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Abstract 

Background:  Preoperative prediction of microsatellite instability (MSI) status in colorectal cancer (CRC) patients is 
of great significance for clinicians to perform further treatment strategies and prognostic evaluation. Our aims were 
to develop and validate a non-invasive, cost-effective reproducible and individualized clinic-radiomics nomogram 
method for preoperative MSI status prediction based on contrast-enhanced CT (CECT)images.

Methods:  A total of 76 MSI CRC patients and 200 microsatellite stability (MSS) CRC patients with pathologically 
confirmed (194 in the training set and 82 in the validation set) were identified and enrolled in our retrospective study. 
We included six significant clinical risk factors and four qualitative imaging data extracted from CECT images to build 
the clinics model. We applied the intra-and inter-class correlation coefficient (ICC), minimal-redundancy-maximal-
relevance (mRMR) and the least absolute shrinkage and selection operator (LASSO) for feature reduction and selec-
tion. The selected independent prediction clinical risk factors, qualitative imaging data and radiomics features were 
performed to develop a predictive nomogram model for MSI status on the basis of multivariable logistic regression 
by tenfold cross-validation. The area under the receiver operating characteristic (ROC) curve (AUC), calibration plots 
and Hosmer-Lemeshow test were performed to assess the nomogram model. Finally, decision curve analysis (DCA) 
was performed to determine the clinical utility of the nomogram model by quantifying the net benefits of threshold 
probabilities.

Results:  Twelve top-ranked radiomics features, three clinical risk factors (location, WBC and histological grade) and 
CT-reported IFS were finally selected to construct the radiomics, clinics and combined clinic-radiomics nomogram 
model. The clinic-radiomics nomogram model with the highest AUC value of 0.87 (95% CI, 0.81–0.93) and 0.90 (95% 
CI, 0.83–0.96), as well as good calibration and clinical utility observed using the calibration plots and DCA in the 
training and validation sets respectively, was regarded as the candidate model for identification of MSI status in CRC 
patients.
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Background
Colorectal cancer (CRC) is the third most commonly 
diagnosed malignant tumor and remains the second 
leading cause of mortality from cancer worldwide [1]. 
Mismatch repair deficiency (dMMR) or microsatellite 
instability (MSI) is observed in approximately 15% of 
CRC, and MSI is a hypermutable phenotype caused by 
replication errors in DNA mismatch repair [2]. MSI or 
dMMR identifies a unique subset of CRC with favora-
ble prognostic, therapeutic and negative predictive rel-
evance [3]. MSI CRC patients can avoid the side effects 
of fluorouracil-based adjuvant chemotherapy, which has 
limited value in CRC with MSI status, while they can 
show a likely better prognosis and clinical benefit from 
immune checkpoint inhibitors in late-stage CRC patients 
[4]. Furthermore, MSI and dMMR are associated with 
Lynch syndrome via a unique pathway in carcinogenesis, 
representing the most common inherited disease leading 
to CRC [5]. Because of the dramatic clinical demand for 
MSI/dMMR status, MSI/dMMR status testing is recom-
mended for all CRC patients by international guidelines 
such as the National Comprehensive Cancer Network 
(NCCN) guidelines [4] and the European Society for 
Medical Oncology (ESMO) guidelines [3]. MSI/dMMR 
detection relies on pathological tissues via polymerase 
chain reaction (PCR), immunohistochemistry (IHC) or 
genetic analyses [6]. However, pathological CRC tissues 
are preoperatively obtained by invasive colonoscopy 
biopsy requiring a group of gastroenterologists, anes-
thesiologists, and nurses for the procedure, which can 
be costly and time-consuming. Colonoscopy biopsy can 
only obtain a small proportion of CRC tissue samples, 
which may not meet the minimum quantity criteria for 
these advanced biological tests [7]. Furthermore, these 
advanced biological tests may be available only in tertiary 
care centers, which prevents identification of MSI sta-
tus in many CRC patients. Thus, it is crucial to develop 
a noninvasive, cost-effective and preoperative method to 
predict MSI status, which could be useful for clinicians to 
perform further treatment strategies.

