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1 |  INTRODUCTION

Serotonin (5- HT) influences neural circuit maturation 
during pre-  and post- natal development and is an important 
neuromodulator in multiple CNS circuits in adult mamma-
lian life (Cummings & Hodges, 2019; Daubert & Condron, 
2010; Deneris & Gaspar, 2018; Dosumu- Johnson et al., 
2018; Gaspar et al., 2003; Okaty et al., 2015). Neurons that 
produce 5- HT arise from distinct neural segments in the 
developing hindbrain and migrate to midline and ventro-
lateral aspects of the brainstem, where they produce and 

release multiple excitatory neuropeptides and 5- HT to mod-
ulate neuronal excitability in their target fields (Brust et al., 
2014; Corcoran et al., 2009; Hodges & Richerson, 2010; 
Okaty et al., 2015). 5- HT neurons are thought to influence 
respiratory control through their largely excitatory tonic 
modulation of the respiratory network, and through puta-
tive intrinsic cellular CO2/pH sensitivity as central respira-
tory chemoreceptors (Brust et al., 2014; Cerpa et al., 2017; 
Iceman et al., 2013). However, the role of CNS 5- HT in 
respiratory control during post- natal development remains 
unclear.
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Abstract
Serotonin (5- HT) influences brain development and has predominantly excitatory 
neuromodulatory effects on the neural respiratory control circuitry. Infants that suc-
cumb to sudden infant death syndrome (SIDS) have reduced brainstem 5- HT levels 
and Tryptophan hydroxylase 2 (Tph2). Furthermore, there are age-  and sex- dependent 
risk factors associated with SIDS. Here we utilized our established Dark Agouti trans-
genic rat lacking central serotonin KO to test the hypotheses that CNS 5- HT defi-
ciency leads to: (1) high mortality in a sex- independent manner, (2) age- dependent 
alterations in other CNS aminergic systems, and (3) age- dependent impairment of 
chemoreflexes during post- natal development. KO rat pups showed high neonatal 
mortality but not in a sex- dependent manner and did not show altered hypoxic or 
hypercapnic ventilatory chemoreflexes. However, KO rat pups had increased apnea- 
related metrics during a specific developmental age (P12– 16), which were preceded 
by transient increases in dopaminergic system activity (P7– 8). These results support 
and extend the concept that 5- HT per se is a critical factor in supporting respiratory 
control during post- natal development.
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Sudden infant death syndrome (SIDS) is the leading cause 
of post- neonatal mortality in human infants (1 to 12 months 
old). Rare prospective data from infants that later succumbed 
to SIDS indicate a predisposition for ventilatory dysfunc-
tion, including obstructive and central apneas, decreased 
hypoxic and hypercapnic ventilatory chemoreflexes (Kahn 
et al., 1992; Kato et al., 2001) and impaired arousal from 
sleep (Kato et al., 2003). Further, the average arterial PCO2 
and PO2 levels causing sleep arousal are significantly higher 
and lower, respectively, in near- miss SIDS cases compared 
to control infants (Hunt, 1981). SIDS occurs most frequently 
from 2 to 4 months of age (Hakeem et al., 2015), more fre-
quently in male versus female infants, and most frequently 
during sleep (Hakeem et al., 2015). Important advances in 
our understanding of potential pathophysiological mecha-
nisms include careful examination and comparisons of brain-
stem tissues from SIDS and control infants, which led to the 
identification of reduced brainstem 5- HT tissue levels and 
reduced brainstem tryptophan hydroxylase 2 (rate- limiting 
enzyme in 5- HT synthesis) levels among other findings 
(Bright et al., 2017; Duncan, 2010; Kinney, 2009; Kinney 
et al., 1983, 2001, 2003, 2005). Thus, SIDS may result from a 
combination of central 5- HT deficiency and ventilatory dys-
function during specific developmental ages, during which 
males may be at highest risk.

