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Abstract

With the development of next-generation sequencing technology, there is a great demand for powerful statistical methods
to detect rare variants (minor allele frequencies (MAFs),1%) associated with diseases. Testing for each variant site
individually is known to be underpowered, and therefore many methods have been proposed to test for the association of a
group of variants with phenotypes, by pooling signals of the variants in a chromosomal region. However, this pooling
strategy inevitably leads to the inclusion of a large proportion of neutral variants, which may compromise the power of
association tests. To address this issue, we extend the s-MidP method (Cheung et al., 2012, Genet Epidemiol 36: 675–685)
and propose an approach (named ‘adaptive combination of P-values for rare variant association testing’, abbreviated as
‘ADA’) that adaptively combines per-site P-values with the weights based on MAFs. Before combining P-values, we first
imposed a truncation threshold upon the per-site P-values, to guard against the noise caused by the inclusion of neutral
variants. This ADA method is shown to outperform popular burden tests and non-burden tests under many scenarios. ADA is
recommended for next-generation sequencing data analysis where many neutral variants may be included in a functional
region.
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Introduction

Next-generation sequencing acts as a new approach to explore

the genetic basis of complex human diseases [1]. With this new

technology, we are able to identify rare causal variants (minor

allele frequency (MAF),1%) that are not genotyped in genome-

wide association studies (GWAS) but are actually responsible for

part of the heritability of complex diseases. However, the power of

an association test is largely compromised by the low frequencies

of rare causal variants. To increase the power of an association

test, many methods have been proposed to test for the collective

effect of a group of variants in a chromosomal region [2–11].

These methods can be categorized as burden tests and non-burden

tests.

Burden tests pool signals of multiple rare variants within a

functional unit, such as a candidate gene, and then test for the

association between the pooled signal (usually called ‘‘genetic

score’’) and the phenotype [2–5,12]. In the Combined Multivar-

iate and Collapsing (referred to as ‘‘CMC’’) method, a subject’s

genetic score is defined as 1 if he/she has at least one rare variant

in the gene and 0 otherwise [2]. The weighted-sum approach

(referred to as ‘‘WS’’) sums up the variant counts that are inversely

weighted by the standard deviations of the variant frequencies [3].

Morris and Zeggini proposed to construct a genetic score by

accumulating the variant counts in a functional unit (say, a gene or

a pathway) [4], which was a variant of the CMC method. If only

the counts of variants with frequencies smaller than 5% (or 1%)

are aggregated as the genetic score, the test is referred to as ‘‘T5’’

(or ‘‘T1’’). The threshold to discriminate rare variants from

common variants is crucial, but the optimal threshold varies with

the underlying genetic architecture and changes across studies

[12]. The variable threshold (referred to as ‘‘VT’’) approach was

therefore proposed without a preset threshold. Instead, it searches

for the optimal threshold that maximizes the difference between

trait distributions for subjects with and without rare variants [5].

The above methods (including CMC, T1, T5, WS, and VT) are

categorized as ‘‘burden tests’’. These burden tests are more

powerful when rare causal variants in a region have effects on the

phenotype in the same direction, i.e., all are deleterious or all are

protective [13].

On the other hand, non-burden tests, such as the so-called C-

alpha test [9] or the sequence kernel association test (SKAT) [7]

based on a kernel machine regression framework, are more robust

to the inclusion of causal variants with disparate or even opposite

effects on phenotype (we consider SKAT as a representative

method of the non-burden tests, because it is a generalization of

the C-alpha test). However, the non-burden tests such as SKAT can

be less powerful than the burden tests if a large proportion of rare

variants are associated with the phenotype in the same direction

[13]. Because the underlying genetic function of a region is usually

PLOS ONE | www.plosone.org 1 January 2014 | Volume 9 | Issue 1 | e85728



unknown, choosing an ideal statistical test (burden tests or SKAT)

in advance is impossible. To develop a powerful test that is also

robust to the directions of effects of rare variants, Lee et al. [8]

have proposed an optimal test to combine SKAT [7] and the

burden tests [2–5,12]. This optimal test (referred to as ‘‘SKAT-O’’)

has been shown to outperform the burden tests and SKAT in a

wide range of scenarios [8].

