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Abstract.—We present a fast and flexible software package—SimPhy—for the simulation of multiple gene families evolving
under incomplete lineage sorting, gene duplication and loss, horizontal gene transfer—all three potentially leading to
species tree/gene tree discordance—and gene conversion. SimPhy implements a hierarchical phylogenetic model in which
the evolution of species, locus, and gene trees is governed by global and local parameters (e.g., genome-wide, species-specific,
locus-specific), that can be fixed or be sampled from a priori statistical distributions. SimPhy also incorporates comprehensive
models of substitution rate variation among lineages (uncorrelated relaxed clocks) and the capability of simulating
partitioned nucleotide, codon, and protein multilocus sequence alignments under a plethora of substitution models using
the program INDELible. We validate SimPhy’s output using theoretical expectations and other programs, and show that
it scales extremely well with complex models and/or large trees, being an order of magnitude faster than the most similar
program (DLCoal-Sim). In addition, we demonstrate how SimPhy can be useful to understand interactions among different
evolutionary processes, conducting a simulation study to characterize the systematic overestimation of the duplication time
when using standard reconciliation methods. SimPhy is available at https://github.com/adamallo/SimPhy, where users
can find the source code, precompiled executables, a detailed manual and example cases. [Gene conversion; gene duplication
and loss; gene family evolution; horizontal gene transfer; incomplete lineage sorting; locus tree; simulation; species tree.]

Recent advances in sequencing technologies have
enabled the expansion of genome-wide phylogenetic
studies, unveiling not only extensive phylogenomic
incongruence (Jeffroy et al. 2006; Salichos and Rokas
2013) but also reviving consideration of how ancestral
polymorphisms sort within populations (Edwards
2009). Indeed, it is well known that gene and species
phylogenies can be inconsistent due to evolutionary
processes like incomplete lineage sorting (ILS), gene
duplication and loss (GDL), and horizontal gene
transfer (HGT) (Goodman et al. 1979; Pamilo and
Nei 1988; Takahata 1989; Maddison 1997; Page and
Charleston 1997). Not surprisingly, the gene tree/species
tree “dilemma” has received a lot of attention in
recent years, and consequently a plethora of species
tree reconstruction methods have been published
(Chaudhary et al. 2010; Heled and Drummond 2010; Liu
et al. 2010; Boussau et al. 2013; De Oliveira Martins et al.
2014; see Mallo et al. 2014a for a review; Mirarab and
Warnow 2015). Although several benchmarks of species
tree methods have been carried out (Leache and Rannala
2011; Yang and Warnow 2011; Bayzid and Warnow 2013;
Mirarab et al. 2014), they have generally focused on single
causes of phylogenetic discordance. Nevertheless, ILS,
GDL, and HGT can act simultaneously during genome
evolution yielding synergistic evolutionary scenarios
(Mallo et al. 2014b) and, therefore, it would be convenient
to consider them all together. However, none of the
state-of-the-art simulation programs is able to yield
scenarios that consider these processes at once. Rather,
they usually focus on single evolutionary processes,
which partially explain why benchmarking studies have
usually been restrictive in this regard. Thus, ILS is
usually simulated with tools that implement different
extensions of the multispecies coalescent model (MSC)

(Rannala and Yang 2003), like Mesquite (Maddison
and Maddison 2015), MCcoal (Rannala and Yang 2003),
or GUMS (Heled et al. 2013). Moreover, for small
species trees, structured coalescent simulators like ms
(Hudson 2002), SGWE (Arenas and Posada 2014), or
scrm (Staab et al. 2015) could be also used. Apart
from standalone programs, there are also phylogenetic
libraries like DendroPy (Sukumaran and Holder 2010)
that include the simulation of ILS. GDL can be
modeled using birth–death processes traversing the
species tree like in Arvestad et al. (2003), and HGT
is usually simulated as a Poisson-distributed series
of transfer events, like in HGT_simul (Galtier 2007).
Nowadays, only very few tools are able to simulate
phylogenies jointly considering multiple sources of
phylogenomic incongruence, like PrIME-GenPhyloData
(Sjostrand et al. 2013) and DLCoal_sim (Rasmussen and
Kellis 2012). The former combines GDL and HGT, while
the later considers GDL and ILS. In addition, there are
also genome simulators like ALF-A (Dalquen et al. 2012)
or EvolSimulator (Beiko and Charlebois 2007), that can
integrate several evolutionary processes at the genomic
level but do not consider population-level events, like
ILS. Altogether, we are not aware of any tool able to
simulate phylogenetic trees considering the joint action
of ILS, GDL, and HGT.