In routine clinical practice, computed tomography 
(CT) is a preferred first-line noninvasive approach that 
has been widely used to guide treatment planning strat-
egies for CRC patients. Furthermore, radiomics, as an 
emerging technique that extracts high-throughput tex-
tural features from medical images, converts medical 

images into structural information and mineable data 
regarding the underlying pathophysiology or genetic 
changes, thus providing deep characterization of tumor 
phenotypes [8, 9]. Specifically, CT-based radiomics has 
demonstrated clinical value in the preoperative predic-
tion of KRAS/BRAF mutation status in CRC patients and 
EGFR mutation status in lung adenocarcinoma patients 
[10–12]. A few scholars reported the values in the pre-
operative prediction of MSI status in CRC by radiomics 
features extracted from contrast-enhanced CT images; 
however, the protocol of radiomics analysis or the diag-
nosis efficiency was limited [13, 14], and more recent 
works about method for key feature selection in radiom-
ics and radiomics workflow to create a predictive model 
using machine learning algorithms [15, 16]. Therefore, 
our retrospective study was performed to develop and 
validate a noninvasive, cost-effective reproducible and 
individualized radiomics-based nomogram method for 
preoperative MSI/dMMR status prediction based on 
contrast-enhanced CT (CECT) images.

Methods
Patient population
Our local institutional review board (Committee on Eth-
ics of Biomedicine, Affiliated Jinhua Hospital, Zhejiang 
University School of Medicine) approved this research, 
and the requirement for patient informed consent was 
waived for this retrospective study. From January 2018 
to June 2020, 462 consecutive colorectal cancer patients 
with pathologically confirmed disease were initially 
retrieved, and the patients were classified into the MSI 
group (n = 87) and microsatellite stability (MSS) group 
(n = 375). The incidence rate of MSI was 18.83% (87/462), 
and the prevalence of MSI was 18.83% (87/462). The 
inclusion criteria were as follows: (a) colorectal adenocar-
cinoma was identified by postoperative histopathological 
examination; (b) patient underwent abdominal CECT 
examination within approximately 2 weeks before surgi-
cal resection; and (c) pathological information on MSI or 
MSS tested by immunohistochemistry (IHC) was pro-
vided. The exclusion criteria were as follows: (a) CECT 
image quality was extremely poor, and artifacts were 
obvious, which could make it difficult to identify lesion 
delineation (n = 43); (b) sex, age, information on labo-
ratory examination, pathology data or MSI status were 
incomplete or unavailable (n = 61); (c) the maximum size 

Conclusion:  The proposed clinic-radiomics nomogram model with a combination of clinical risk factors, qualitative 
imaging data and radiomics features can potentially be effective in the individualized preoperative prediction of MSI 
status in CRC patients and may help performing further treatment strategies.
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of tumor≤15 mm (n = 46); and (d) neoadjuvant chemo-
therapy was performed before surgery (n = 36). Finally, a 
total of 76 MSI CRC patients and 200 MSS CRC patients 
who met these inclusion and exclusion criteria were 
identified and enrolled in our study. The flowchart of the 
patient recruitment pathway is shown in Fig. 1.

Baseline clinical data, including patient sex, age, loca-
tion of primary cancer (right colon/left colon/rectum), 
carcinoembryonic antigen (CEA) (normal range, 0–5 U/
ml), and white blood cell count (WBC) (normal range, 
3.50–9.50 × 109/L), were all recorded from electronic 
medical records. Histological grade was directly obtained 
from preoperative histopathological biopsy, and MSI/
dMMR status was directly obtained from histopathologi-
cal and IHC reports performed after surgical resection. 
The CRC patients included in this study were divided 
into a training cohort (n = 194, 140 MSS and 54 MSI) and 
a validation cohort (n = 82, 60 MSS and 22 MSI) accord-
ing to a ratio of 7:3 using stratified sampling to main-
tain the same ratio of negative to positive samples in the 
training and validation sets.