Both the burden tests and the non-burden tests suffer from

power loss with the inclusion of neutral variants. A preferable

method to analyze next-generation sequencing data should have

the robustness to this type of noise. To this end, Cheung et al. [14]

proposed a s-MidP method that combines P-values of individual

variants with the weighting scheme proposed by Madsen and

Browning [3]. To guard against the noise caused by neutral

variants, the s-MidP method excludes the variants with equal rare-

variant counts in cases and in controls. Furthermore, s-MidP uses

the Fisher’s combination of P-values [15] on individual variants

with the Madsen and Browning’s [3] weighting scheme. This

method has been shown to be more powerful than many existing

methods [3–7,9,16,17], when both deleterious and protective

variants, or a large proportion of neutral variants, are present in a

region [14].

Instead of testing for the association of a genetic score (some

linear combination of variant counts) with the phenotype, s-MidP,

inspired by the Fisher’s combination of P-values, can take the

significance of each variant site into account. To simplify, in the

following small example we discuss the Fisher’s combination

method (s-MidP further uses the Madsen and Browning’s [3]

weighting scheme to facilitate the discovery of rare causal

variants). Suppose there are K variants in a region of interest,

the P-values of the K single-variant tests are combined with the

Fisher’s statistic: {2
PK

i~1 log pi [15]. If there is a causal variant

with a P-value of 0.05, it contributes {2 log 0:05ð Þ~5:99 to the

Fisher’s statistic. However, the contribution to the Fisher’s statistic

will be only {2 log 0:5ð Þ~1:39 for a neutral variant with a

P-value of 0.5. Because the P-values of causal variants are usually

smaller than those of neutral variants, the contribution from causal

variants to the Fisher’s statistic is usually more prominent than that

of neutral variants. Thus, different from testing the genetic score

after summing variant counts (including causal variants and

neutral variants), combining P-values after association testing can

strengthen the association signal and guard against the noise

caused by neutral variants.

To more effectively guard against the noise caused by neutral

variants, variants with P-values larger than a threshold (they are

more likely to be neutral) may be truncated (see [18] for the

methodology and [19] for its application). However, the P-value

truncation threshold of 0.05 (used in [19]) may be too stringent,

because testing for each rare variant is usually underpowered

[2,20–22]. For rare variants detection, there is no general rule to

choose a more ‘‘suitable’’ P-value truncation threshold. To address

this issue, we here propose to determine the truncation threshold

adaptively. Therefore, this method is termed ADA (full name:

adaptive combination of P-values for rare variant association

testing), which is inspired by the adaptive combination of P-values

for pathway analysis in GWAS [23]. Instead of fixing a P-value

truncation threshold, the proposed method allows multiple

candidate truncation thresholds (say, 0.10, 0.11, 0.12, …, 0.20)

and works out the optimal threshold for a given data set. The

significance of our test is quantified with permutations. Compre-

hensive simulation studies indicate that the ADA method has a

higher power than s-MidP [14]. It also outperforms some popular

approaches, including the burden tests such as T1, T5, WS, VT

mentioned above, SKAT [7], and SKAT-O [8]. As an application,

the data set from Dallas Heart Study [24,25] is analyzed with the

proposed method.