To facilitate more realistic simulations, we present
here a fast and flexible simulation tool—SimPhy—
that can simulate the evolution of multiple gene
families under ILS, GDL, HGT (via homologous
replacement), and gene conversion (GC). SimPhy
implements a flexible hierarchical parameterization
scheme that considers genome-wide and gene family-
specific conditions, including different sources for
evolutionary rate variation among lineages. Moreover,
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these parameters can be fixed or sampled from statistical
distributions defined by the user. In addition, SimPhy
does not only generate gene trees, but it is also
able to produce multilocus sequence alignments in a
subsequent step using INDELible (Fletcher and Yang
2009). These features make SimPhy a powerful tool
to understand the interaction among ILS, GDL, HGT
and GC or for a comprehensive benchmarking of
phylogenomic methods.

SIMULATION OF GENE, LOCUS, AND SPECIES TREES

WITH SIMPHY

SimPhy simulates the evolution of multiple gene
families under a hierarchical phylogenomic model in
which gene trees evolve inside locus trees, which
in turn evolve along a single species tree (Fig. 1).
While the three-tree model was first proposed by
Rasmussen and Kellis (2012), who implemented it in the
program DLCoal_sim, SimPhy extends this approach in
multiple ways. Apart from ILS and GDL, SimPhy also
jointly considers HGT and GC, plus species extinction.
Furthermore, GDL, HGT, and GC rates are allowed
to vary among gene families. SimPhy also relaxes the
assumption of a strict molecular clock and implements
different sources of rate heterogeneity among lineages at
the species, gene family and gene tree level. Moreover,
the generation time is allowed to vary along the species
tree, incorporating an additional layer of rate variation.
SimPhy’s simulation parameters can be sampled from
user-specified distributions at the species, locus, and
gene tree level, and in some cases made interdependent.
This allows users to carry out simulations following
a very flexible strategy in which each parameter is

defined by a prior distribution that can represent
specific, biologically relevant scenarios. Nevertheless,
(classic) simulation studies based on combinations of
fixed, discrete parameter values can also be easily
implemented.

The Three-Tree Model
SimPhy implements and extends a hierarchical

phylogenetic model (Rasmussen and Kellis 2012) that
considers three different layers: species, locus, and gene
trees.

Species trees.—Depict the evolutionary history of the
sampled organisms. Species tree nodes represent
speciation events, while the branches reflect population
history: branch length and width represent elapsed time
and effective population size (Ne), respectively. Note
that we consider species as a diverging interbreeding
structure regardless of any taxonomic rank. Therefore,
species trees might be equivalent to population trees
when the organismal units of interest are conspecific
populations.

Locus trees.—Represent the evolutionary history of the
sampled loci for a given gene family. Since the loci exist
inside individuals evolving as part of a population, the
locus tree is contained within the species tree. In a locus
tree the nodes depict either genetic divergence due to
speciation in the embedding species tree or locus-level
events like duplication, loss, HGT, or GC, while branch
lengths and widths represent time and Ne as before.

Gene trees.—Represent the evolutionary history of the
sampled gene copies, which evolve inside a locus

A B C D

FIGURE 1. Three-tree model and evolutionary events simulated in SimPhy. The figure shows a species tree (thick light tree in the background)
that embeds a locus tree (medium-thick lines) that includes a gene tree (thin dark lines with nodes represented by black dots). The sample
consists of six gene copies (A�0, B�0, B�0, C�0, D�0, and D�1) that belong to two loci (� and �) in four different species (A, B, C and D) and five
individuals (A0, B0, C0, D0, and D1). Letters in parenthesis indicate at which phylogenetic level an event takes place (S= species tree, L= locus
tree, G= gene tree). Coalescent bounds generated by GDL, HGT, or GC events are indicated with an icon (duplication: square, HGT: arrow, GC:
star). Dashed lines in the locus tree, generated by HGT and GC, link locus tree branches that are depicted apart for clarity. Lighter locus tree
branches represent lost branches due to gene loss or locus replacement by HGT or GC. Dashed gene tree branches indicate lost/unsampled
lineages in the original locus from the individual where the duplication took place.
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tree. Gene tree nodes indicate coalescent events, which
looking forward in time correspond to the process of
DNA replication and divergence, and which in the
absence of migration and HGT can only occur before the
speciation time. The lengths of the gene tree branches
represent the expected number of substitutions per site.

Time Units
SimPhy simulates species, locus, and gene trees in

continuous time. Species and locus trees are measured in
number of generations, while gene trees are measured
in expected number of substitutions per site. The number
of generations can be related to absolute time if a
generation time (in number of generations per time
unit) is specified, while the number of substitutions
per site can be related to the number of generations
given a specific substitution rate (expected number
of substitutions per generation). Thus, rates of events
that take place on the species tree (e.g., speciations)
are measured in number of events per absolute time
unit, while locus-specific rates (e.g., duplications) are
measured in number of events per generation.

