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Macadamia (Macadamia integrifolia) trees are an important source of

revenue in rainforest ecosystems. Their nuts are rich in vitamins, minerals,

fiber, antioxidants, and monounsaturated oils. The fungus Lasiodiplodia

theobromae, however, is a major disease problem, causing kernel rot and

other disease symptoms. In the present study, a dual confrontation assay was

used to evaluate the inhibitory effect of an endophytic strain of Trichoderma

hamatum C9 from macadamia root against L. theobromae. Volatiles and cell-

free culture filtrate of T. hamatum were also used to assess their antifungal

activity against L. theobromae. Results suggested that T. hamatum exhibited

a significant inhibitory effect against L. theobromae in vitro. Further results of

a biocontrol assay indicated that a spray treatment of T. hamatum conidial

suspension significantly decreased the size of lesions caused by artificially

inoculated L. theobromae on macadamia leaves, as well as the disease index in

young trees inoculated with L. theobromae, relative to sterile water controls.

Collectively, our findings indicate that T. hamatum C9 represents a potential

biocontrol agent that can be used to manage L. theobromae on macadamia.

KEYWORDS

biological control, Lasiodiplodia theobromae, macadamia, Trichoderma hamatum,
fungal disease

Introduction

Macadamia (Macadamia integrifolia) is an evergreen tree native to rainforest regions
of southeastern Australia (Trueman, 2013). Over the past century, macadamia nuts
have become an important internationally traded product (Carr, 2013). They have a
high content of oil (69–78 g per 100 g fresh weight) and a relatively low percentage

Frontiers in Microbiology 01 frontiersin.org

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2022.994422
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2022.994422&domain=pdf&date_stamp=2022-08-31
https://doi.org/10.3389/fmicb.2022.994422
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmicb.2022.994422/full
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-13-994422 August 25, 2022 Time: 14:58 # 2

Li et al. 10.3389/fmicb.2022.994422

of saturated fatty acids. The consumption of oils with low
levels of saturated fatty acids helps to improve blood lipid
profiles and decreases inflammation and oxidative stress, thus,
contributing to lowering body mass and generally reducing
risk factors associated with cardiovascular disease (Aquino-
Bolaños et al., 2017). Moreover, macadamia kernels are a rich
source of tocotrienols and squalene, which are also considered
to be nutraceuticals, and macadamia oil is a common product
obtained from the processing of macadamia nuts (Wall, 2010;
Navarro and Rodrigues, 2016).

The introduction and trial planting of macadamia in China
began in the 1970s, and now macadamia is cultivated in the
provinces of Guangdong, Yunnan, Guangxi, and Guizhou. The
planted area of macadamia in China exceeded 301,206 hm2 by
the end of 2018, and now China has the largest and fastest
growing macadamia industry, accounting for over 1/3 of global
production acreage (Shuai et al., 2022). Macadamia plants have
been reported to be susceptible to a variety of fungal pathogens
that can variously infect flower, leaf, fruit, stem, and root
tissues (Akinsanmi and Drenth, 2006, 2017; Akinsanmi et al.,
2016a,b; Prasannath et al., 2021a,b; Li et al., 2022). In this
regard, species in the genus Lasiodiplodia represent a serious
concern for the crop. Lasiodiplodia sp. (Akinsanmi and Drenth,
2017) and Lasiodiplodia pseudotheobromae (Chang et al., 2019)
are responsible for causing husk rot resulting in diffuse soft
and spongy black lesions on the fruit pericarp. Lasiodiplodia
theobromae can also cause trunk cankers and shoot necrosis
(Fischer et al., 2017). It has been reported that L. theobromae
has a wide host range and geographical distribution, particularly
in tropical and subtropical regions (Salvatore et al., 2020).
Its pycnidia are stromatic, globose, and ostiolate. Conidia are
initially hyaline, 1-celled and subovoid. When mature, typical
conidia are 1-septate, brown and measured 26–31 × 12–16 µm
(Fischer et al., 2017). Although macadamia cultivation still
relies on the use of synthetic chemicals like carbendazim and
pyraclostrobin (Akinsanmi et al., 2008; Khun et al., 2021) to
minimize disease problems, there is a broad trend to explore and
develop biocontrol agents, including the use of beneficial fungal
endophytes, to manage tree diseases (Sosso et al., 2021).