Microsatellite instability status assessment
The MSI/MSS status was determined with standard 
IHC staining of four MMR proteins including MLH1, 
MSH2, MSH6, and PMS2. IHC staining was based 
on routinely performed postoperative formalin-fixed 

paraffin-embedded specimens using the standard proce-
dure of streptavidin biotin-peroxidase. The results of IHC 
staining for MMR proteins were diagnosed by two expert 
pathologists who were blinded to the CRC patients’ avail-
able clinical and histopathological characteristics. The 
consistent opinions were acquired. If there were differ-
ent opinions, their disagreements were resolved through 
negotiation. According to the results of IHC staining for 
four MMR proteins, CRC patients were divided into the 
MSS or MSI group. CRC specimens with at least one 
negatively stained MMR protein were subclassified into 
the MSI group; others with all positively stained MMR 
proteins were subclassified into the MSS group [5].

CT Acquisition and image analysis
Abdominal CT scans were performed in the supine 
position on a 256-slice Brilliance iCT scanner (Philips 
Healthcare). The scan and reconstruction parameters 
were tube voltage, 120 kVp; tube current, 150 to 500 mA 
using automatic tube current modulation; collimation, 
128.0 × 0.625 mm; pitch factor, 0.90 mm/rotation; slice 
thickness, 5 mm; increment, 5.0 mm; matrix, 512 × 512; 
scan field of view, 350 × 350 mm; and reconstruction ker-
nel, standard. All scans were from the top of the liver to 
the pubic symphysis in the craniocaudal direction. All 
patients were instructed to hold their breath during the 
CT examination. The non-contrast abdominal CT scan 

Fig. 1  Flowchart of patient recruitment pathway
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was acquired first. After the nonenhanced abdominal CT 
scan, 80–100 mL of iodinated contrast material (iodine 
concentration 300 mg/mL, Omnipaque-300, GE Diag-
nostics) was injected at a rate of 3.0 to 3.5 mL/s during 
contrast-enhanced scanning. After contrast administra-
tion, contrast images were obtained at the arterial phase 
(25–35 s), portal venous phase (65–80 s), and delayed 
phase (5 min). After CECT scans, we retrieved venous 
phase images from the picture archiving and commu-
nication system (PACS) and advanced workstation ISP 
(Philips Healthcare) in the hospital for lesion segmenta-
tion and analysis.

Image analysis was performed by two senior abdominal 
radiologists (L.G. and P.J., with 20 and 15 years of expe-
rience in abdominal radiology, respectively), who were 
blinded to the clinical and histopathological information 
of CRC patients and conducted the evaluation together. 
Their disagreements were resolved by negotiation. The 
following qualitative imaging data extracted from CECT 
images were analyzed and recorded: (a) CT-reported 
tumor maximum size (TMS), defined as the maximum 
diameter of tumors on curved planar reformation images 
(curved line was plotted along the center of the affected 
bowel at a workstation ISP); (b) CT-reported T stage, 
determined according to the 8th AJCC staging system 
[17]; (c) CT-reported lymph node (LN) status, meta-
static lymph node was defined as enlarged lymph node 
(short-axis diameter > 1 cm), circular appearance and 
homogeneous enhancement [18]; and (d) CT-reported 
inflammatory response (IFS), defined as irregular exuda-
tive manifestation from the serosal surface and/or cloud-
ing of the peritumoral fat and/or thickened mesorectal 
fascial reflections.

Tumor segmentation and feature extraction
The regions of interest (ROIs) were delineated manually 
on the portal venous CECT images by two experienced 
radiologists independently via open-source ITK-SNAP 
software (version 3.8.0; www.​itksn​ap.​org). The ROIs 
were required to include the bleeding area and tumor 
necrosis and to exclude peri-enteric fat, adjacent air, 
intestinal contents and normal tissues. Both radiologists 
were blinded to MSI/MSS status. If there were multiple 
colorectal lesions, the radiologists identified the tumor 
according to surgical records or pathological reports. 
Radiologist 1 (Y.M. with 10 years of experience in abdom-
inal radiology) and Radiologist 2 (Z.S. with 12 years of 
experience in abdominal radiology) performed the seg-
mentation of 35 patients (20 MSS, 15 MSI) randomly 
selected from the whole study. Radiologist 1 repeated the 
segmentations of the above 35 patients 4 weeks later and 
performed ROI segmentation of the remaining patients. 
We evaluated the reproducibility and reliability of feature 

extraction by the intra- and interclass correlation coeffi-
cient (ICC). An ICC greater than 0.75 showed good con-
sistency of feature extraction.