Evolutionary Processes Implemented
SimPhy defines and implements different

evolutionary processes as follows:

Speciation.—Separation of an ancestral species into two
new species that do not interbreed. Speciation events are
represented by nodes in the species tree, and can also be
reflected in the locus tree.

Extinction.—Disappearance of a species. Extinctions take
place during the simulation of the species tree, affecting
its final topology, but are not considered further.

Gene duplication.—Copy of a locus into an unlinked
location in the same genome. Gene duplication events
generate nodes in the locus tree. We do not consider
duplication polymorphisms (see below).

Gene loss.—Deletion of a locus. Losses generate locus tree
leaves that do not reach the present, and that are not
considered during the gene tree simulation process. We
do not consider loss polymorphisms.

HGT.—Copy of a locus into a different, contemporary
species. We assume that the homologous locus in the
receiving species is replaced by the transferred locus (i.e.,
replacing HGT). Each transfer generates two nodes in
the locus tree, one representing the loss of the replaced
locus (receptor) and another showing the incorporation
of the transferred lineage. We do not consider transfer
polymorphisms. Transfers from extinct lineages (see
e.g., Szollosi et al. 2013), or additive transfers (those
generating a new locus in the receiving genome) are
also not considered in the current version of the
model.

GC.—Replacement among homologs within a species.
Each GC generates two nodes in the locus tree, one
representing the loss of the replaced locus (receptor)
and another showing the incorporation of the converted
lineage. We do not consider GC polymorphisms.

Lineage sorting.—Consideration of the coalescent history
of the sampled gene copies, allowing their history to be
incompatible with the species tree history. It is implicitly
reflected at the gene tree level, and can be spotted when
mapping locus and gene tree nodes.

These evolutionary processes are modeled in SimPhy
using a mixture of existing and original strategies. The
species tree is simulated (or user-defined, see section
‘Simulation Process’) by either a Yule (Yule 1925)
or a birth–death (Kendall 1948) process, considering
speciations and extinctions. At this point, SimPhy only
considers extant species. Each locus tree is described
by a constant-rate birth–death process that considers
duplication and losses, coupled with another two
pure-birth processes that describe the HGT and GC
events. Regarding the last two, SimPhy incorporates two
variants, one in which the receptor is randomly chosen
from the candidates and another that takes into account
the evolutionary distance between donors and candidate
receptors—that is, with reception probability inversely
proportional to the phylogenetic distance.

Duplications, HGTs and GCs act as coalescent
bounds for the subtree that corresponds to the
new/replaced locus (the “bounded subtree”), since
these events initially affect a single individual and
only afterward may become fixed in the population
(Fig. 2). Nevertheless, SimPhy does not consider locus
polymorphisms. We assume instead that duplications,
HGTs and GCs spread fast enough in the population
so all descendant individuals in the sample carry them,
or alternatively, that they drift away so quickly that are
absent in the sample. The result of this assumption is
that every sampled individual from a particular lineage
and gene family carries the same number of gene copies.
Otherwise, we would have been obligated to include a
population genetics model for the evolution of gene copy
polymorphisms, which seemed out of scope.

Gene trees modeled by the multilocus coalescent
model (Rasmussen and Kellis 2012) are expanded to
consider bounded subtrees generated by HGT and GC.
This model is built upon the MSC (Rannala and Yang
2003) and, therefore, inherits the same assumptions:
each branch of the container tree is composed of a
perfect Wright–Fisher population (constant effective
population size, non-overlapping generations, random
mating, neutrality), no recombination within loci and
free recombination between loci. Consequently, all of the
evolutionary processes except speciation and extinction
are considered independently for each gene family.
Some of these assumptions might be relaxed in future
versions of SimPhy, for example, allowing migration
of individuals between species and/or recombination
within loci.
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a) b) c)

FIGURE 2. Coalescent bound enforced by duplication. The figure represents the evolutionary relationships of four gene copies (A�0, A�1, A�0
and A�1) belonging to two individuals (A0 and A1) of the same species (A) with two loci (� and �). The locus � was originated by duplication in
the individual surrounded by a square. We assume that the duplication occurs initially in one individual, and afterward spreads throughout the
whole sample. Thus, lineages coming from the � lineage cannot exist below the duplication event, imposing a coalescent bound (i.e., they have
to coalesce before the duplication event [above in this figure]). The three subfigures represent alternative views of the same scenario. Subfigure
a) depicts the relationships of the whole population, while in subfigure b) only the sampled lineages are highlighted. Finally, subfigure c) shows
the three-tree representation of the sample genealogy.