Materials and Methods

Suppose there are K variants in a region of interest, and the P-

values of testing for the associations of individual variants with the

disease status are p1, p2, � � � pK , respectively. Without loss of

generality, although we here focus on binary traits, the proposed

method can be applied to continuous traits as well. In rare variants

detection for binary traits, pi’s are commonly obtained by the

Fisher’s exact test [14,26]. Suppose we consider J candidate

truncation thresholds on per-site P-values, h1, h2, � � � ,hJ . We term

the sites with larger variant frequencies in cases than in controls

‘‘deleterious-inclined variant sites’’. Among the K sites, the

significance score of the deleterious-inclined variant sites is

Sz
j ~{

XK

i~1

ji
:I pivhj

� �
:wi log pi, ð1Þ

where ji is an indicator variable coded as 1 if the ith site is

deleterious-inclined and 0 otherwise, I pivhj

� �
is an indicator

variable coded as 1 if the ith site has a P-value smaller than hj (the

jth truncation threshold) and 0 otherwise, and wi is a weight given

to the ith site. Following Madsen and Browning [3], we specify

wi~ ni
:qi 1{qið Þ½ �{

1=2, where qi~
mU

i z1

nU
i z2

is the frequency for

variant i in the unaffected individuals, nU
i is the number of

unaffected individuals genotyped for variant i, and mU
i is the

number of mutant alleles observed for variant i in the unaffected

individuals [3]. We recommend using J = 11 candidate truncation

thresholds, and we specify h1~0:10, h2~0:11, � � � , h11~0:20
throughout this study (we will discuss the selection of candidate

truncation thresholds in the Discussion section).

On the other hand, we term the sites with larger variant

frequencies in controls than in cases ‘‘protective-inclined variant

sites’’. Among the K sites, the significance score of the protective-

inclined variant sites is

S{
j ~{

XK

i~1

Qi
:I pivhj

� �
:wi log pi, ð2Þ

where Qi is an indicator variable coded as 1 if the ith site is

protective-inclined and 0 otherwise. From Equations (1) and (2),

we obtain the significance score accumulated by deleterious-

inclined variants (Sz
j ) and that accumulated by protective-inclined

variants (S{
j ), respectively. A test statistic regardless of the effect

directions (deleterious or protective) is Sj~max Sz
j , S{

j

� �
.

Because variant sites within a functional region are usually not

independent, we need permutations to obtain the P-value of the

observed statistic Sj~max Sz
j , S{

j

� �
, for j = 1, …, J. For the bth

permutation (1ƒbƒB), we randomly shuffle the case/control

status and obtain Sz
j (b) and S{

j (b) according to Equations (1) and

(2). Then, we obtain the statistic S
(b)
j ~max Sz

j (b),S{
j (b)

� �
, for

j = 1, …, J.

With a total of B permutations, we can estimate the P-value of

Sj for the observed sample as

PB
b~1 I S

(b)
j §Sj

� �
z1

Bz1
, for each

truncation threshold (j = 1, …, J). The P-value of S
(b’)
j for the b’th

Adaptive Combination of P-values
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permutation is estimated by

P
b=b’I S

(b)
j §S

(b’)
j

� �
z1

B
, for j = 1,

…, J and b’~1, � � � ,B. We can then find the minimum P-value

MinP across the J candidate truncation thresholds for the

observed sample, and the minimum P-value MinP(b) for the bth

permuted samples (b = 1,…, B). For the observed and permuted

samples, MinP and MinP(b) (b = 1,…, B) are P-values obtained

from the ‘‘optimal’’ truncation thresholds that yield the most

significant results (or, the minimum P-values) across candidate

truncation thresholds. These ‘‘optimal’’ thresholds may vary across

permuted samples, in order to preserve the validity of the proposed

method. We then compare MinP with MinP(b) (b = 1,…, B) to

assess the significance of the observed sample. The ‘‘adjusted P-

value’’ is calculated by

PB
b~1 I MinP(b)

ƒMinP
� �

z1

Bz1
. This

method is referred to as ‘‘ADA’’, because the per-site P-values of

variant sites are combined adaptively. Figure 1 is a workflow

diagram of the ADA method.

Simulation Study
With the Cosi program [27], we first generated 200 data sets,

each containing 10,000 chromosomes of 1 Mb regions. The Cosi

program is based on the coalescent population genetic model [28]

and is widely used to simulate human genome sequences. The

chromosomes were generated according to the linkage disequilib-

rium patterns of the HapMap CEU (Utah residents with ancestry

from northern and western Europe) samples. We randomly

specified 25% of the variants with population MAF,1% to be

causal variants. A region containing d causal variants was

randomly selected as the causal region, where d = 3, 5, 10, 15,

or 20. On average, a causal region spanned ,3.6, ,6.4, ,12.8,

,19.2, and ,25.6 kb, for d = 3, 5, 10, 15, and 20, respectively.