Rodent models of CNS 5- HT deficiency (due to germ-
line mutations preventing or limiting 5- HT neuron formation, 
global 5- HT production, or chemical lesions of 5- HT neurons) 
indicate that the brainstem 5- HT system is critical for respi-
ratory control, especially during development (Cummings 
et al., 2011a; Davis et al., 2019; Dosumu- Johnson et al., 2018; 
Erickson et al., 2007; Hodges et al., 2009; Kaplan et al., 2016; 
Young et al., 2017). 5- HT deficient mouse models that lack 
most or all 5- HT neurons (and thus 5- HT) show higher peri-
natal mortality rates. Pet- 1 null and conditional Lmx1b null 
mice, which lack most or all 5- HT neurons, respectively, also 
have reduced resting (eupneic) breathing, chemoreflexes, 
breathing instability, and apneas, and impaired autoresuscita-
tion and hypercapnia- induced arousal from sleep (Cummings, 
Hewitt, et al., 2011; Dosumu- Johnson et al., 2018; Hodges 
et al., 2009). While informative, the limitation of these stud-
ies is that 5- HT neurons, and all the neurotransmitters and 
neuropeptides they produce and release, fail to develop. 
Indeed, Tph2- /-  mouse models have contributed to our un-
derstanding of 5- HT per se on respiratory function, but these 
studies lack chemoreflex assessment, are limited to a few 
ages, and/or lack an evaluation of histologic or neurochemi-
cal changes within the brainstem (Alenina et al., 2009; Chen 
et al., 2013; Cummings, Commons, et al., 2011). Thus, while 
these studies point to a major role for 5- HT neurons to sup-
port vital homeostatic ventilatory control mechanisms during 
development, the role(s) of 5- HT on the control of breathing 
during development remain incompletely understood.

Rats have well- defined developmental brainstem neuro-
anatomy, particularly within several key nuclei with known 
contributions to the control of breathing. A series of pub-
lished semi- quantitative immunohistochemical datasets from 
a single lab have shown that several anatomic, neurochem-
ical, and functional shifts naturally occur within the brain-
stem at or between postnatal day 12 and 14 (P12– 14), which 
may predispose the respiratory control system to potential 
failure and may thus represent a critical window of devel-
opment (Gao et al., 2011; Liu and Wong- Riley, 2002; Liu 
& Wong- Riley, 2010a; Liu and Wong- Riley, 2008,; Liu & 
Wong- Riley, 2010b). Based on our current understanding 
of this developmental window of vulnerability in rats, and 
the need to establish the role of CNS 5- HT in respiratory 
control during post- natal development, we developed a rat 
model of selective CNS 5- HT deficiency via a zinc- finger 
nuclease- mediated mutation in the Tph2 gene of Dark Agouti 
rats (DATph2−/− rats; referred to as KO rats hereafter)(Kaplan 
et al., 2016). These rats selectively lack CNS 5- HT as adults 
but retain the neurons that would otherwise have been seroto-
nergic ((Tph2- /- ; Ddc+/+) raphe neurons). Initial characteri-
zation of these KO rats showed that they have high mortality 
early during postnatal life and around the second week of life 
at a time where they have frequent apneas during active sleep, 
but normal ventilatory chemoreflexes (Kaplan et al., 2016; 
Young et al., 2017). Remarkably, these rats also showed eu-
pneic ventilatory dysfunction only during specific develop-
mental ages (P0– 2 and P12– 15), but also showed periods of 
respiratory “stability” in the intervening ages (Kaplan et al., 
2016). The mechanisms leading to the periodic normaliza-
tion of breathing and predisposition of breathing instability 
at P12– 15 remain unknown in this model. Furthermore, it is 
unknown if male KO rats are more susceptible to post- natal 
mortality relative to females (as seen in human SIDS), or if 
ventilatory chemoreflexes at specific developmental time-
points are altered. To address these questions and further 
elucidate the developmental role of CNS 5- HT in respira-
tory control, we studied young KO rats to test the hypoth-
eses that CNS 5- HT deficiency: (1) causes mortality in a 
sex- dependent manner, (2) leads to age- dependent changes in 
other aminergic systems, and (3) have age- dependent impair-
ment hypoxic and hypercapnic breathing responses.

2 |  MATERIALS AND METHODS

2.1 | Animals

All rats were housed in the Biomedical Resource Center at the 
Medical College of Wisconsin, were maintained on a 12:12- h 
light– dark cycle, and given food and water ad libitum. KO 
rats were generated by Het x Het breeding (DATph2+/− x 
DATph2+/−), from which 94 pups were used in this study. 
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Data collected were used for all analyses even if the animal 
succumbed to death mid- way through the study. DA rats het-
erozygous for the Tph2 deletion were used for breeder pairs 
and showed normal parental behaviors and pups displayed 
normal feeding behaviors (milk spots in the abdomen) as 
previously noted (Kaplan et al., 2016). Heterozygote rats 
had no physiologic or neurochemical differences compared 
to wild- type (WT) rats (27) and were thus grouped together. 
All experiments and protocols were approved by the MCW 
Institutional Animal Care and Use Committee.