Simulation Process
Species trees.—Sampled either using a pure-birth (Yule)
model or a birth–death model, parameterized by birth
(speciation) and death (extinction) rates (given in
number of events per generation) and either number
of leaves, tree height or both. The simple sampling
approach algorithm (SSA) is used when the number
of leaves is not specified, while the birth–death rate
sampling approach (BDSA) algorithm is used otherwise
(see Hartmann et al. 2010 for more details). An out-group
species can be added to the resulting species tree before
the simulation of the locus trees.

Locus trees.—Simulated using a SSA to sample a
birth–death process—describing duplications and
losses—coupled with two additional pure birth
processes—describing HGTs and GCs—along each
species tree branch, in a preorder fashion (from the
root to the tips). This is followed by a second preorder
traversal that samples receptors from contemporary
candidates for each HGT/GC, completing the
appropriate SPR branch rearrangement to generate
the definitive locus tree.

Gene trees.—Locus tree branches that do not pertain to
bounded subtrees (i.e., representing the existing locus
before any bounding duplication/HGT/GC event) are
modeled by the multispecies coalescent, and, therefore,
sampled by successive coalescent simulations along each
branch of the locus tree, traversed in post-order in the
opposite direction than the locus tree simulation. For

each locus tree branch, a standard coalescent simulation
starts with a number of lineages that enter the locus
tree branch toward the root, terminating when the end
of the locus branch is reached, or when there is only
one lineage left. On the other hand, the simulation
of gene trees along bounded locus subtrees implies a
much more complex strategy, based on sampling the
number of gene tree lineages going through every node
of the locus tree, and obtaining the coalescent times
conditioned on these numbers. This approach requires
the calculation of gene tree lineage count probabilities
for every branch of the these locus subtrees, for which
SimPhy uses a dynamic programing algorithm modified
from the one proposed by Rasmussen and Kellis (2012).
A pre-order traversal (from the root to the tips) is then
conducted to sample the number of lineage counts
going across every locus subtree branch, using the
inverse transform sampling method with the cumulative
distribution function (CDF) of the number of input
gene tree lineages—those entering the locus tree branch
towards the root—conditioned on the precalculated gene
tree lineage count input probabilities, output lineage
counts (those leaving the locus branch toward the root),
effective population size, and branch length for every
branch of the considered bounded locus subtree (Online
Appendix 1 available as Supplementary Material on
Dryad at http://dx.doi.org/10.5061/dryad.707td). This
procedure starts at the root of each bounded locus
subtree, where the number of output lineages is
fixed to one—because of the bound imposed by the
duplication/HGT/GC event—and then samples the
counts along the bounded locus subtree stopping at its
leaves. With the lineage counts already set, the coalescent

http://dx.doi.org/10.5061/dryad.707td
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FIGURE 3. Distribution-driven parameterization. For every
simulation replicate parameter A is sampled from a given distribution.
The sampled value of A will shape the distribution among gene
families of our parameter of interest, �, for that replicate (i.e., A acts a
hyperparameter for �). Then, for every gene family the � parameter is
sampled from the resulting distribution to determine its evolution. This
particular schema can be applied to all gene family-specific parameters
like duplication, loss, HGT and GC rates. Similar schemas with more
or less layers can be applied to other simulation parameters. Different
statistical distributions can be specified by the user (e.g., Uniform,
Normal, Exponential, Gamma).

times are sampled using the inverse transform of the CDF
of the coalescent times conditioned on lineage counts as
in Rasmussen and Kellis (2012).

Distribution-Driven Parameterization
While most simulation studies are parameterized

using a grid consisting of combinations of discrete
parameter values, SimPhy has the capability of sampling
parameter values from prior statistical distributions
(as in Darriba et al. 2012; see also Leigh and Bryant
2015). Such distributions are defined by the user,
and currently include Uniform, Normal, Lognormal,
Exponential, and Gamma plus the possibility of fixing
parameter values. Different parameters are sampled
through the different simulation layers (i.e., for each
species, locus, or gene tree), with the possibility of
specifying certain dependencies among parameters (i.e.,
with some parameters acting as hyper or hyper–hyper
parameters) (Fig. 3).

Under the standard simulation workflow, SimPhy
samples for each replicate genome-wide parameters,
species-tree parameters, species-specific and gene
family-specific rate variation parameters, and number
of gene families. Genome-wide parameters control the
expected distribution of duplications, losses, HGTs, and
GC events across gene families. Species tree parameters
include speciation and extinction rates, species tree
height, number of taxa, relative distance of the out-
group, number of individuals per species, effective
population size, substitution rate, and generation time.
For each gene family, specific duplication, loss, HGT, and
GC rates are sampled from the distributions specified at
the genome-wide level. The variation of the substitution

rate across species, locus, and gene trees is also specified
using statistical distributions at different levels, as
detailed in the next section.