The numbers of neutral variants were ,60, ,100, ,200, ,300,

,400, for the regions spanning ,3.6, ,6.4, ,12.8, ,19.2, and

,25.6 kb, respectively. Across the 200 simulated data sets, the

proportions of causal variants among all non-synonymous variants

ranged from ,4% to ,8%. We randomly assigned risk % of the d

causal variants as deleterious variants, and let the remaining

100{riskð Þ% causal variants be protective variants. The value of

risk was set at 5, 20, 50, 80, and 100, respectively. In this way, we

considered the simulation settings with mixtures of deleterious and

protective variants. The population attributable risk (PAR) of each

causal variant was specified at 0%, 0.1%, …, 0.5%, respectively.

Following the simulation setting of previous studies [3,29–31],

the genotype relative risk (GRR) of the jth causal variant is:

GRRj~
PARj

1{PARj

� �
:MAFj

z1

 ! {1ð ÞI jj~1
� �

, ð3Þ

where PARj and MAFj are the PAR and the population MAF of

that variant, respectively. The indicator function I jj~1
� �

is 1 if

the jth causal variant is protective, and is 0 if deleterious. Figure S1

shows the distributions of population MAFs and GRRs of the

causal variants in our 200 simulated data sets. Because we focused

on the detection of rare causal variants, the population MAFs of

the causal variants were all smaller than 1% in our simulation. To

generate the genotypes of a subject, we randomly selected two

chromosomes from the pool of 10,000 chromosomes. The disease

status of a subject with chromosomes H1,H2f g was determined by

P affected D H1,H2f gð Þ~f0| P
2

k~1
P
d

j~1
GRR

I Hk, j~aj

� �
j ð4Þ

[29–31], where f0 was the baseline penetrance, and aj was the

minor allele at the jth causal variant site. Following Cheung et al.

[14], f0 was specified at 1%, and the sample size was set at 1000.

Pairs of chromosomes were drawn from the chromosome pool

with replacement until 500 cases and 500 controls were sampled.

Tests under Comparison
We compared ADA with s-MidP [14], burden tests, and non-

burden tests. Cheung et al.’s [14] R script was used to implement

their s-MidP method (http://www.columbia.edu/,sw2206/

softwares.htm). We followed the default of the s-MidP R script,

single-nucleotide polymorphisms with MAF.5% in the combined

sample of cases and controls were excluded from the analyses of

s-MidP and ADA. To have a fair comparison between these two

methods, the P-values used in Equations (1) and (2) (i.e., pi’s) are

obtained by the mid P-values according to the Fisher’s exact test

[14,26].

Four burden tests including the fixed-threshold approach with

MAF thresholds of 1% and 5% (i.e., ‘‘T1’’ and ‘‘T5’’, respectively)

[4], the weighted-sum approach (i.e., ‘‘WS’’) [3], and the variable-

threshold approach (i.e., ‘‘VT’’) were implemented with the R

script by Price et al. [5] (http://genetics.bwh.harvard.edu/

rare_variants/). Because VT needs permutations to get P-values,

Price et al. [5] performed permutations for all the four tests (VT,

WS, T1, and T5) in their R script, at almost no extra

Figure 1. The workflow diagram of the ADA method.
doi:10.1371/journal.pone.0085728.g001
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computational cost. Note that the original VT script performs

right-tailed tests for all the four methods, and therefore they are

underpowered when risk is low. We modified the original VT script

to perform two-tailed tests and used the revised R script to

implement the four burden tests.

Two non-burden tests including the sequence kernel association

test (i.e., ‘‘SKAT’’) [7] and the optimal test (i.e., ‘‘SKAT-O’’) [8] that

optimally combines the burden tests and SKAT were implemented

with the R package ‘‘SKAT’’ [32]. We used the default weight

function in the package ‘‘SKAT’’, wj~Beta MAFj ,1,25
� �

, as the

weight given to the jth variant site with MAF of MAFj .

The P-values of ADA, s-MidP, VT, WS, T1, and T5 were

obtained with 10,000 permutations when evaluating the type-I

error rates and 1,000 permutations when evaluating power,

respectively. For SKAT and SKAT-O, we used the default method

in the package ‘‘SKAT’’ to compute P-values, which was an exact

method that computed P-values by inverting the characteristic

function of the mixture chi-square distribution [33].