2.2 | Ventilatory measurements and analyses

Ventilation in neonatal rats was measured using a custom- 
built, 200mL Plexiglass plethysmograph as described previ-
ously (Kaplan et al., 2016; Mouradian et al., ,2012, 2019). 
Briefly, the gas inflow rate (150  ml/min) was balanced at 
the same or slightly lower than outflow vacuum rates to pre-
vent CO2 accumulation and assure rapid gas exchange. The 
chamber temperature was maintained at 29– 30°C for P1– 9 
animals and 27°C for P10– 22 with a heated aluminum floor 
(Dyna- sense; Scientific Instruments). Chamber temperature 
(27– 30°C; Warner Instruments), relative humidity (HX15; 
Omega), and pressure (Validyne differential pressure trans-
ducer) were measured throughout data acquisition. Analog 
signals were converted through a 16 channel A/D converter 
and digitally sampled at 200  Hz and recorded through 
WinDaq data acquisition software. Breathing was recorded, 
while rats were exposed to 20 min of room air (21% O2, bal-
anced N2), followed by either 10 min of acute hypoxia (12% 
O2, balanced N2) or 10 min of acute hypercapnia (21% O2, 
7% CO2, balanced N2). The last half of each condition was 
used for data analyses. Animal temperatures were measured 
after each experiment using a T- type rectal thermocouple 
probe and reader (Omega).

All data collected were analyzed offline using LabChart 
Pro Software as described previously (Mouradian et al., 
2019). In brief, each study was recorded in its own file, 
opened in LabChart, and two additional channels were added 
to measure the voltage deflection from peak to valley of each 
respiratory cycle (tidal volume) and the rate of respiratory 
cycles (breathing frequency). Tidal volume was measured in 
volts and converted to a volume using a volume calibration. 
Tidal volume (VT) was then corrected for animal and cham-
ber temperature, relative humidity, and atmospheric pressure 
(Drorbaugh & Fenn, 1955; Hodges et al., 2002), and is ex-
pressed as ml/breath/100g of body weight. Analyzed data 
were devoid of apneas, sighs, sniffing, and movement arti-
facts. Minute ventilation (VE; ml/min/100g) was calculated 
as breathing frequency (f; breaths/min) times VT. No sex 
differences (main effects of sex: p  >  0.05) were measured 
for either breathing frequency or VT in a sampling (n = 4– 7 

per sex per genotype) of WT and KO rats at each age range 
studied (main effects: age p < 0.05,) and therefore data across 
sexes are pooled.

Ventilatory data from the last half of the 20 min of room 
air condition and the last 5 min of the 10- min challenge con-
ditions were manually analyzed for spontaneous apnea- like 
events defined by the cessation of breathing greater than the 
average of one respiratory cycle to identify possible breathing 
pattern abnormalities. These apnea- like events or respiratory 
pauses were analyzed by an investigator blinded to animal 
genotype. The duration of each apnea- like event was from the 
end of the first breath to the start of the following breath. The 
total number, average length, and the sum duration of time 
of apneic- like events were calculated for each animal and the 
average of each metric per animal per group is reported.

2.3 | High- performance liquid 
chromatography with electrochemical detection

WT and KO rat pups aged P7– 8 (n = 7, 6, respectively) or 
P20– 22 (n = 6, 7, respectively) were anesthetized with iso-
flurane, decapitated, and the brain tissues were rapidly re-
moved. The brainstem was separated from the rest of the 
tissue and frozen (−80C) for high- performance liquid chro-
matography (HPLC) measurements of norepinephrine (NE), 
dopamine (DA), dihydrophenylacetic acid (DOPAC), sero-
tonin (5- HT), 5- hydroxyindoleacetic acid (5- HIAA), and 
homovanillic acid (HVA) as described previously (Kaplan 
et al., 2016).

2.4 | Statistics

Statistical analyses were performed using GraphPad Prism 
(version 8). The normality of data distributions was verified 
using the D’Agostino- Pearson normality test. A Chi- square 
Gehan– Breslow– Wilcoxon test was used to compare sur-
vival curves. Two- tailed t tests and two- way ANOVAs were 
used to determine the main effects and interactions with 
Sidak's post hoc tests when appropriate. Significance thresh-
olds were p < 0.05. Data are expressed as mean ± standard 
deviation.