Substitution Rate Variation
The generative model of SimPhy, being based on

coalescent and birth–death models, is in principle
intrinsically ultrametric and, therefore, follows a strict
molecular clock. However, it is well known that many
real data sets deviate from a strict molecular clock
(see Ho et al. 2011). We have, therefore, implemented
in SimPhy different sources of rate variation among
lineages—lineage-specific, gene family-specific and
gene-by-lineage-specific (Fig. 4)—which modify the
branches of the gene trees. In all cases a rate multiplier
is sampled from a Gamma distribution, whose mean
is forced to be one to preserve the mean substitution
rate, and that therefore can be parameterized by a
single alpha-shape parameter. Since these multipliers are
independently sampled, this approach is equivalent to
the use of uncorrelated relaxed clocks (Drummond et al.
2006).

Species-specific substitution rate heterogeneity.—A rate
multiplier is sampled for each branch of the species
tree, modeling how different species evolve at different
speeds—for example, due to ecological conditions,
metabolic rates (Martin and Palumbi 1993) or DNA
repair efficiency (Britten 1986). The alpha parameter can
be fixed or sampled de novo for each species tree (see
section ‘Distribution-Driven Parameterization’).

Gene family-specific substitution rate heterogeneity.—A rate
multiplier is sampled for each locus tree (i.e., multiplying
all the branches of a given locus tree), modeling how
different gene families can evolve at a different pace—
for example, due to functional constraints (Li 1997). The
alpha parameter can be sampled independently for each
species tree.

Gene-by-lineage-specific substitution rate heterogeneity.—A
rate multiplier is sampled for each branch of the gene
tree, modeling how different gene tree branches evolve
at different speeds due to gene–lineage interactions—
for example, due to selective bursts (Wallis 1994). The
alpha parameter can be fixed or hierarchically sampled
across the different simulation layers (e.g., the most
complex parameterization would sample a hyper–hyper
parameter for each species tree, a hyper parameter for
each locus tree and an alpha parameter per gene tree).

The baseline substitution rate is measured in number
of substitutions per site per generation. Nevertheless,
SimPhy also takes into account absolute time units and,
therefore, incorporates a generation time parameter. To
increase flexibility, species-specific generation times can
also be specified (see Kohne 1970).

Note that if the final objective is the simulation
of multiple sequence alignments, a fifth layer of rate
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a) b)

c) d)

FIGURE 4. Sources of substitution rate heterogeneity among lineages available in SimPhy. Each subfigure represents the same simulation
scenario but with different types of rate variation. Branches affected by rate variation are highlighted with a different color. Each simulation
scenario consists of two independent replicates (rows) of two gene families (columns) in three species (A, B, C) with five individuals (A0,
A1, B0, B1, C0). Subfigure a) shows trees simulated without substitution rate heterogeneity—hence ultrametric—with topologies and branch
lengths generated by the coalescent process. Subfigure b) depicts a case of species-specific heterogeneity, where changes in rate affect whole
ancestral/contemporary species genome-wide (e.g., for every gene family in replicate 1 species A branches evolve faster and species C branches
slower). Subfigure c) is an example of gene family-specific heterogeneity, where rate changes affect the total history of specific gene families (note
that in this case ultrametricity still holds) (e.g., in replicate 1, gene family (G1) evolves much slower than gene family (Gn)). Subfigure d) shows
gene-by-lineage-specific heterogeneity, where changes in rate affect particular gene tree branches independently (e.g., in replicate 1, gene family
(G1), the ancestral A lineage evolves faster). In addition, the level of heterogeneity can also be modulated among replicates (e.g., in subfigure (c),
replicate 1 shows much more heterogeneity than replicate n).

variation, in this case among sites (Yang 1996), can be
specified using INDELible.

Input and Output
SimPhy has been implemented in C99 as a non-

interactive command line program. Input parameters
can be given in the command line or specified in a
configuration file. Users can also provide their own
species or locus trees in a Nexus file. The program
will output more or less information depending on
a verbosity level controlled by the user. Output files
include a species tree file, a locus tree file with all the
locus trees, and one gene tree file per locus tree (typically
containing a single gene tree). Depending on the settings,
the program can also print out the species tree/locus

tree mappings and the locus tree/gene tree mappings.
Moreover, SimPhy can also generate a SQLite3 database
with all the simulation parameters per species, locus, and
gene tree and some extra statistics. SimPhy’s gene trees
can be used to generate multiple sequence alignments
in principle with any sequence simulator. To help in this
task, the SimPhy package includes a script for directly
running one of these simulators—INDELible (Fletcher
and Yang 2009)—in a subsequent step.