Subsequently, a total of 1037 high-throughput radiom-
ics features for each patient were automatically extracted 
from Artificial Intelligent Kit software (A.K. software, GE 
Healthcare), which followed the reference manual by the 
Image Biomarker Standardization Initiative (IBSI). All 
features were classified into four groups: (a) First-order 
statistics features (n = 18); (b) Shape features (n = 14); (c) 
Texture features, such as gray-level co-occurrence matrix 
(GLCM, n = 24), gray-level size zone matrix (GLSZM, 
n = 16), gray-level run-length matrix (GLRLM, n = 16), 
neighboring gray tone difference matrix (NGTDM, 
n = 5), gray-level dependence matrix (GLDM, n = 14); (d) 
Laplacian of Gaussian (LoG) transform features (n = 186) 
and (e) Wavelet transform features (n = 744).

Radiomics feature selection
All 1037 radiomics features were analyzed further based 
on the training dataset. We used a three-step feature 
selection procedure. First, we applied a variance thresh-
old method (ICC) to reduce the number of features, and 
radiomic features with high reproducibility (ICC val-
ues>0.75) were retained from the feature set. Second, 
a multivariate ranking method called minimal-redun-
dancy-maximal-relevance (mRMR) was applied to elimi-
nate the redundant and irrelevant features on the basis of 
a heuristic scoring criterion, and only the top ranked 20 
features were retained [19, 20]. Then, the least absolute 
shrinkage and selection operator (LASSO) was used to 
choose the most valuable subset of features from the top 
ranked 20 features. The regular parameter (λ) of LASSO 
regression was chosen when the average mean square 
error was minimal by tenfold cross validation. Moreover, 
the most valuable subset of features was utilized to calcu-
late the radiomics signature score (Rad-score) and con-
struct the final predictive model.

Prediction building and evaluation of the radiomics 
nomogram model
To explore whether clinical factors and CT-reported CRC 
status had additional power in predicting MSI status, 
univariate logistic regression was applied to the training 
dataset for each potential risk factor, including clinical 
factors (age, sex, location of primary cancer, CEA, WBC 
and histological grade) and CT-reported CRC status 
(CT-reported TMS, CT-reported T stage, CT-reported 
LN status and CT-reported IFS), to choose the independ-
ent prediction risk factors. The selected independent pre-
diction risk factors and Rad-score were used to develop 
a prediction model for MSI status on the basis of mul-
tivariable logistic regression. Then, the clinics-radiomics 

http://www.itksnap.org


Page 5 of 13Ying et al. BMC Cancer          (2022) 22:524 	

nomogram was constructed. Calibration plots and the 
Hosmer–Lemeshow test were applied to estimate the 
calibration of the clinic-radiomics nomogram model, 
and a nonsignificant test statistic indicated that the 
nomogram model predicted MSI status perfectly versus 
actual observed probability. The prediction performance 
of the radiomics model, the clinics model and the com-
bined clinics-radiomics nomogram model was assessed 
by receiver operator characteristic (ROC) curve analysis 
by calculating the sensitivity, specificity, and accuracy of 
the area under the curve (AUC) in the training and vali-
dation cohorts. Decision curve analysis (DCA) was per-
formed to determine the clinical utility of the radiomics 
and clinic-radiomics nomogram by quantifying the net 
benefits of threshold probabilities.

Statistical analysis
All statistical analyses were performed with R software, 
version 3.6.0 (https://​www.r-​proje​ct.​org/). Continuous 
variables are presented as the mean ± standard devia-
tion and were analyzed using either independent t tests 
or Mann–Whitney–Wilcoxon tests according to the dis-
tributions of the variables. Categorical variables were 
described as proportions and were analyzed using the 
chi-square test or Fisher’s exact test. A two-sided P < 0.05 
was accepted as statistically significant. The workflow of 
the radiomics-based nomogram is shown in Fig. 2.

Results
Patient demographics and CT‑reported status
The clinical factors and CT-reported status of the CRC 
patients in the training and validation sets are shown 
in Supplementary Table S1. There were no statistically 
significant differences detected between the training 
and validation sets. MSI status was significantly associ-
ated with the location of the primary tumor, histological 
grade, CT-reported TMS, CT-reported IFS, and Rad-
score on univariate logistic analysis in both the training 
and validation sets, as shown in Table 1.