3 |  RESULTS

3.1 | Mortality by genotype and sex

The survival rate at P2 was ~50% for KO rats (vs. ~80% for 
WT) and steadily declined to ~20% by P21 (vs. ~55% for 
WT; Figure 1a). Stratification of the survival rates by sex was 
then performed since males have a greater risk for SIDS than 
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females (Hakeem et al., 2015). Male KO rats had a P2 sur-
vival rate of ~50% (vs. ~89% for male WT) and a P21 sur-
vival rate of ~22% (vs. ~67% for male WT). Female KO rats 
had a P2 survival rate of ~41% (vs. ~73% for female WT) 
and a P21 survival rate of ~18% (vs. ~38% for female WT). 
Male versus female KO rat survival rates were similar across 
development (Figure 1b). Thus, sex does not appear to be a 
determining factor for mortality rates in KO rats.

3.2 | Hypoxic and hypercapnic ventilation and 
body temperature is reduced in KO rats.

We had previously shown that eupneic (room air) ventilation 
was reduced in KO rats at specific post- natal ages. Adding 
to this, data set with more studies yielded a similar data set 
with KO rats having lower eupneic breathing from P9 to P20 
(Table 1). Total ventilation in KO rats during acute hypoxia 
was also reduced compared to WT rats (main effects: gen-
otype and age p  <  0.05) from P9 to P20  mainly due to a 

reduced breathing frequency (main effects: age and genotype 
p < 0.05), and there were lower tidal volumes from P18 to 
P20 (Figure 2a- c; main effects: age and interaction p < 0.05). 
Body temperature in KO rats during acute hypoxia was also 
reduced at P3– 4 and P12– 22 (Figure S1a; main effects: in-
teraction, age, and genotype p < 0.05), despite warming the 
chamber floor (29– 30°C; P1– 9, and 27°C; P10– 22) in an at-
tempt to normalize any thermoregulatory deficiency (Kaplan 
et al., 2016). Ventilation during acute hypercapnia was also 
lower in KO rats compared to WT rats (main effects: age 
p < 0.05) from P12 to P16 due to lower tidal volumes (main 
effects: age p < 0.05) from P12 to P13, but lower breathing 
frequencies (main effects: age and genotype p < 0.05) from 
P9 to P16 (Figure 2d- f). Body temperature in KO rats during 
acute hypercapnia was also reduced from P14 to P16 (Figure 
S1b; main effects: interaction, age, and genotype p < 0.05). 
However, when the hypoxic ventilatory response (HVR) 
or acute hypercapnic ventilatory response (HCVR) was ex-
pressed as a percentage to the baseline breathing of the same 
animal (percent of control), fewer differences among KO rats 

F I G U R E  1  KO rats have increased mortality without any sex differences. (a) Survival (% of pups born per genotype) was reduced to ~50% by 
postnatal (P) day 2 in KO rats which steadily declined with wild- type survival up to P21. (b) There were no sex differences in survival rates of KO 
rats. *p < 0.05 by chi- square test. WT, n = 64; HM, n = 35 (18 F and 17 M)
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T A B L E  1  Comparison of average room air (RA) minute ventilation (second column; as ml/min/100g), hypoxic ventilatory response (HVR; 
third column; expressed as a percent of breathing during the challenge relative to room air breathing × 100%), and hypercapnic ventilatory 
responses (HCVR; fourth column; percent of breathing during the challenge relative to room air breathing × 100%) for WT versus KO rat pups 
across age ranges studied (indicated on the left column)