VALIDATION

We performed a series of validation experiments,
described below, to test that SimPhy’s output fits
different theoretical or numerical expectations.
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The entire validation was conducted using in-
house Bash, Perl, and R scripts (using APE
[Paradis et al. 2004] and phytools [Revell 2012])
available as Supplementary Material on Dryad at
http://dx.doi.org/10.5061/dryad.707td. In addition,
the whole simulation process was also carefully checked
by hand in the debugging developing stage on several
simple scenarios.

Species Tree Simulation
For the SSA algorithm, we assayed the Yule

process with 10 different birth rates (�) (from 2.67
to 6.67 speciations/1M generations) using 10,000
replicates per level and a fixed tree origin (t) (1M
generations), and compared the observed mean number
of leaves with its theoretical expectation E(N(t))=
2e�t (Mooers et al. 2012; Supplementary Fig. S1
available as Supplementary Material on Dryad at
http://dx.doi.org/10.5061/dryad.707td). For the BDSA,
we assayed 100 combinations of 10 different birth rates
(from 2.67 to 6.67 speciations/1M generations) and 10
taxa sizes (from 50 to 500 species), using 10,000 replicates
per combination, and compared the mean tree height
with the one obtained using TreeSim (Stadler 2011;
Supplementary Fig. S2).

Locus Tree Simulation
We validated the observed average gene family size

–i.e., after discarding losses and superfluous branches,

E(N(t))= le(�−�)t

1−(p0ml−2) ; p0m= �(1−e−(�−�)t)
�−�e−(�−�)t . We explored 125

parameter combinations of five duplication rates (�)
(from 6.67 to 33.3 duplications/10000M generations), five
loss rates (�) (from 0.5� to 0.167�) and five number of
species (l) (from 50 to 250 species), with a fixed species
tree height (t) (1000M generations) and 10000 replicates
per combination (Supplementary Fig. S3). In addition,
since gene family size is not affected by HGT or GC, we
tested the expected number of HGT events E(T(l))=hl
under 25 parameter combinations of five different HGT
rates (h) (from one to 20 transfers/1M generations) and
five locus tree lengths (l) (from 42 to 260 M generations),
with 10000 replicates per combination (Supplementary
Fig. S4).

Gene Tree Simulation
We validated the simulation of the multispecies

coalescent comparing the time to the most recent
common ancestor (TMRCA) obtained with SimPhy
and DendroPy (Sukumaran and Holder 2010) on 50
different scenarios (number of species sampled from a
Uniform(50,500), speciation rate of one speciation/1M
generations and effective population size sampled from
a Lognormal(14,0.4)) with a total of 10,000 gene trees
(Supplementary Fig. S5). The multilocus coalescent
process was validated using a similar approach,
comparing the average TMRCAs of the subtrees

modeled by the bounded multispecies coalescent
process obtained with SimPhy and DLCoal_sim (fixed
species tree, five locus trees, duplication rate 0.2
duplications/1M generations and effective population
size 1M individuals) with a total of 10,000 gene trees
(Supplementary Fig. S6).

All the validation checks were clearly successful,
showing only negligible deviations from the
expectations or when compared to other simulations
programs in spite of the large variance induced by the
different evolutionary processes implemented.

BENCHMARKING

We carried out four experiments to characterize
SimPhy’s computational efficiency and scalability, where
central processing unit (CPU) time was defined as
the sum of user and system time returned by the
Berkeley Software Distribution (BSD) time command.
For scenarios without HGT or GC, we also computed
the running times of DLCoal_sim (Rasmussen and
Kellis 2012). For simplicity we used a classic grid-like
parameterization with 10 replicates per scenario and one
individual per species. All the output options of SimPhy
were active. Errors and running times over 300 seconds
were treated as missing data. All the analyses were run in
a MacBook Pro Intel Core i7 2.3Ghz, 8GB of RAM, and
a Solid State Drive. A generalized linear model with a
Gamma error distribution was fitted to the resulting data
to assess the relationship between running times and the
variables studied. All the scripts used to carry out this
benchmarking are available as Supplementary Material
on Dryad at http://dx.doi.org/10.5061/dryad.707td.

