
error has a minimum of 0 (Fig. 3A). The R2 between 
the predicted and observed response is 1 (Fig. 3B). 
The optimized LAR model includes 10 variables 
which also are the 10 genes used to generate the con-
tinuous response (Table 1). The coefficients of the ten 
variables are the same as used in generating the data.

Results for the ALM model are shown in Figures 3A 
and 3B. The minimum cross-validated prediction 
error is 4.23 and occurred for a model with only 5 
variables, containing only four genes used to generate 
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the response (Table 1). The R2 between the predicted 
and observed is only 0.52.

For the simulated data with no noise, the LASSO 
model and the LAR model both appear to be highly 
effective. The ALM algorithm is much less effective.

Simulated data with noise
We also compared the performances of the three algo-
rithms when one or two standard deviations (SD) of 
noise are added to the simulated responses (i.e. σ = 1 
or σ = 2). For data with 1 SD noise added, Figure 3A 

Figure 1. Flow chart of complete cross validation.

Complete cross-validation

Partition data into K disjoint sets of cases S1, S2,..., SK

Omit k’th set Sk

Using cases not in Sk

Select genes for use in prediction model 

Using cases not in Sk and genes selected 
not using Sk , fit predictive model Mk

Apply model Mk to expression levels
for cases in Sk to obtain predictions 

Evaluate prediction errors from applying Mk to cases in Sk

Repeat entire process separately for k = 1,2,…,K. 
and combine prediction errors
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shows the cross-validated estimates of prediction 
error for LAR models is approximately 1.66. That 
model contains 8 of the 10 genes used to generate the 
data. The coefficients for these 8 genes in the model 
are listed in Table 1. The R2 between the predicted and 
observed response is 0.78. For data with 2 SD noise 
added, the global minimum occurs with a squared 
prediction error of approximately more than tripled at 
5.02 using the LAR model in Figure 3A. This model 
contains only 7 of the 10 genes used to generate the 
data (Table 1). The R2 between the predicted and 
observed response decreases to 0.43 (Fig. 3B).

The LASSO models show similar trends but with 
slightly better results on noise added simulated data. 
The cross-validated prediction accuracy decreases 
continuously to a minimum of 1.64 for 1 SD noise 
added data (Fig. 3A). The optimized LASSO model 
includes 9 out of the 10 genes used to generate the 
continuous response for 1 SD noise added data. The 
coefficients for these 9 genes in the model are also 
listed in Table 1. The R2 between the predicted and 
observed response is 0.80 (Fig. 3B). When larger 
noise (i.e. 2 SD) is added, the global minimum occurs 
with a squared prediction error of approximately 4.37 

Figure 2. Simulated data with no noise using LASSO. Part A shows the relationship between the cross-validated estimate of prediction error to model 
size for the corresponding models. The confidence bars are output by the R function ‘cv.lars’. The x-axis stands for fraction, which refers to the ratio of the 
L1 norm of the coefficient vector relative to the norm at the full LS solution for the model with the maximum steps used. Part B shows the relationship of 
predicted and observed response for the optimal model.
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Table 1. List of coefficients of the variables (genes) in each model using no noise and noise added simulated data. When 
generating the simulated continuous response data, we use +1 for the coefficients of the first five variables and -1 for the 
next five variables. For ALM, the selected and unselected genes in the final model are marked as “Yes” and “No”.

True 
coefficient

No noise 1 SD noise 2 SD noise
LAR LASSO ALM LAR LASSO ALM LAR LASSO ALM

Gene 1 1 1 0.977 No 0.836 0.654 No 0.673 0.449 No
Gene 2 1 1 0.991 Yes 0.833 0.886 Yes 0.870 0.948 Yes
Gene 3 1 1 0.989 Yes 0.565 0.657 No 0.394 0.439 No
Gene 4 1 1 0.993 Yes 0.926 0.857 Yes 0.641 0.572 Yes
Gene 5 1 1 0.987 Yes 0.468 0.512 Yes 0.357 0.438 Yes
Gene 6 -1 -1 -0.979 No -0.243 -0.453 No 0 0 No
Gene 7 -1 -1 -0.976 No 0 0 No 0 0 No
Gene 8 -1 -1 -0.989 No -1.139 -0.931 No -0.715 -1.060 No
Gene 9 -1 -1 -0.975 No 0 -0.183 No 0 0 No
Gene 10 -1 -1 -0.987 No -1.035 -1.016 No -1.009 -1.100 No
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using the LASSO model as seen in Figure 3A. This 
model still contains 7 of the 10 genes used to generate 
the data (Table 1). The R2 between the predicted and 
observed response decreases to 0.49 (Fig. 3B).