Age

RA HVR HCVR

WT KO WT KO WT KO

P1– 2 126.8 ± 6.4 108.3 ± 13.1 98.2 ± 26.2 81.4 ± 23.9 141.9 ± 26.3 180.3 ± 44.2

P3– 4 196.4 ± 10.4 150.2 ± 13.1 76.3 ± 8.8 88.1 ± 19.4 171.5 ± 17.6 205.5 ± 16.9

P5– 6 166.4 ±6.9 157.9 ± 17.8 92.4 ± 11.9 80.4 ± 6.5 174.2 ± 14.8 198.5 ± 30.5

P7– 8 122.3 ± 4.6 122.2 ± 7.8 135.7 ± 20.8 109.3 ± 7.9 190.2 ± 18.9 196.8 ± 33.8

P9– 10 181.6 ± 6.7* 118.6 ± 12.3 86.3 ± 10.2 112.6 ± 18.0 178.7 ± 16.1 188.0 ± 22.4

P12– 13 159.2 ± 15.7* 54.6 ± 4.8 125.3 ± 52.3 143.2 ± 44.6 195.0 ± 25.1 265.8 ± 65.5

P14– 16 165.5 ± 4.8* 103.9 ± 17.3 114.2 ± 21.0 130.4 ± 43.6 247.3 ± 68.7 288.6 ± 79.2

P18– 20 146.2 ± 5.0* 78.7 ± 6.2 140.1 ± 23.3 127.2 ± 51.1 300.6 ± 97.5 549.3 ± 282.0

P21– 22 119.7 ± 12.9 130.1 ± 11.9 205.1 ± 53.4* 136.3 ± 31.1 311.2 ± 95.6* 344.4 ± 86.6

*p < 0.05 for WT versus KO within the corresponding age range.
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and controls were found across age. The HVR and HCVR 
increased with age similar to previous reports in rats (Davis 
et al., 2006), and was similar at each age for both KO and 
WT rats (Table 1) with a few exceptions where the HVR was 
lower at P21– 22 in KO rats and the HCVR was increased 
in KO rats. The sum of the data indicated that ventilatory 
chemoreflexes were relatively unaffected across develop-
ment, consistent with previous findings at 2  weeks of age 
(Young et al., 2017) or as adults (Kaplan et al., 2016), but 
lower breathing during hypoxia and hypercapnia are at least 
in part likely driven from reductions in body temperature in 
KO rats.

3.2.1 | Brainstem amines and metabolites 
during development

Our prior studies confirmed that adult KO rats lack brainstem 
5- HT and HIAA (5- HT metabolite), while otherwise retain-
ing “serotonergic” (DDC- expressing) neurons without alter-
ing dopamine (DA) or norepinephrine (NE) (Kaplan et al., 
2016). Here we tested if the loss of central 5- HT caused 

compensatory changes to other amines during development 
via HPLC to measure brainstem tissue levels of 5- HT, NE, 
DA, and metabolites 5- HIAA, DOPAC, and HVA. Consistent 
with our prior report, KO rats lacked brainstem 5- HT (main 
effect: genotype p  <  0.05) or 5- HIAA (main effect: geno-
type p < 0.05) in tissue homogenates collected at P7– 8 and 
P20– 22 (Figure 3a- c). The levels of NE (main effect: age 
p < 0.05) and DA (no significant main effects) were similar 
between KO and WT rats at each age and NE but not DA in-
creased with age (Figure 3d- e). There were no differences in 
DOPAC (no significant main effects), the dopamine- specific 
metabolite (Figure 3f;). However, P7– 8 KO rats had a sig-
nificantly greater level of HVA (no significant main effects) 
a major catecholamine metabolite for DA, which increased 
the HVA/DA turnover ratio (main effects: genotype and in-
teraction p < 0.05)(Figure 3g- h; no significant main effects). 
The dopamine DOPAC/DA turnover ratio significantly de-
creased with age in KO rats unlike that in WT rats (Figure 
3i; no significant main effects). When accounting for both 
dopamine metabolites, the dopamine turnover ratio was sig-
nificantly elevated in P7– 8 KO rats which were reduced to 
WT levels by P20– 22 (Figure 3j; main effects: age, genotype, 

F I G U R E  2  Hypoxic and hypercapnic ventilation are reduced in KO rats within specific developmental age ranges. Minute ventilation (ml/
min/100g; a), tidal volume (mL/breath/100g; b) and breathing frequency (breaths/min; c) during hypoxic breathing conditions (12% O2) are lower 
in KO rats (n = 7– 11) versus WT rats (n = 8– 22) from postnatal days 9– 20 driven almost exclusively by lower breathing frequencies (except from 
P18 to P20 where tidal volume is also lower). Minute ventilation (d), tidal volume (e), and breathing frequency (breaths/min; f) during hypercapnic 
breathing conditions (7% CO2) are lower in KO rats (n = 5– 16) versus WT rats (n = 8– 24) from postnatal days 12– 16 driven by lower tidal 
volumes from P12 to P16 and lower breathing frequencies from P14 to P16. Note that hypoxic and hypercapnic ventilation are all lower from P12 
to P 16. *p < 0.05, two- way ANOVA with Sidak post hoc test
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and interaction p  <  0.05). Together, these data show that 
Tph2 knockout has some effects on other aminergic systems 
which may indicate potential compensatory changes in dopa-
minergic signaling in response to depleted central 5- HT early 
in post- natal development.