Results

Type-I Error Rates
By setting the PAR at exactly 0% and using ,25.6 kb regions,

we evaluated type-I error rates by performing 1,000 replications

for each of the 200 simulated data sets. Based on the 200,000

( = 200|1000) replications across the 200 simulated data sets,

Table 1 shows that all of the eight tests are valid in the sense that

their type-I error rates match the nominal significance levels.

Power Comparisons
When we evaluated power, a total of 100 replications were

performed under each scenario (each combination of risk, PAR,

and d) for each of the 200 simulated data sets. Figure 2 presents the

power averaged over the 200 data sets, where 100 replications

were performed for each data set. Each point represents the result

averaged from 200|100~20,000 replications performed for

some combination of risk, PAR, and d. The nominal significance

level was set at 0.05 (top row) and 0.01 (bottom row), respectively.

In the first column of Figure 2, power was assessed with a varying

risk, a fixed PAR (0.3%), and a fixed d (20).

Note that the lowest power occurs around risk~20% (among

the five values of risk), rather than risk~50% (the first column of

Figure 2). This is because, in our simulation setting (following

[29]), a deleterious variant has a larger effect size than a protective

variant, given that they have the same MAF. For simplicity of

illustration, we consider only one causal variant site. The

probability that a subject has two rare variants at this site is

extremely small and thus can be ignored. Equation (4) can be

simplified as

P affected D H1,H2f gð Þ~f0|GRR,

where f0 is the baseline penetrance and GRR is the genotype

relative risk of the causal variant. Based on Equation (3),

GRR~
PAR

1{PARð Þ:MAF
z1

� 	 {1ð ÞI j~1ð Þ

,

where the subscripts have been removed for simplification. Let

C~ PAR
1{PARð Þ:MAF

z1. For case-control studies, the odds ratio (OR)

of being affected among subjects who have a causal variant versus

those who do not is an appropriate measure for effect size. Let

ORd be the OR of being affected among subjects who have a

deleterious variant versus those who do not. We have

ORd~

f0C

1{f0C

f0

1{f0

w1:

Let ORp be the OR of being affected among subjects who have a

protective variant versus those who do not. We have

ORp~

f0C{1

1{f0C{1

f0

1{f0

v1:

Because C{1ð Þ2w0,

C2{2Cz1w0, f0C2{2f0Czf0w0

f0C{2f0zf0C{1
w0, 1{2f0zf 2

0 w1{f0C{1{f0Czf 2
0

1{f0ð Þ2w 1{f0Cð Þ 1{f0C{1
� �

,
1{f0

1{f0C
w

1{f0C{1

1{f0

f0C

1{f0C

f0

1{f0

w

f0

1{f0

f0C{1

1{f0C{1

, ORdw
1

ORp

:

Table 1. Type-I error rates.

nominal
significance level 0.0001 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050

SKAT-O 0.0001 0.0054 0.0102 0.0151 0.0196 0.0246 0.0295 0.0347 0.0396 0.0444 0.0492

SKAT 0.0001 0.0048 0.0096 0.0142 0.0191 0.0237 0.0288 0.0337 0.0384 0.0434 0.0482

s-MidP 0.0001 0.0050 0.0101 0.0149 0.0199 0.0248 0.0298 0.0348 0.0398 0.0448 0.0498

ADA 0.0001 0.0050 0.0100 0.0148 0.0199 0.0247 0.0297 0.0351 0.0400 0.0451 0.0500

T1 0.0001 0.0046 0.0096 0.0146 0.0196 0.0245 0.0294 0.0346 0.0399 0.0449 0.0501

T5 0.0001 0.0046 0.0098 0.0149 0.0198 0.0247 0.0296 0.0346 0.0398 0.0449 0.0498

WS 0.0001 0.0052 0.0103 0.0153 0.0204 0.0254 0.0304 0.0356 0.0402 0.0452 0.0502

VT 0.0001 0.0050 0.0100 0.0150 0.0201 0.0250 0.0302 0.0352 0.0404 0.0453 0.0503

doi:10.1371/journal.pone.0085728.t001
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Thus, in our simulation setting (following [29]), a deleterious

variant has a larger effect size than a protective variant, given that

they have the same MAF. This is why the lowest power occurs at

risk smaller than 50%.