For the ALM model, the minimum cross-validated 
prediction error is 4.55 and occurs for a model with 
4 variables for 1 SD noise added data (Fig. 3). For 
2 SD noise added data, the minimum cross-validated 
prediction error is 7.26 and occurs for a model with 
6 variables. Under both conditions (different noise 
levels), the optimal models both contain only three 
gene used to generate the response (Table 1). The 
R2 between the predicted and observed are 0.47 and 
0.19, respectively (Fig. 3B).

When the different levels of noise are added, all 
models are gradually less effective than for the simu-
lated data without noise. Among them, LASSO and 
LAR perform similarly robust to 1 SD noise. LASSO 
performs slightly better than LAR with 2 SD noise. 
ALM is again the least effective algorithm among the 
three.

Predicting cytotoxicity of paclitaxel against  
lung cancer cell lines
We applied the three methods to predict the growth 
inhibitory activity (GI50) of paclitaxel in cancer cell 
lines.22 The comparison of the cross-validation estimate 

of prediction errors is shown in Figure 3 for the three 
models. The minimum cross-validation error values are 
1.46 for LAR, 1.30 for LASSO and 1.89 for ALM. 
The R2 values are 0.35, 0.43 and 0.20 for LAR, LASSO 
and ALM models respectively. Thirteen variables are 
in the LAR model with the minimum cross-validated 
error. The optimal LASSO model contains 27 variables, 
including 11 of the 13 variables in the optimal LAR 
model. The optimal ALM model contains 55 variables.

Predicting Gleason score of human prostate 
cancer tumors12

The global minimum estimated squared prediction 
errors of both LAR and LASSO models occur at frac-
tion zero, which means that the null model yields 
the minimum prediction error. Consequently, when 
properly cross-validated, there is no evidence that the 
Gleason score can be predicted from the gene expres-
sion profile. We get similar result using the ALM 
algorithm, with the null model having the minimum 
estimated squared prediction error.

Simulation study with models including 
nonlinear terms
The original LARS method is for linear regression, but 
it can be generalized to fit additive models with pre-
defined nonlinear terms. For example, with p variables, 

Figure 3. Comparison of LAR, LASSO, and ALM on simulated and real data sets. Data Set 1: Simulated data with no noise; Data Set 2: Simulated data 
with 1 SD noise; Data Set 3: Simulated data with 2 SD noise; Data Set 4: real data.22 Part (A) shows the cross validated global minimum estimated squared 
prediction errors. Part (B) shows the association between observed and predicted responses (R2).
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the nonlinear terms could be squared values and 
pairwise cross-product terms of the p variables. 
When p is very large, however, as with microarray 
data, this is problematic. The LARS algorithm can be 
used in a two stage mode in which n linear terms are 
selected from all p candidate variables in the first step. 
A second step would fit an optimally tuned LARS 
model containing the variables selected in the first 
step plus nonlinear terms based on these variables to 
the continuous outcome.

We applied the above two step approach to the lung 
cancer cytotoxicity data set,22 embedding the entire 
two stage algorithm in a leave-one-out cross validation 
to estimate the prediction error. We simulated a series 
of responses by adding different levels of strength of 
a two-way interaction to the original true response, 
which is the growth inhibitory activity (GI50) of 
paclitaxel in cancer cell lines. The simulation result 
is shown in Figure 4. When the added interaction is 
zero or small, the cross validated error for the model 
including two way interactions and quadratic terms is 
slightly larger than the one for the original LARS model 
including only linear terms. In cases where nonlinear 
terms have strong effects, the two stage application of 

LARS to include quadratic terms provides improved 
predictions. In other cases, however, including large 
numbers of nonlinear candidate variables can cause 
overfitting. This results in an increased value of the 
cross-validated prediction error.