3.2.2 | Apnea- like events during control and 
hypoxic conditions in developing KO rats

Our prior study indicated that KO rats have disrupted breath-
ing rhythms during eupneic ventilation based on increased 
variability measures (Poincare analyses) from P1 to P2 and 
P12 to P14 (Kaplan et al., 2016). Here we further tested 
whether the number of respiratory pauses or apneas (as de-
fined in the Materials and Methods), average duration of ap-
neas, and the total time spent apneic under room air, hypoxic, 
and hypercapnic conditions was altered during development 
in KO rats. Under room air conditions, KO rats had more ap-
neas from P1 to P2 and P14 to P16 (Figure 4a; main effects: 
age and genotype p < 0.05), longer average apnea durations 
from P1 to P2 and P12 to P13 (Figure 4b; main effects: age, 

genotype, and interaction p < 0.05), and a greater total time 
spent apneic from P1 to P2 and P9 to P13 compared to WT 
rats (Figure 4c; main effects: age, genotype, and interaction 
p < 0.05). During acute hypoxic challenges, KO rats com-
pared to WT rats had more apneas from P1 to P4 and P7 to 
P8 (Figure 5a; main effects: age and interaction p < 0.05), 
longer average apnea durations from P14 to P16 (Figure 5b; 
main effects: age p < 0.05), and greater total time spent ap-
neic from P3 to P4 and P9 to P13 (Figure 5c; main effects: 
age and genotype p < 0.05). There were no differences nor 
any statistical main effects in the number of apneas, average 
apnea duration, or total time spent apneic between KO and 
WT rats during hypercapnic challenges. Thus, CNS seroto-
nin deficiency led to age- dependent apnea and disruption of 
eupneic ventilation during development which persists dur-
ing hypoxic conditions.

4 |  DISCUSSION

The brainstem serotonin (5- HT) system is embedded within 
and provides critical excitatory neuromodulatory influences 

F I G U R E  3  Neurochemicals within the brainstem tissue of KO rats are altered during development. KO rats lack serotonin (5- HT; a), its 
metabolite (5- HIAA; b), and a 5- HT turnover ratio (c; 5- HIAA/5- HT) in brainstem tissue rats aged P7– 8 and P20– 22. Norepinephrine (NE; d), 
dopamine (DA; e), and its metabolite, DOPAC (f) are similar between genotypes within P7– 8 and P20– 22 ages. A metabolite of DA and NE, 
Homovanillic acid (HVA; g), is significantly greater in KO rats versus WT rats from P7 to P8 but not from P20 to P22. The increase in HVA 
increased the dopamine turnover ratio (HVA/DA; h). DOPAC/DA ratio is unchanged between genotypes (i). The dopamine turnover ratio inclusive 
of both dopamine metabolites (HVA +DOPAC/DA) is elevated from P7 to P8 but not P20 to P22 in KO rats (j). *p < 0.05 between genotype 
within age; +p < 0.05 across age within genotype, two- way ANOVA
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within the respiratory control network, in addition to central 
CO2/pH chemoreception and temperature regulation(Hodges 
& Richerson, 2008a). Infants that succumb to SIDS have re-
duced brainstem 5- HT levels that likely results from a host 
of 5- HT system abnormalities (Bright et al., 2017; Duncan, 
2010; Kinney et al., 1983). Whereas many animal studies 
have investigated the impact of 5- HT neuron deficiency on 
respiratory development, the impact of 5- HT deficiency per 
se on breathing, chemoreflexes, and mortality throughout 
post- natal development, and whether sex is a differentiating 
factor, remain unclear. Here, we tested the impact of CNS 
5- HT deficiency on the control of breathing in a genetically 
engineered rat that lacks Tph2 (KO) (Kaplan et al., 2016). 
Our data indicate that complete CNS 5- HT deficiency leads 
to: (1) high neonatal mortality in a sex- independent manner, 
(2) no changes in the hypoxic or hypercapnic ventilatory re-
sponses, but decreased body temperature, ventilation, and 
apnea- like events at rest and during respiratory challenges 
in an age- dependent manner, and (3) transient (potentially 
compensatory) increases in brainstem dopaminergic system 
activity.