Inter‑ and intra‑observer feature selection and Rad‑score 
building
The radiomics features with high reproducibility (ICC 
values >0.75) were as follows: For intra-observer feature 
reproducibility and interobserver feature reliability, 820 
radiomics features between the two analyses of the radi-
ologist (P.J.) and 703 radiomics features between the sec-
ond analysis of the radiologist (P.J.) and radiologist (Z.S.) 
were retained. Finally, 690 features were considered sta-
ble features with both interobserver reliability and intra-
observer reproducibility. These 690 features acquired 
by radiologist (P.J.) in the first analysis were applied for 
further analysis. The mRMR and LASSO regression com-
monly applied in the regression of high-dimensional 
data was applied to identify the most effective predictive 

Fig. 2  Workflow of radiomics analysis. The workflow of radiomics analysis illustrated an overview of the contrast enhanced CT imaging 
segmentation and feature extraction, feature reduction and selection, nomogram model development, and nomogram model validation

https://www.r-project.org/
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features for constructing the radiomic signature (Fig. 3). 
Finally, the most predictive subset of twelve radiomics 
features with nonzero coefficients was chosen to calcu-
late the Rad-score (Fig.  4). The Rad-score was calcu-
lated by summing the selected most predictive features 
weighted by their coefficients. The final formula of the 
Rad-score is shown in Supplementary Material S2. The 
Rad-score for each patient in the training and validation 
sets with regard to the MSI and MSS are shown in Fig. 5. 
The MSI group showed a statistically higher Rad-score 
than the MSS group in both the training and validation 
sets (P < 0.001) (Fig. 5).

Development and validation of the radiomics models
After multivariate logistic regression analysis, loca-
tion of primary tumor (OR = 0.29 [95% confidence 
interval (CI), 0.18–0.48]), WBC (OR = 3.19 [95% CI, 
1.13–9.03]), CT-reported IFR (OR = 3.06 [95% CI, 
1.34–7.01]), and histological grade (OR = 2.42 [95% CI, 
0.91–6.46]), combined with the Rad-score (OR = 1.89 
[95% CI, 1.18–3.13]) were identified as independent 

risk predictors in the prediction model for MSI (Fig. 6). 
Then, we established three predictive models (radiom-
ics, clinics and nomogram) using the above selected 
features. The calibration plot of the CCR nomogram 
model showed a statistically nonsignificant Hosmer–
Lemeshow test (P = .417, P = .268) and indicated good 
agreement between prediction and actual observation 
in both the training and validation sets (Fig. 7).

ROC analysis was performed to confirm the overall pre-
dictive performance of the radiomics, clinical and nomo-
gram models according to the AUC. The AUCs of the 
radiomics, clinical and nomogram models in the training 
and validation sets are shown (Fig. 8). The AUCs of the clin-
ical model were 0.85 (95% CI, 0.79–0.92) and 0.87 (95% CI, 
0.79–0.95) in the training and validation sets, respectively. 
The selected radiomics feature-based radiomics model 
discriminated MSI status from MSS status, with AUCs of 
0.81 (95% CI, 0.74–0.87) and 0.82 (95% CI, 0.72–0.92) in the 
training and validation sets, respectively. The nomogram 
model, which incorporated both the Rad-scores and clini-
cal-CT reported information, showed superior predictive 

Table 1  Demographics comparison between MSI and MSS group in training and validation sets

CRC​ Colorectal cancer, CEA Carcinoembryonic antigen, WBC White blood cell count, LN Lymph node, MSI Microsatellite instability, MSS Microsatellite stability, TMS 
Tumor maximum size, IFR Inflammatory response

Characteristic Level Training set (n = 194) Validation set (n = 82)

MSS (n = 140) MSI (n = 54) p-value MSS (n = 60) MSI (n = 22) p-value

Age, mean (SD), years 64 (11.1) 63.6 (14.1) 0.815 64.2 (12.4) 64.3 (15.9) 0.986

gender, n (%) Female 55 (39.3) 26 (48.1) 24 (40.0) 17 (77.3)

