

Biochem. J. (2013) 449, 39-49 (Printed in Great Britain) doi:10.1042/BJ20121034

online data

39

Activation of IP_3 receptors requires an endogenous 1-8-14 calmodulin-binding motif

Yi SUN^{1,2}, Ana M. ROSSI¹, Taufiq RAHMAN and Colin W. TAYLOR³ Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, U.K.

Binding of IP₃ (inositol 1,4,5-trisphosphate) to the IP₃-binding core (residues 224–604) of IP₃Rs (IP₃ receptors) initiates opening of these ubiquitous intracellular Ca²⁺ channels. The mechanisms are unresolved, but require conformational changes to pass through the suppressor domain (residues 1–223). A calmodulinbinding peptide derived from myosin light chain kinase uncouples these events. We identified a similar conserved 1-8-14 calmodulinbinding motif within the suppressor domain of IP₃R1 and, using peptides and mutagenesis, we demonstrate that it is essential for IP₃R activation, whether assessed by IP₃-evoked Ca²⁺ release or patch-clamp recoding of nuclear IP₃R. Mimetic peptides

INTRODUCTION

Ca²⁺ channels allow most electrical and many chemical signals to be transduced into the changes in cytosolic Ca²⁺ concentration that regulate almost every aspect of cellular activity [1]. Most Ca²⁺ channels are also regulated by Ca²⁺, either directly or via CaM (calmodulin) [2]. This provides feedback regulation of Ca²⁺ signalling and it allows Ca²⁺ channels to evoke regenerative Ca²⁺ signals [3]. The latter are important because they underpin the versatility of Ca²⁺ as an intracellular messenger, permitting it to function either locally or globally [1].

Two major families of intracellular Ca²⁺ channels, IP₃Rs [IP₃ (inositol 1,4,5-trisphosphate) receptors] and RyRs (ryanodine receptors), share many structural [4,5] and functional [5–7] properties. Most notably, all IP₃Rs and RyRs are stimulated by low concentrations of cytosolic Ca²⁺ and inhibited by higher concentrations. Ca2+-binding sites within the RyR itself can mediate this biphasic Ca^{2+} regulation [7], but, for IP₃Rs, it remains unclear whether additional Ca²⁺-binding proteins are required [6]. None of the many Ca^{2+} -binding sites in RyRs [8] or IP₃Rs [9] has been unambiguously associated with Ca^{2+} regulation of channel gating [10,11], although mutation of a single equivalent residue in RyRs or IP₃Rs (Glu²¹⁰⁰ in IP₃R1) modulates their Ca^{2+} -sensitivity [11]. Both families of intracellular Ca^{2+} channels are also regulated by CaM, a ubiquitously expressed and highly conserved Ca^{2+} -binding protein [12]. Related proteins with EF-hand Ca²⁺-binding structures, such as S100A and CaBP1 (Ca^{2+} -binding protein 1), also regulate RyRs and IP₃Rs, but the physiological significance of these interactions between intracellular Ca²⁺ channels and CaM or related proteins is unresolved [13,14]. Despite some conflicting evidence [15], CaM seems not to be essential for Ca²⁺ regulation of RyRs or IP₃Rs

specifically inhibit activation of IP_3R by uncoupling the IP_3 binding core from the suppressor domain. Mutations of key hydrophobic residues within the endogenous 1-8-14 motif mimic the peptides. Our results show that an endogenous 1-8-14 motif mediates conformational changes that are essential for IP_3R activation. The inhibitory effects of calmodulin and related proteins may result from disruption of this essential interaction.

Key words: 1-8-14 motif, calcium signalling, calmodulin, inositol 1,4,5-trisphosphate receptor, myosin light chain kinase (MLCK).

[16–18], but it does regulate both channels and it modulates their responses to Ca^{2+} [19–21].