Several lines of evidence support the overall concept that 
the brainstem 5- HT system plays at least two major roles in 
the control of breathing. First, 5- HT neurons project to sev-
eral nodes within the respiratory control network and provide 
a tonic, excitatory, neuromodulatory drive to breathe (Hodges 
& Richerson, 2008a). Second, 5- HT neurons play a major 

role in facilitating the hypercapnic ventilatory chemoreflex 
through an intrinsic pH/CO2 sensitivity (in a subset of 5- HT 
neurons) and by tonic excitation of other important sites for 
central chemoreception such as the retrotrapezoid nucleus 
(RTN) (Yuanming et al., 2019). Our data are consistent with 
the concept that 5- HT neurons support eupneic breathing 
during development but point to specific ages in which their 
contributions may be greatest. KO rats showed an increased 
incidence of apnea- like events during room air breathing and 
during exposure to hypoxia within the first 1– 4  days after 
birth, consistent with reductions in eupneic breathing during 
this age reported in our previous study (Kaplan et al., 2016). 
It is also during this period in early postnatal development in 
which mortality rates were highest in both male and female 
KO rats (~70– 88% of total mortality occurs in the first post- 
natal week), suggesting that CNS 5- HT deficiency provides 
a vital input to cardiorespiratory systems early in neonatal 
life. This is supported by others reporting that genetically 
or pharmacologically induced 5- HT loss in mice causes se-
vere impairments to the cardiorespiratory system in an age- 
dependent manner (Chen et al., 2013; Yang and Cummings, 
2013). In our KO model, the greatest increase in mortality 
occurs from P1 to P4, an age when apnea- like ventilatory 
disruptions were greatest and minute ventilation was lowest. 
Taken with the observation that later in development when 
breathing during hypoxia and hypercapnia are most reduced 
in KO versus WT rats, the data are consistent with the concept 

F I G U R E  4  Apneic- like metrics 
measured during room air breathing were 
greater during two distinct developmental 
ages in KO rats. The number of apneic- like 
events (#; a), average duration (b), and the 
total duration of apneic- like events (c) were 
greater from P1 to P2 and from P12 to P13 
or P14 to P16 in KO (n = 14– 18) versus WT 
(n = 15– 24) rats. Note, the last 10 minutes 
from room air ventilation studies were used 
for analysis. *p < 0.05 between genotype 
within age, two- way ANOVA with Sidak 
post hoc test
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that 5- HT is critical for maintaining eupneic breathing very 
early in neonatal life (P1– 4) and modulates chemoreflexes 
later in postnatal development.

KO rats also showed decreases in breathing during hy-
poxia and hypercapnia and increased values for apnea- like 
measures at various ages between P9 and P20, which may 
or may not reflect changes to metabolic rate given the body 
temperature in KO rats is reduced at all but P9– 10 and P12– 
13 in acute hypoxia and hypercapnia, respectively. The most 
consistent age range demonstrating such changes was after 
the second week of life, which corresponds with our prior 
report of reduced eupneic breathing observed between P12 
and P16 (Kaplan et al., 2016). Thus, the reduction in venti-
lation after the first postnatal week may indicate a generaliz-
able reduction in respiratory network excitation, even during 
environmental challenges, pointing to a critical role of 5- HT 
in maintaining excitatory respiratory network activity and/
or reflect a reduction in metabolism given that CNS 5- HT 
is important in thermoregulation. Furthermore, the putative 
“critical window” of normal respiratory control system de-
velopment has been isolated to ~P12– 13 in rats (Gao et al., 
2011; Liu et al., 2009; Liu & Wong- Riley, 2010a; Wong- 
Riley et al., 2019) and is characterized by transient declines 
in excitatory signaling and a concomitant increase in inhib-
itory signaling throughout the respiratory network (Wong- 
Riley et al., 2019). Therefore, 5- HT deficiency combined 
with the natural shifts in excitation and inhibition may have 

a particularly detrimental effect and may unmask a critical 
role for 5- HT per se during the second postnatal week, and 
provides additional mechanistic insights into the pathophys-
iology of human SIDS which also appears to be highly age- 
dependent. Alternatively, the 5- HT may not have any additive 
impact on the putative critical window of development given 
that differences in ventilatory measures between WT and KO 
rats are observed well before P12– 13. Future experiments 
are needed to dissect the potential interplay between 5- HT 
deficiency and ventilatory changes during the putative criti-
cal window of respiratory development, and interactions be-
tween metabolic rate, breathing, and CNS 5- HT.