Benchmark 1
The first benchmark was designed to check the

general performance and scalability of SimPhy with
an increasing number of gene trees simulated under
the joint effect of ILS, GDL, HGT, and GC (Fig. 5).
We simulated 30 different scenarios under three
different schemes (#species trees/#locus trees per
species tree/#gene trees per locus tree): 1/1/100-1000,
1/100-1000/1 and 100-1000/1/1. For each scenario,
we simulated 50-taxon species trees with a tree
height of 1M generations, a speciation rate of 0.00001
speciations/generation, and an effective population size
of 10000. We specified moderate but equal duplication,
loss, HGT, and GC rates (0.5 events/1M generations).
SimPhy is extremely fast and scales linearly with the
number of trees (Fig. 5). For example, it generates 1000
gene trees for 50 species under a complex model with
ILS, GDL, HGT, and GC in less than 2 s.

Benchmark 2
This benchmark was intended to compare SimPhy and

DLCoal_sim under a very simple model, with only
moderate levels of ILS. We designed 10 scenarios with
10 numbers of species, varying from 50 to 500. For each

http://dx.doi.org/10.5061/dryad.707td
http://dx.doi.org/10.5061/dryad.707td
http://dx.doi.org/10.5061/dryad.707td
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FIGURE 5. SimPhy’s running time against the number of gene
trees simulated. A generalized linear model with a Gamma error
distribution and the identity function as link was fitted to each data
series. See section ‘Benchmark 1’ for the simulation details.

scenario, we simulated a single species tree, assuming
a speciation rate of 1 speciation/1M generations, an
effective population size of 10,000, and generated 100
gene families. SimPhy scales linearly with the number
of species, while DLCoal_sim only does the same for
small species trees, being unable to complete simulations
with more than 300 species (Supplementary Fig. S8).
Remarkably, SimPhy was at least one order of magnitude
faster than DLCoal_sim. This might be explained by
the fact that SimPhy differentiates subtrees that can
be modeled by the multispecies coalescent from those
that require the bounded alternative, using a much
faster and less error-prone algorithm for the former
situation. Moreover, in the absence of GDL, HGT,
or GC, locus trees and species trees are equivalent,
so in these cases SimPhy directly uses the species
trees as locus trees instead of simulating them de
novo. In addition, SimPhy and DLCoal_sim also have
important implementation differences—for example,
data structures, coding language—which make SimPhy
faster in most scenarios. Finally, SimPhy uses a multiple
precision library for very complex scenarios to favor its
scalability.

Benchmark 3
In this case, we characterized SimPhy’s and

DLCoal_sim’s running times for a model with moderate
levels of ILS and GDL. We designed 30 scenarios,
with 100, 200, and 300 species and 10 duplication rates
from 1 to 3.25 duplications/1M generations. For each
scenario, we simulated a single species tree, assuming
a speciation rate of 0.1 speciations/1M generations an
effective population size of 10,000, and generated 100
gene families. Logically, duplications increased the
running time for both programs, but with SimPhy still

FIGURE 6. Running time comparison between SimPhy and
DLCoal_sim under a GDL+ILS model. Scatter plot of the time needed
by the two simulators to generate 100 gene trees from 100 locus trees
using three different duplication rates (duplications/1M generations)
under different effective population sizes. A generalized linear model
with a Gamma error distribution and the inverse function as link was
fitted to each data series. DLCoal_sim’s execution times over 150 s are
not shown.

being much faster than DLCoal_sim (Supplementary
Fig. S9). Moreover, DLCoal_sim showed again important
scalability problems, being unable to simulate trees
with 300 species.

Benchmark 4
Here we aimed to evaluate the sampling efficiency of

the multilocus coalescent model by exploring a model
with various levels of GLD and ILS. We designed 30
scenarios with 10 effective population sizes—from 976
to 500,000 individuals—and three duplication rates—0,
1, and 2 duplications/1M generations. For each scenario
we simulated a single 100-taxon species tree, assuming
a speciation rate of 10 speciations/1M generations and
a tree height of 0.5 M generations, and generated
100 gene families. For both programs we observed
an important increase in execution time with higher
ILS in the presence of duplications, and almost no
effect in their absence (Fig. 6). Importantly, SimPhy
was again at least one order of magnitude faster and
scales much better than DLCoal_sim. Several DLCoal_sim
replicates were allowed to run beyond the 300 s limit
but did not finish even after 24 h. This behavior is
likely reflecting a problem in the rejection sampling
algorithm that DLCoal_sim uses to sample the bounded
multispecies coalescent (specifically the lineage counts),
since this algorithm is prone to get stuck sampling
highly improbable scenarios. On the other hand, SimPhy
uses an alternative sampling strategy (see section
‘Simulation Process’ and Online Appendix 1) that seems
to effectively mitigate this problem.
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FIGURE 7. Expected overestimation of the time of gene duplication
induced by species tree/gene tree reconciliation methods that do not
consider locus trees. The figure represents the evolutionary history and
expected overestimation of the duplication time for two paralogous
copies (A�, A�) in a single individual (A). The gene tree (thin black
lines) evolves inside the locus tree (medium-thick lines) along a species
tree branch (light gray shadow in the background). The duplication
takes place in the gene copy represented by a square, whose lineage in
the original locus does not reach the present (dashed line). For haploid
populations, the expected overestimation is Ne generations.