Discussion
We evaluated three linear regression algorithms using 
both simulated data and real data. We find that LAR 
and LASSO perform effectively and similarly in all 
data sets, consistent with the findings of Efron and 
Tibshirani.14 In the simulated data without noise, both 
LAR and LASSO select exactly the original ten genes 
that were used to generate the data. In the simulated 
data with noise, the LASSO model tends to select 
more variables and achieve a somewhat lower predic-
tion error. The LASSO model selected more true vari-
ables (9 out of 10 with 1 SD noise added data and 7 
out of 10 with 2 SD noise added data, (Table 1)) used 
to generate the data, but with more noise variables 
included. Failure to include the informative variables 
is often more serious than including more noise vari-
ables in prediction, and this was reflected in the lower 
prediction error for LASSO (Fig. 2). In the simulated 

Figure 4. Comparison of the performances of the models including main effects only and the model including nonlinear terms on the lung cancer cyto-
toxicity data set.22 The x axis is the levels of strength of the two way interaction added to the true response. The y axis is the cross validated estimate 
of prediction error. The line with squares stands for the models with main effects only, while the line with triangles stands for the models including main 
effects and interactions.
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data with 1 SD and 2 SD noise, LAR and LASSO 
still perform reasonably well and effectively while 
ALM performs poorly and ineffectively. We noted, 
however, in some cases, that LAR failed to converge 
in our simulation study using LOOCV.

When applied to the data set concerning cyto-
toxicity of lung cancer cell lines, the three methods 
performed reasonably well. The LASSO algorithm 
again provided a model with somewhat lower predic-
tion error than LAR, but both performed much better 
than ALM.

In our comparisons we selected the final model from 
each sequence of models with the minimum cross-
validated squared prediction error. Alternatively, we 
could select the model containing the fewest variables 
for which the cross-validated squared prediction error 
is no greater than a certain percentage (e.g. 10%) above 
the minimum. The estimate of cross-validated predic-
tion error can be noisy and hence using a tolerance per-
centage above the minimum may in some cases provide 
a more parsimonious model (containing fewer genes) 
without loss of true prediction accuracy. This option is 
provided for the implementation in BRB-ArrayTools. 
For the value of f selected, the model fitted to the full 
dataset is reported; i.e. which genes are included in 
the model and what their regression coefficients are. 
The cross-validated predictions for models with that 
f value are graphed versus the observed values. These 
cross validated predictions are based on models with 
the selected f value, but the actual model differs for 
each loop of the cross validation. It should be noted, 
that the cross-validated predictions used in our imple-
mentation of LAR and LASSO in BRB-ArrayTools 
are based on “complete cross validation” in the sense 
that the genes are re-selected using LARS for each 
loop of the cross-validation.

Because gene expression profiles contain thousands 
of genes as potential variables, it is essential to 
carefully separate the data used for any aspect of model 
building from the data used for evaluating prediction 
accuracy. This means that when cross-validation is 
used, variable selection must be repeated from scratch 
for each loop of the cross validation. The large num-
ber of variables does not guarantee to the ability to 
build a good model. In a previous publication,12 a set 
of 16 genes from a data set of prostate cancer were 
selected to predict the Gleason score. When we build 

the model without cross validation, the LAR/LASSO 
model fits the Gleason scores almost perfectly. We 
believe that the gene selection procedure in the paper 
by Bibikova12 may be biased. We therefore designed 
an unbiased approach to evaluate their averaged 
linear regression predictor method. Based on our 
findings, no genes are informative for predicting 
the Gleason score for the prostate cancer data set, 
given the fact that all three linear regression methods 
selected the null model based on minimizing a prop-
erly cross-validated prediction error. The ALM algo-
rithm is computationally efficient and reminiscent of 
weighted voting for classification. It may be of value 
for other datasets.

Conclusions
We describe an evaluation and comparison of methods 
for developing parsimonious models for predicting a 
quantitative response in high dimensional settings. 
It is based on both simulated and real gene expres-
sion data. We described how signal to noise can affect 
model performance and demonstrated the importance 
of complete cross-validation in evaluating the perfor-
mance of a quantitative response prediction model. 
To our knowledge, there are no other publications that 
address these issues in a form accessible to bioinfor-
matics professionals involved in the analysis of high 
dimensional data. Because of the complexity of using 
linear regression approaches with high dimensional 
data and obtaining proper estimates of prediction 
error, particularly for biomedical scientists, we have 
developed a plug-in for BRB-ArrayTools that imple-
ments LAR and LASSO algorithms with complete 
cross-validation.

Availability and Requirements
All calculations in this manuscript were done using 
R version 2.9 and BRB-ArrayTools. The plug-in of 
the least angle regression and lasso algorithms is 
freely available in the BRB-ArrayTools 3.8.1 sta-
ble release for non-commercial users. The link for 
BRB-ArrayTools downloading website is: http://
linus.nci.nih.gov/BRB- ArrayTools.html
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