In the second column, PAR varied, while d was fixed at 20 and

risk % was fixed at 80%. The setting of risk % (80%) was chosen

because regulatory sequences are likely to contain many more

deleterious variants than protective variants [34,35]. As for the

third column, power was compared while d was varying, but risk %

was fixed at 80%, and PAR was fixed at 0.3%. ADA test showed

the best performance under the majority of simulation scenarios.

Application to Data from Dallas Heart Study
We applied the eight tests to a population-based resequencing

study for the ANGIOPOIETIN–LIKE 4 (ANGPTL4) gene [24,25].

To learn the role of ANGPTL4 in plasma triglyceride levels,

Romeo et al. [24,25] sequenced seven exons and the intron-exon

boundaries of ANGPTL4. The important confounders when

investigating plasma triglyceride levels include ethnicity, age, sex,

and body-mass index (BMI) [24]. To remove the potential

influence of ethnicity on triglyceride, we only analyzed the 1,045

European Americans from the total 3,551 subjects sampled from

Dallas County residents [36]. The log-transformed triglyceride

levels were adjusted for age, sex, and BMI, with a linear

regression. The regression residuals were treated as new pheno-

types that have been adjusted for important confounders. Subjects

with residuals larger than the 70th percentile and smaller than the

30th percentile were treated as cases and controls, respectively.

Then the subjects with missing genotypes were removed from our

analysis. Finally, we had 179 cases and 213 controls (the numbers

of cases and controls were not necessarily equal, because we

removed the subjects with missing genotypes after marking the

30th and 70th percentiles of the phenotype).

We then applied the eight tests to this data set. The variants

with MAF,5% in the ANGPTL4 gene were analyzed to test for

their associations with triglyceride. The significant association of

ANGPTL4 with triglyceride was previously reported by other

investigators [14,37]. With a significance level of 0.05, the four

burden tests (VT, WS, T1, and T5) did not show significant

association of ANGPTL4 with triglyceride, whereas the other four

tests including ADA, SKAT, SKAT-O, and s-MidP confirmed this

association (see Table 2).

Discussion

In this work, we have proposed a powerful ADA method for rare

causal variants detection. Instead of fixing a threshold to truncate

P-values, we recommend searching for the ‘‘optimal’’ threshold

from among multiple candidate truncation thresholds. The

Figure 2. Comparison of power by risk (the percentage of deleterious variants among the d causal variants), PAR, and d (the number
of causal variants). The figure shows the power comparison by risk (left column, given PAR = 0.3% and d = 20), PAR (middle column, given d = 20
and risk = 80%), and d (right column, given risk = 80% and PAR = 0.3%). The nominal significance level was set at 0.05 (top row) and 0.01 (bottom row),
respectively.
doi:10.1371/journal.pone.0085728.g002
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validity of ADA is preserved because we allow the permuted and

observed data to have different ‘‘optimal’’ truncation thresholds.

Here, we use 11 candidate P-value truncation thresholds, 0.10,

0.11, 0.12, …, 0.20. We do not consider a more stringent

threshold (,0.10), because testing for a single rare variant is

usually underpowered [2,20–22] and a stringent threshold may

exclude the information of causal variants. We neither consider a

more liberal threshold (.0.20), because that may include more

noise from neutral variants. To show this, we also evaluated the

ADA method with 21 candidate P-value truncation thresholds

(0.05, 0.06, 0.07, …, 0.25). Table 3 lists the power of the ADA

method with two sets of candidate P-value truncation thresholds.

Using 21 candidate P-value truncation thresholds (0.05, 0.06, 0.07,

…, 0.25) does not contribute a noticeable power gain to ADA.