Male 85 (60.7) 28 (51.9) 0.337 36 (60.0) 5 (22.7) 0.006

location, n (%) Right colon 15 (10.7) 28 (51.9) 10 (16.7) 13 (59.1)

Left colon 23 (16.4) 16 (29.6) 5 (8.3) 7 (31.8)

Rectum 102 (72.9) 10 (18.5) < 0.001 45 (75.0) 2 (9.1) < 0.001

CEA, n (%) Normal 95 (67.9) 38 (70.4) 41 (68.3) 16 (72.7)

Abnormal 45 (32.1) 16 (29.6) 0.868 19 (31.7) 6 (27.3) 0.910

WBC, n (%) Normal 125 (89.3) 36 (66.7) 48 (80.0) 16 (72.7)

Abnormal 15 (10.7) 18 (33.3) < 0.001 12 (20.0) 6 (27.3) 0.686

CT-reported-TMS, mean (SD), cm 4.2 (1.7) 5.8 (2.7) < 0.001 4.3 (1.5) 6.1 (2.8) < 0.001

CT-reported T stage, n (%) T1 6 (4.3) 0 (0.0) 2 (3.3) 1 (4.5)

T2 9 (6.4) 2 (3.7) 4 (6.7) 2 (9.1)

T3 46 (32.9) 9 (16.7) 23 (38.3) 3 (13.6)

T4 79 (56.4) 43 (79.6) 0.021 31 (51.7) 16 (72.7) 0.209

CT-reported LN status, n (%) Negative 91 (65.0) 37 (68.5) 40 (66.7) 13 (59.1)

Positive 49 (35.0) 17 (31.5) 0.768 20 (33.3) 9 (40.9) 0.707

CT-reported-IFR, n (%) No 102 (72.9) 17 (31.5) 43 (71.7) 10 (45.5)

Yes 38 (27.1) 37 (68.5) < 0.001 17 (28.3) 12 (54.5) 0.045

Histological grade, n (%) Well 10 (7.1) 1 (1.9) 4 (6.7) 0 (0.0)

Moderately 119 (85.0) 33 (61.1) 54 (90.0) 17 (77.3)

Poorly 11 (7.9) 20 (37.0) < 0.001 2 (3.3) 5 (22.7) 0.011

Rad-score
(median [IQR])

−0.9[−1.6, −0.2] 0.4 [−0.4, 1.1] < 0.001 −0.7 [−1.5, 0.0] 0.5 [−0.2, 0.9] < 0.001
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ability for MSI status than the other two models, with AUCs 
of 0.87 (95% CI, 0.81–0.93) and 0.90 (95% CI, 0.83–0.96) in 
the training and validation sets, respectively. The sensitivity, 
specificity, accuracy, negative predictive value (NPV), posi-
tive predictive value (PPV) and AUC of the three predictive 
models are summarized in Table 2.

Decision curve analysis (DCA) showed that the nom-
ogram model obtained the highest net benefit com-
pared with the other two models at a range threshold 

probability of 30–70%. The nomogram model achieved 
a net benefit similar to that of the radiomics model at 
ranges from 0 to 30% and 70 to 100% (Fig. 9).

Discussion
In our retrospective study, we established a clinic-
radiomics nomogram for individualized preoperative 
prediction of MSI status in CRC patients. Combining 
radiomics features from routine pretreatment portal 

Fig. 3  Feature selection selected by the least absolute shrinkage and selection operator (LASSO) algorithm. A Tuning parameter (Lambda, λ) 
selection in the LASSO model was optimized by 10-fold cross-validation via minimum criteria of the loss function. The dotted vertical lines in the 
figure and the optimal λ value of 0.03607348 were chosen corresponding to the partial likelihood estimation. B The vertical line was plotted at the 
optimal λ value, and twelve features with non-zero coefficient were selected

Fig. 4  The chosen subset of radiomics features. The most twelve predictive subset of feature was chosen and the corresponding coefficients were 
evaluated
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venous phase CECT images with clinical factors and 
CT-reported status that are easily available in routine 
clinical practice, we achieved good predictive perfor-
mance in both the training set (AUC, 0.87) and valida-
tion set (AUC, 0.90), with the incorporation of clinical 
risk factors, CT-reported status and radiomics features 
from routine pretreatment portal venous phase CECT 
images.