Different species and strains of Trichoderma have been
extensively studied and employed as biocontrol agents,
due to their ubiquitous presence in soils, high efficacy,
and established regulatory approval (Alghuthaymi et al.,
2022). Trichoderma has been reported to be a dominant
component of various soil mycobiomes, as well as a common
fungal endophyte with biocontrol potential and plant growth
promotion activity (Castro-Restrepo et al., 2022; Siebatcheu
et al., 2022; Tyśkiewicz et al., 2022). Thus, Trichoderma has
been widely used as a component of environmentally friendly
agricultural management practices (Zin and Badaluddin,
2020). In this regard, Trichoderma hamatum has been
recognized for its ability to induce systemic resistance in host
plants and secrete antifungal compounds (Shaw et al., 2016;

Abdelkhalek et al., 2022). It is known Trichoderma serves
as a producer of volatile organic compounds; in particular,
6-n-pentyl-2H-pyran-2-one (6-PAP) (Jeleń et al., 2014) is
very considered recently as a determinant of effects in plant
protection. Studies utilizing Trichoderma as a biocontrol agent
to manage macadamia tree diseases, however, are limited. The
main objective of the present study was to evaluate the ability
of T. hamatum to inhibit L. theobromae in vitro, as well to limit
disease on macadamia leaves and whole plants. The antifungal
activity of volatiles and cell-free culture filtrate of T. hamatum
against L. theobromae was also assessed.

Materials and methods

Biocontrol and pathogenic fungi

The endophytic fungus, T. hamatum strain C9, was
originally isolated in our laboratory from a root of a healthy
macadamia tree (M. integrifolia × M. tetraphylla hybrid cv.
A4) growing in a major production area in Lincang City,
Yunnan Province, China (24◦1′-24◦11′N, 99◦33′-99◦43′E). The
fungal pathogen, L. theobromae strain L1, was originally isolated
from a root of an infected macadamia tree growing in the
same region. Both fungal isolates were identified based on
their morphology and the nucleotide sequence of ITS rDNA
(Malachová et al., 2020; Baazeem et al., 2021). Specifically,
the partial nucleotide sequences of ITS rDNA of the strain
C9 (Figure 1A) and the strain L1 (Figure 1B) obtained in
our study were 100% identical to those of T. hamatum isolate
F4 (NCBI Accession: MT341773.1) and L. theobromae isolate
FH14K03 (NCBI Accession: MK886711.1), respectively. Both
fungi were cultured on PDA (potato dextrose agar) and grown
at 25◦C prior to use.

Plant material

Macadamia (M. integrifolia ×M. tetraphylla hybrid cv. A4)
plants were purchased in September 2021, from suppliers in
the macadamia production area where the fungi were collected.
Three-year-old plants with a height of 1 – 1.3 m and fully
expanded leaves from the top third of the plants were used in
this study.

Dual confrontation assay

A dual confrontation assay was used to quantify the
interaction between T. hamatum C9 and L. theobromae L1
in vitro (Stracquadanio et al., 2020). Mycelial disks (7 mm in
diameter) obtained from the margins of 5-day-old PDA cultures
of T. hamatum and L. theobromae were placed on opposite
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FIGURE 1

The partial nucleotide sequences of ITS rDNA of the strain C9 (A) and the strain L1 (B) obtained in our study.

sides (50-mm distance) of a 90-mm PDA plate. The PDA plates
were then incubated at 25◦C for 72 h. The radial growth of
L. theobromae (the smallest colony diameter) was then measured
in the presence (treatment) or absence (control) of T. hamatum.
Three biological replicates were used in each assay and the assay
was repeated three times.