TEST-CASE STUDY: DUPLICATION TIME OVERESTIMATION OF

DL RECONCILIATIONS

We have previously shown that the most recent
common ancestor (MRCA) of a new gene originated
by duplication and its paralog does not necessarily
coincide with the individual where this duplication first
occurred, generating a systematic overestimation of the
duplication time for locus tree unaware reconciliation
methods (Mallo et al. 2014b; Fig. 7). Here we further
explored this issue by quantifying this overestimation
in more complex scenarios for which theoretical
expectations are not available. To do so, we simulated
1,000,000 replicates with a number of species uniformly
distributed from 25 to 200, with a fixed speciation rate (10
speciations / 1M time units), an effective population size
uniformly distributed from 1000 to 10,000 individuals,
and with just one gene family per genome. The locus
tree simulation was parameterized with a duplication
rate sampled from a Uniform distribution of 0.05 to 0.5
events/1M generation, and with a number of individuals
per species uniformly ranging from one to five. To check
the relationship between the simulated parameters
and the overestimation bias, we performed a stepwise
selection under the Akaike information criterion (AIC)
of a generalized linear model with Gamma error
distribution and inverse link on a linear combination of
all the simulation parameters. As dependent variable
we used the mean of the distance between the real

duplication node (locus tree) and the first coalescence
between lineages coming from the two different paralogs
for all the duplications for each simulation replicate.

Our results show that the effective population size
increases the overestimation bias, while the number of
individuals per species and the duplication rate have the
opposite effect, being the only three parameters retained
in the best-fit linear model. That a larger effective
population size increases the overestimation bias is
expected, as the coalescent time of any two lineages
grows with it. An increasing number of individuals per
species should reduce this bias, as with more lineages
going through the duplication node the time for the first
coalescence among paralogs decreases. The effect of the
duplication rate, inversely correlated with this bias, is
less clear. Nevertheless, it can be tentatively explained
by the coalescent bounds imposed by duplications.
Expected coalescent times along a bounded subtree are
shorter than along an unbounded subtree, since the
probability of coalescence is scaled by the probability
of the TMRCA being less or equal to the bound (i.e., we
can think of the unbounded coalescent as a bounded
coalescent with the bound in the infinite, and therefore
scaled by one). Thus, the bigger the duplication rate,
the bigger the probability of having duplications in
bounded subtrees, and the bigger the reduction on the
expected duplication time overestimation generated by
the coalescent bounds.

Interestingly, we can conclude that the expected
overestimation for the simplest case—2Ne for one
diploid individual with two paralogs; (Mallo et al.
2014b)—constitutes an upper bound, with a smaller bias
expected in more complex scenarios (with duplications
and multiple individuals per species). Finally, we also
note that the size of the species tree did not seem to play
a significant role in this case.

CONCLUSION

We have introduced, validated, and benchmarked
SimPhy, to our knowledge, the first software that
simulates gene tree family evolution under the three
main evolutionary processes that generates species
tree/gene tree incongruence—ILS, GDL, and HGT. This,
together with its comprehensive heterogeneity models
and the parameter sampling strategy should help SimPhy
becoming a powerful phylogenomic tool. We have also
conducted a simple case study to show a potential
application (duplication time overestimation), but we
envision many more to come. In fact, SimPhy has been
already used to validate at least three species tree
reconstruction methods (De Oliveira Martins et al. 2014;
Bayzid et al. 2015; Mirarab and Warnow 2015).

AVAILABILITY

SimPhy is distributed under the license GNU
GPL v3. It is written in C and it relies on four
libraries, the GNU Scientific Library (GSL), the GNU
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Multiple Precision Arithmetic Library (GMP), the
GNU MPFR Library, and SQLite3. Users can find
the source code, precompiled executables, a detailed
manual and example cases on a GitHub repository
(https://github.com/adamallo/SimPhy, last accessed
November 17, 2015). We provide two flavors of
precompiled executables, for Linux—which passed 73
out of 74 tests for the 64 bits version and 84 out of 87 tests
for the 32 bits version under the Linux Standard Base
distribution checker—and MacOSX systems.

SUPPLEMENTARY MATERIAL

Data available from the Dryad Digital Repository:
http://dx.doi.org/10.5061/dryad.707td.
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