Note that the statistic, Sj~max Sz
j , S{

j

� �
, is the maximization

of the score accumulated by deleterious-inclined variants and that

accumulated by protective-inclined variants. Another justifiable

statistic is Sz
j zS{

j

� �
, which is more powerful than ADA when

the numbers of deleterious and protective variants are compara-

ble, but it is less powerful when the region contains more

deleterious variants than protective variants (or, more protective

variants than deleterious variants). Because both evolutionary

mechanisms and empirical studies support the hypothesis that

regulatory sequences contain substantial amounts of weakly

deleterious variation [34,35,38,39], the number of deleterious

variants may surpass that of protective variants in most situations.

Therefore, we still advocate using max Sz
j , S{

j

� �
, rather than

Sz
j zS{

j

� �
.

The computation time of ADA is slightly longer than that of

s-MidP. For simulated data sets each containing 500 cases and 500

controls in ,3.6 kb regions (include ,60 nonsynonymous variant

sites), s-MidP (http://www.columbia.edu/,sw2206/softwares.

htm) with 1000 permutations on average needs ,27.8 sec, ADA

with 1000 permutations needs ,28.6 sec, SKAT-O needs

,6.7 sec, while VT with 1000 permutations takes only ,0.9 sec.

When the region was enlarged to ,6.4 kb (include ,110

nonsynonymous variant sites), s-MidP with 1000 permutations

on average needs ,45.3 sec, ADA with 1000 permutations needs

,45.9 sec, SKAT-O needs ,9.2 sec, while VT with 1000

permutations takes 1.2 sec. These were measured on a Linux

platform with an Intel Xeon E5-2690 2.9 GHz processor and

2 GB memory. Although the computation time of VT or SKAT-O

is much shorter than that of ADA (or s-MidP), the power of VT or

SKAT-O is not comparable to ADA.

Rare causal variants are likely to play an important role in the

etiology of some complex diseases [40–45], but they are difficult to

detect by single-locus tests [2,20–22]. Grouping variant sites in a

functional region and testing for association with an omnibus

statistic is a promising strategy. Compared with the burden tests

(VT, WS, T1, and T5) and the non-burden tests (SKAT and SKAT-

O) evaluated here, ADA is more robust to the inclusion of neutral

variants. With the advancement in next-generation sequencing

technology, all single-nucleotide variants (causal or neutral) can be

sequenced. ADA is recommended for its ability to guard against the

noise of neutral variants.

Supporting Information

Figure S1 The distributions of the population minor allele
frequencies (MAFs) and genotype relative risks (GRRs) of
the causal variants in our 200 simulated data sets.
(TIFF)
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Table 3. Power (%) of the ADA method with two sets of candidate P-value truncation thresholds.

candidate P-value
truncation thresholds Given PAR = 0.3% and d = 20 Given d = 20 and risk = 80% Given risk = 80% and PAR = 0.3%

risk (%) PAR (%) d

5 20 50 80 100 0.0 0.1 0.2 0.3 0.4 0.5 3 5 10 15 20

Nominal significance level = 5%

0.10, 0.11,… 0.20 29.97 23.17 33.28 67.41 88.24 4.84 18.45 45.06 67.41 82.03 90.47 14.00 24.16 40.58 55.80 67.41

0.05, 0.06,…, 0.25 29.38 23.50 35.04 68.73 89.31 5.04 18.56 46.09 68.73 83.60 91.91 14.64 25.50 42.24 57.30 68.73

Nominal significance level = 1%

0.10, 0.11,…, 0.20 13.00 8.17 17.99 51.10 78.32 1.00 8.39 29.50 51.10 68.09 80.03 4.68 10.99 24.01 38.65 51.10

0.05, 0.06,…, 0.25 12.25 8.22 18.74 51.98 79.17 0.93 8.46 30.03 51.98 69.45 81.22 4.88 11.50 24.93 39.59 51.98

doi:10.1371/journal.pone.0085728.t003

Table 2. Analysis of the Dallas Heart Study data.

SKAT-O SKAT s-MidP a ADAa T1a T5 a WS a VT a

P-value 0.024 0.012 0.028 0.011 0.584 0.070 0.184 0.486

aP-values were estimated based on 104 permutations.
doi:10.1371/journal.pone.0085728.t002
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