Assessment of Trichoderma hamatum
C9 cell-free culture filtrate and
volatiles on the growth of
Lasiodiplodia theobromae L1

A conidial suspension of T. hamatum was obtained from
5-day-old PDA cultures and adjusted to a concentration of
1 × 106 spores/ml that was quantified with a hemocytometer.
Then, 100 µl of the conidial suspension was added to 100 ml
of PDB and the inoculated broth was incubated for 3 day at
25◦C on a rotary shaker set at 180 rpm. The 3-day-old cultures
were subsequently used to obtain cell-free culture filtrate as
previously described (Wonglom et al., 2019). Briefly, the PDB
cultures were first filtered through Whatman filter paper Grade
44 using a vacuum filtration system and then filtered again
through a 0.20-µm cellulose acetate syringe filter to obtain
T. hamatum cell-free culture filtrate. Mycelial disks (7 mm
in diameter) from 5-day-old PDA cultures of L. theobromae
were placed in the center of Petri dishes (90 mm in diameter)
containing 20 ml of PDA amended with different concentrations
of the cell-free culture filtrate (0 [control], 0.5, 1, 5, and 10%
v/v) and incubated at 25◦C. The radial growth of L. theobromae
was determined by measuring colony diameter after 48 h of
incubation on the PDA plates.

A confrontation culture assay was conducted in a Petri
dish with two-sections to determine the presence of antifungal
activity of the volatiles produced by T. hamatum. Mycelial

disks (7 mm in diameter) from a 5-day-old PDA culture of
T. hamatum and L. theobromae were separately placed at the
center of each section of the PDA petri plate and incubated at
25◦C (Mao et al., 2019). Mycelial plugs from 5-day-old PDA
plates without T. hamatum were used as a control. Antifungal
activity of T. hamatum volatiles against L. theobromae was
assessed after 48 h of coincubation using the following formula:
Percent inhibition by T. hamatum volatiles = [(the largest
diameter of L. theobromae colony in the control plates – the
largest diameter of L. theobromae colony in the treatment
plates)/the largest diameter of L. theobromae colony in control
plates] × 100. Three biological replicates were utilized in each
assay and the assay was repeated three times.

Biocontrol efficacy of Trichoderma
hamatum against Lasiodiplodia
theobromae L1 on macadamia leaves
in vitro

A conidial suspension of T. hamatum (1 × 106 spores/ml)
was sprayed evenly on the upper surface of fully expanded
macadamia leaves that had been removed from macadamia
plants. The leaves were air-dried and then two wounds were
made on each leaf using sterilized needles. Each of the wounds
on each wounded leaf was subsequently inoculated by placing
a mycelial disk (5 mm in diameter) of L. theobromae over the
wound site. Leaves sprayed with T. hamatum and inoculated
with blank PDA disk without L. theobromae served as a positive
(healthy) control, while leaves that were sprayed with sterilized
water, wounded, and then inoculated with L. theobromae served
as a negative (disease) control. All of the treated leaves were
incubated on sterilized wet filter papers in Petri dishes for
4 days, after which average lesion area on each wound was
determined. Three biological replicates (10 leaves for each
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FIGURE 2

Inhibitory activity of T. hamatum against L. theobromae in a dual confrontation assay. (A) Representative photo of the radial growth of
L. theobromae in the absence of (left panel) or presence of (right panel) T. hamatum. (B) Quantitative assessment of radial growth (PIRG) of
L. theobromae in the absence (control) or presence (treatment) of T. hamatum. Different letters above each column indicate a significant
difference (P < 0.05) between control and treatment groups according to Student’s t-test. Data represent the mean ± SD (n = 9).

replicate) were used in each assay and the assay was repeated
three times.

Biocontrol efficacy of Trichoderma
hamatum against Lasiodiplodia
theobromae on macadamia plants

Three-year-old potted macadamia plants ranging between
1 and 1.3 m in height were used in the biocontrol assay.