Despite the deficiencies in eupneic ventilation (Kaplan 
et al., 2016), CNS 5- HT deficiency per se did not appear to 
influence ventilatory chemoreflexes across postnatal devel-
opment. Previous measures of the ventilatory responses to 
mild hypoxia (FIO2 = 0.17) and hypercapnia (FICO2 = 0.05) 
in KO rats at 2 weeks of age indicated no effect of CNS 5- HT 
deficiency (Young et al., 2017), similar to adult KO rats 
(Kaplan et al., 2016). Here, we showed that the hypoxic and 
hypercapnic ventilatory responses (expressed as a percentage 
of control breathing) in KO rats were equivalent to WT rats 
throughout the development. The lack of effect of CNS 5- HT 
deficiency on chemoreflexes during development contrasts 
previous studies using genetic deletion of 5- HT neurons, 
where Lmx1bf/f/p mice show a blunted CO2 chemoreflex at 
P21 and as adults, and reduced hypoxic chemoreflexes at 

F I G U R E  5  Apneic- like metrics 
measured during acute hypoxia were greater 
during two distinct developmental ages 
in KO rats. The number of apneic- like 
events (#) was greater from P1 to P2 in KO 
(n = 5– 10) versus WT (n = 7– 9) rats (a) 
whereas the average duration (b) and the 
total duration of apneic- like events (c) were 
greater from P12 to P13 or P14 to P16 in 
KO versus WT rats. Note, the last 5 minutes 
of acute hypoxic ventilation studies were 
used for analysis. * p < 0.05 between 
genotype within age, two- way ANOVA 
with Sidak's post hoc test
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P12, P21, but normal responses as adults (Cerpa et al., 2017; 
Hodges & Richerson, 2008b; Hodges et al., 2008). This dis-
crepancy points to 5- HT neurons, but not necessarily 5- HT 
per se, as having larger contributions to the CO2 and hypoxic 
chemoreflex during the development. However, it is notewor-
thy that metabolic rate measures were not made during the 
current studies, where differences in metabolic rate responses 
to these challenges may have influenced the results. Taken 
together, these findings suggest that 5- HT per se is a major 
source of the 5- HT system's contribution to the excitatory fa-
cilitation of resting breathing during postnatal development 
and may contribute minimally to ventilatory chemoreflexes 
during the first ~2.5 weeks of life in rats, consistent with the 
concept that medullary 5- HT neurons “switch from tonic re-
spiratory drive to chemoreception” after the completion of 
postnatal development (Cerpa et al., 2017).

The effects of 5- HT deficiency on eupneic breathing were 
age- dependent, where there were periods of “normalization” 
of resting ventilation after P4 until P9, and after P20 into 
adulthood (Kaplan et al., 2016). The respiratory control net-
work undergoes major developmental shifts in neurochemi-
cals and receptors throughout development in rats (Gao et al., 
2011; Liu & Wong- Riley, 2010a, 2010b; Wong- Riley et al., 
2019), including other aminergic systems, which may com-
pensate for the constitutive loss of 5- HT during these age 
ranges in KO rats. Indeed, HPLC analysis of brainstem ho-
mogenates from P7 to P8 KO rats indicates a significant and 
transient upregulation of dopaminergic signaling in KO rats 
relative to WT rats. Dopaminergic signaling extends through-
out the bulbar respiratory network and has largely excitatory 
effects on breathing (Lalley, 2008). For example, genetically 
induced loss of dopaminergic neurons in mice severely dis-
rupts breathing and hypoxic responsiveness leading to death 
within 24 hours of birth (Nsegbe et al., 2004). Application 
of apomorphine, a non- selective dopamine receptor agonist 
with specificity to mainly D2- like receptors, increases ven-
tilation and the HCVR whereas blockade of CNS dopamine 
receptors reduces phrenic nerve discharge (Lundberg et al., 
1979, 1982; Nielsen & Bisgard, 1983). Thus, increases in do-
pamine turnover could indicate an increase in excitatory do-
paminergic signaling as a mechanism to compensate for the 
loss of 5- HT excitatory neuromodulation between the P5 and 
P8 age range or simply be a compensatory response to keep 
DA levels in KO rats at WT levels. Whether this increase in 
dopaminergic signaling is a compensatory mechanism pres-
ent at earlier or later ages, or if there are additional compen-
satory factors remains to be tested.

In conclusion, our data support and extend the concept 
of 5- HT per se as a critical factor supporting vital respira-
tory control mechanisms during postnatal life. Constitutive 
5- HT deficiency in KO rats led to deficits in resting breath-
ing and body temperature at specific ages without affecting 
chemoreflexes and further led to high postnatal mortality 

rates which did not differ among males and females. Thus, 
5- HT deficiency per se may not represent the only biologic 
abnormality underlying SIDS pathophysiology but may con-
tribute to a multi- factorial but 5- HT system- related syndrome 
resulting from more than one abnormality. 5- HT has a crit-
ical excitatory neuromodulatory role for respiratory control 
during key periods of postnatal development and is likely a 
contributing factor to a multifactorial biological dysfunction 
in human SIDS.
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