Our study showed an MSI prevalence of 18.83% in our 
CRC cases, which was consistent with the pathogenesis 
of merely 10–20% in previous studies [21–23]. In terms 
of clinical factors and CT-reported status of the CRC 
patients, our study demonstrated that location of pri-
mary tumor, WBC, CT reported IFS, histological grade 
were independent clinical risk factors and were closely 
associated with MSI status in CRC patients upon multi-
variable analysis. Among the four potential clinical risk 
factors, right-sided and poor differentiation were con-
sidered independent risk predictors closely associated 
with the MSI status of CRC patients, which is consistent 
with the findings of a previous study [24]. In our current 
study, we also found significant differences between the 

CT-reported IFS, WBC and MSI status. This interest-
ing finding might be due to the inflammatory reaction 
accompanied by increased tumor-infiltrating lympho-
cytes and the presence of a peritumoral Crohn-like lym-
phocytic response in the MSI status of CRC patients [25, 
26]. This finding was developed to initially identify MSI 
status cases preoperatively and to save costs. To the best 
of our knowledge, this might be the first study to explore 
the relationship between the CT-reported IFS, WBC and 
MSI status, and our result is recommended to further 
explorations based on larger samples and confirmed by 
further studies.

Recently, radiomics analysis has been a promising high-
throughput method to extract a large number of non-
visible quantitative hidden features in medical images, 
which are related to intratumor heterogeneity. Radiom-
ics analysis has been widely used in the field of routine 
clinical prognostic or treatment response evaluations, 
as well as survival prediction of CRC [10, 11, 27, 28]. In 
our current study, we extracted 1037 radiomics features 
from portal venous phase images, and twelve quantitative 
radiomics features were finally selected to calculate the 

Fig. 5  The boxplots and bar charts of Rad-score in the MSI and MSS groups. Boxplots (A, B) showed the radiomics score (Rad-score) derived 
from logistic regression analysis for each patient, and Bar charts (C, D) showed the bar charts of the corresponding Rad-score in the training and 
validation sets respectively
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Fig. 6  Radiomics nomogram for predicting the probability of MSI status. The Radiomics Nomogram is built based on the location, WBC, 
CT-reported-IFR, histological grade and the Rad-score. For location, 1 for right colon, 2 for left colon and 3 for rectum for grade. For WBC, 0 
represents within the normal value used in clinics while 1 represents above the normal threshold value. For CT-reported IFR, 1 for yes and 0 for no. 
For histological grade, 1 for high-differentiation, 2 for middle-differentiation and 3 for low-differentiation. For Rad-score, the number represents the 
value of rad-score. To use, locate each variable on the axis and draw a line straight upward to the points axis to obtain the corresponding point. By 
summing all points and locating on the bottom line, the estimated probability of MSI status could be determined

Fig. 7  Calibration curves for radiomics based nomogram models in the training (A) and validation (B) sets. The diagonal dashed reference line 
indicated a perfect performance of the radiomics based nomogram by an ideal model. Solid lines indicated the performance of the radiomics 
based nomogram, and the diagonal dashed reference line closer alignment with solid line indicated a better performance
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Rad-score closely associated with the MSI status. Among 
them, 10 were texture features including LoG and wave-
let transform GLCM, NGTDM, GLSZM and GLRLM, 
1 was a first-order statistical feature and 1 was a shape 
feature. These 10 texture features provided a measure 
of nonuniformity of the gray levels in images, and thus, 
they were all recognized as parameters to reflect inherent 
intra-tumoral heterogeneity. Our study found that the 
Rad-score values of MSI CRC were significantly higher 
in CRC with MSS status, and we tried to explain the dif-
ference observed in this study. The higher Rad-score 
values in MSI CRC might be explained by the following: 
(1) a lower rate of cell proliferation activity and different 

cellular densities [29]; (2) the morphological characteris-
tics of mixed mucinous, glandular and solid component 
leading to different cellular densities [26]; and (3) the 
increased tumor-infiltrating lymphocytes or presence 
of a peritumoral Crohn-like lymphocytic response [25], 
which all caused intratumor heterogeneity. Our results 
that the Rad-score values reflecting imaging heteroge-
neity were a pronounced biomarker for MSI CRC were 
basically consistent with previously published studies [13, 
14, 30]. This finding demonstrated that the quantitative 
radiomics features of CRC might be of particular value 
in predicting MSI status and worthy of further study and 
exploration.