The plant trunk (3 cm above the ground soil) of each plant
was wounded with a 5-mm punch and injected with 5-ml of
a conidial suspension (1 × 106 spores/ml) of T. hamatum,
and after air drying, subsequently inoculated with mycelial
disks (5 mm in diameter) of L. theobromae. Each wound was
covered with a wet, sterilized piece of cloth and sealed with
plastic wrap. Wounded plants inoculated with 5-ml conidial
suspension of T. hamatum (1 × 106 spores/ml) and sterile PDA
disks served as a positive (healthy) control, while wounded
plants inoculated with 5-ml sterilized water and mycelial disks
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FIGURE 3

The effect of different concentrations of T. hamatum cell-free
culture filtrate on the radial growth of L. theobromae.
L. theobromae was grown on PDA medium amended with
various concentrations of T. hamatum cell-free culture filtrate.
Radial growth measurements (mm) were taken after 48 h of
culture. Different letters above each column indicate a
significant difference (P < 0.05) according to Duncan’s multiple
range test. Data represent the mean ± SD (n = 9).

of L. theobromae served as a negative (disease) control. Three
biological replicates (five plants for each replicate) were used
in each assay and the assay was repeated three times. Disease
severity was assessed at 20 days after inoculation using the
following disease lesion scale: 0 = no spots, 1 = spot area 0–20%,
2 = 20–40%, 3 = 40–60%, 4 = 60–80% with 50% of the spots
coalesced 50%, 5 = 80–100% with 75% of the spots coalesced.
The disease lesion scale scores were converted to a disease

severity index (DSI) using the following formula (Promwee
et al., 2017):

DSI(%) = 6 (Scale × number of leaves)/[(Maximum level)

× (Total number of leaves)] × 100

Statistical analysis

All statistical analyses were performed using SPSS version
20.0 (SPSS Inc., United States) software. Data with a single
variable (treatment) were analyzed by a one-way ANOVA. Mean
separations in Figure 2 were performed using a Student’s t-test,
while mean separations in Figures 3–5 were performed using
a Duncan’s multiple range test. Differences at P < 0.05 were
considered significant. Data presented were pooled across three
independent repeated experiments. As the experiment was not
a significant variable, the statistical analyses were conducted on
the pooled data (n = 9).

Results and discussion

Trichoderma hamatum has been reported to have biocontrol
activity against several fungal plant pathogens, including
Sclerotinia spp. (Rabeendran et al., 2006), Fusarium oxysporum
(Mao et al., 2020), Rhizoctonia solani, and Pythium ultimum
(Lewis et al., 1996). The genome of T. hamatum GD12 has
been sequenced and has provided fundamental information for
studying its beneficial traits (Studholme et al., 2013). Results

FIGURE 4

The quantitative data of lesion areas caused by L. theobromae on macadamia leaves 4 days after inoculation for the three treatment groups. (I)
Leaves treated only with T. hamatum (healthy control); (II) Leaves treated with T. hamatum + L. theobromae; (III) Leaves treated only with
L. theobromae (disease control). Different letters above each column indicate a significant difference (P < 0.05) according to Duncan’s multiple
range test. Data represent the mean ± SD (n = 9).

Frontiers in Microbiology 05 frontiersin.org

https://doi.org/10.3389/fmicb.2022.994422
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-13-994422 August 25, 2022 Time: 14:58 # 6

Li et al. 10.3389/fmicb.2022.994422

FIGURE 5

Disease symptoms and disease severity index (DSI) of potted macadamia plants infected with L. theobromae 20 days after inoculation.
(A) Representative photos of potted, three-year-old macadamia trees untreated or treated with a conidial suspension of T. hamatum and then
inoculated or non-inoculated with L. theobromae. Photos from left to right represent plants treated only with T. hamatum (healthy control),
plants treated with T. hamatum + L. theobromae, and plants treated only with L. theobromae (disease control). (B) The corresponding disease
severity index (DSI) of the three treatment groups. Different letters above each column indicate a significant difference (P < 0.05) according to a
Duncan’s multiple range test. Data represent the mean ± SD (n = 9).

of the dual confrontation assay conducted in the present study
indicated that T. hamatum had a significant inhibitory effect
against L. theobromae, one of the major fungal pathogens of
macadamia (Figure 2A). The radial growth of L. theobromaewas
significantly inhibited by T. hamatum (Figure 2B), exhibiting
a percent inhibition of 56.3%. We hypothesized that non-
volatile metabolites and/or volatiles produced by T. hamatum
might contribute to its inhibitory activity against L. theobromae.
Therefore, we assessed the inhibitory activity of cell-free culture
filtrate and volatiles against L. theobromae.

Cell-free culture filtrates of Trichoderma spp., including
T. hamatum, have been reported to have antifungal properties
(Reino et al., 2008; Baiyee et al., 2019; Baazeem et al., 2021).

Padder and Sharma (2011) reported that culture filtrate of
T. hamatum had a significant inhibitory effect on spore
germination of Colletotrichum lindemuthianum, and the
inhibitory activity of culture filtrates of Trichoderma sp. have
also been reported against other fungal pathogens, including
Fusarium solani (Dugassa et al., 2021) and F. oxysporum
(Shanmugam et al., 2008). In the current study, the cell-free
culture filtrate of T. hamatum at a concentration ranging
from 0.5 to 10% markedly inhibited the mycelial growth
of L. theobromae, with inhibitory activity increasing with
concentration. No difference in inhibitory activity was
observed, however, between the 5 and 10% concentrations of
cell-free culture filtrate (Figure 3).
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Volatiles produced by Trichoderma spp. may also contribute
to the inhibitory activity displayed against fungal pathogens (Li
et al., 2018; Guo et al., 2019). Results of our culture assays
support this premise. The culture assay utilizing Petri dishes
with two separate sections clearly indicated that the volatiles
produced by T. hamatum had a significant inhibitory effect on
the growth of L. theobromae, with the percentage inhibition
reaching 32.4%. The volatiles produced by Trichoderma species
have been reported to include sesquiterpenes, diterpenes, and
tetraterpenes (Lee et al., 2016), with Trichoderma species
differing in the profile of the volatiles they produce based on
specific fungal interactions (Guo et al., 2019). Therefore, the
specific volatiles produced by T. hamatum in the presence of
L. theobromae and the contribution of specific volatiles to the
inhibitory activity need to be further investigated.

Lasiodiplodia theobromae can cause cankers on the trunks
of macadamia tree and shoot necrosis (Fischer et al.,
2017). In the present study, we found that L. theobromae
can also cause lesions on macadamia leaves. When leaves
were sprayed with a conidial suspension of T. hamatum
(1 × 106 spores/ml), however, the lesion area resulting from
L. theobromae infection significantly decreased, relative to
leaves treated only with L. theobromae (Figure 4). At present,
there is limited information on the biocontrol efficacy of
Trichoderma species against macadamia leaf diseases. We
speculate that the non-volatile and/or volatile antifungal
metabolites (Figures 2, 3) produced by T. hamatum may
contribute to its biocontrol aptitude. The efficacy of biocontrol
agents in vitro, however, does not guarantee their efficacy
in planta (Collinge et al., 2022). Therefore, we also assessed
the biocontrol efficacy of T. hamatum against L. theobromae
on potted, three-year-old, macadamia plants. Macadamia trees
are susceptible to a variety of fungal pathogens (Akinsanmi
et al., 2016b; Wrona et al., 2020) and insects (Khun et al.,
2021), which can result in significant economic losses.
Studies on the biocontrol of insect have been significantly
more numerous than studies on the biocontrol of plant
diseases (Gutierrez-Coarite et al., 2018; Polaszek et al.,
2020). In our present study, T. hamatum exhibited a
high level of biocontrol efficacy against L. theobromae on
three-year-old, potted macadamia trees (Figure 5A). The
application of a conidial suspension (1 × 106 spores/ml) of
T. hamatum to wounds on the main stem of macadamia trees
significantly decreased the DSI of L. theobromae from 85.1 to
37.7% (Figure 5B), indicating the good potential for use of
T. hamatum as a biocontrol agent for the management of fungal
diseases on macadamia.

Conclusion

The present study demonstrated that T. hamatum can
inhibit the growth of L. theobromae in vitro, and decrease

lesion size on detached leaves, and disease severity on potted,
three-year-old macadamia plants. Our study also indicates
that non-volatile and volatile metabolites of T. hamatum may
contribute to its inhibitory properties. Further, detailed studies
on the mechanisms responsible for biocontrol activity, however,
are needed. In particular, other potential modes of action of
T. hamatum against L. theobromae, such as the induction of
disease resistance and mycoparasitism, may also contribute and
need to be investigated.
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