Table 2  Comparison of the performance of the three models in predicting MSI status

AUC​ Area under curve, PPV Positive predictive value, NPV Negative predictive value

Models AUC​ Sensitivity Specificity Accuracy PPV NPV

Radiomics
  Training(n = 194) 0.81 (0.74–0.87) 0.67 0.81 0.77 0.57 0.86

  Validation (n = 82) 0.82 (0.72–0.92) 0.65 0.80 0.76 0.54 0.86

Clinics
  Training(n = 194) 0.85 (0.79–0.92) 0.77 0.88 0.84 0.70 0.89

  Validation (n = 82) 0.87 (0.79–0.95) 0.79 0.80 0.79 0.59 0.90

Nomogram
  Training(n = 194) 0.87 (0.81–0.93) 0.82 0.83 0.82 0.65 0.91

  Validation (n = 82) 0.90 (0.83–0.96) 0.80 1.00 0.80 1.00 0.73

Fig. 8  Comparing the performance in predicting the MSI status in the training (A) and validation (B) sets. Radiomics based nomogram model [area 
under the curve (AUC) = 0.87 and 0.90 in the training and validation set respectively] achieved relatively high performance than radiomics or clinics 
model
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In the era of big data and precision medicine, a single 
clinical or radiomics model can no longer satisfy 
individualized prediction or diagnosis. Several stud-
ies [13, 14, 30, 31] have shown that the combination 
of clinical and radiomics models derived from pri-
mary CRC demonstrated considerable performance 
in the prediction of MSI status in CRC patients. The 
present study showed that the combined clinic and 
radiomic feature model had the highest AUC and 
showed superior discernibility in predicting the MSI 
status of CRC patients. However, we obtained a rela-
tively higher AUC of 0.90 (0.83–0.96) than that in the 
abovementioned radiomics studies, except the study 
of Wu et  al. [30]. This result might be attributed to 
the differences in patient cohorts, various scanners 
and the use of different analytical methods. Radiom-
ics analysis may be regarded as the most promising 
comprehensive predictive approach to assist clinical 
practice and management. To promote clinical appli-
cations, we constructed a clinic-radiomics nomogram 
incorporating radiomics features and preoperative 
clinical features. The developing and validating nom-
ogram could generate the probability of MSI status 
to achieve preoperative individualized prediction of 
MSI status in CRC patients by clinicians, consistent 
with the current trend of individualized and precision 
medicine.

However, our present study has several limitations. First, 
the retrospective nature of the study might lead to selec-
tion bias. Second, MSI status was assessed by a reliable 
IHC test, and PCR or next-generation sequencing (NGS) 
are recommended. Third, all sets of CT images used in our 
study were acquired from the same CT scanner. This fact 
might influence the generalization of our results. Fourth, 
the present study was only a single center with a limited 
sample size, and further validation is required in external 
and multicenter studies by using a larger sample size. The 
major limitation in our study was only a two-expert-con-
trolled segmentation used to identify the gold standard, 
and some discrepancies caused by manually segmented 
ROIs were unavoidable. In the future, we will try to per-
form the true segmentation using the STAPLE algorithm 
as reported in the previous studies [32, 33].

Conclusions
Our study presented and validated a radiomics-based 
nomogram that integrated radiomics features and clini-
cal risk factors, which can be routinely used as a preop-
eratively individualized noninvasive and quantitative 
method for predicting MSI status in patients with CRC, 
assisting clinician personalized treatment decision-mak-
ing, guiding personalized precision treatment and assess-
ing patient prognosis in clinical practice.

Fig. 9  Decision curve analysis (DCA) of the radiomics model, clinics model and nomogram model. The X-axis is the threshold probability. The 
y-axis represents the net benefit, which is calculated by the difference between the expected benefit and the expected harm associated with the 
decision. The higher curve at a range threshold probability is the optimal prediction to maximize the net benefit. The decision curve shows that the 
nomogram model provides more net benefit than the other two models
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