All IP₃Rs are inhibited by Ca^{2+} –CaM [22], but neither of the two CaM-binding sites within IP₃R1, nor a third that is created by alternative splicing [23], clearly mediates this inhibition of IP₃-evoked Ca²⁺ release. The central site [24] (Figure 1A) mediates neither Ca²⁺ nor CaM regulation of IP₃R activity [16,17] and it is absent from IP₃R3. The functional role of the split N-terminal site (Figure 1A), one component of which may also bind CaBP1 [25], is also unclear. It has been proposed to bind CaM and thereby to inhibit IP₃R activity, but only when Ca²⁺ has bound elsewhere [26]. The evidence that CaM inhibits IP₃R only in the presence of Ca²⁺, without CaM itself providing the Ca²⁺-sensor, is persuasive [26], but there is no compelling evidence to link this to the N-terminal CaM-binding site [27].

The links between CaM binding and function are better understood for RyRs, although the effects differ between RyR subtypes [7]. A single site on each RyR1 subunit (residues 3614-3643 in rabbit RyR1), which is conserved in all RyRs, binds the C-terminal lobe of both apo-CaM and Ca²⁺-CaM and appears to mediate the functional effects of CaM [20,28,29]. As this tethered CaM binds Ca²⁺, it migrates towards the NT (N-terminus) of the binding site and the CaM switches from activating RyR1 to inhibiting it [19]. The CaM-binding site of RyR1 also engages other CaM-like domains, notably the C-terminus of the L-type Ca²⁺ channel which inhibits RyR1 activity [30], and perhaps an EF-hand-like structure within the C-terminal region of RyR1 which binds Ca^{2+} and modulates Ca^{2+} regulation of RyR [31]. These observations suggest that the CaM-binding domain of RyR also mediates important inter- and intra-molecular interactions, and that the complex effects of CaM and related proteins may, at least in part, result from disrupting these interactions [29,31,32].

Abbreviations used: BCR, B-cell receptor; CaBP1, Ca²⁺-binding protein 1; CaM, calmodulin; CLM, cytosol-like medium; IP₃, inositol 1,4,5-trisphosphate; IBC, IP₃-binding core; IP₃R, IP₃ receptor; MLCK, myosin light chain kinase; NT, N-terminus; RyR, ryanodine receptor; SD, suppressor domain.

¹ These authors contributed equally to this work.

² Present address: Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, U.K.

³ To whom correspondence should be addressed (email cwt1000@cam.ac.uk).

The author(s) has paid for this article to be freely available under the terms of the Creative Commons Attribution Licence (CC-BY) (http://creativecommons.org/licenses/by/3.0/) which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

Figure 1 A putative 1-8-14 motif within the SD of the IP₃R

(A) Key features of a rat IP₃R showing the NT, with its component parts (SD and IBC), the six C-terminal transmembrane domains (TMD) that form the pore and the CaM-binding domains (yellow). Residue numbers are shown. (B) Comparison of 1-8-14 motifs showing the conserved hydrophobic residues of the consensus sequence in blue. Charged residues within the 1-8-14 motif are highlighted in red because the consensus motif has a net charge of + 3 to + 6. The lower panel shows the peptides used with mutated residues underlined. (C) Structure of the SD of IP₃R1 (PDB code 1XZZ) and the equivalent region (A domain) of RyR1 (PDB code 3HSM) with the pseudo-1-8-14 motif highlighted and compared with MLCK in the structure it adopts when bound to Ca²⁺-CaM (PDB code 1QTX).

For IP₃Rs, IP₃ binding to the IBC (IP₃-binding core) (residues 224–604) (Figure 1A) initiates the conformational changes that lead to opening of a pore formed by the C-terminal transmembrane domains of each of the four IP₃R subunits [5,33]. These conformational changes pass via the N-terminal SD (suppressor domain) (residues 1-223), which is essential for IP₃R activation. Indeed, the major conformational changes associated with IP₃R activation appear to occur within the NT (residues 1–604) [5,33]. Although both IP_3 and Ca^{2+} are required for IP₃R activation [6,34], it is not yet clear how the conformational changes initiated by IP₃ lead to Ca²⁺ binding and then to gating of the pore. It is therefore intriguing that a CaMbinding peptide derived from MLCK (myosin light chain kinase), which comprises a 1-8-14 CaM-binding sequence [35], reversibly inhibits IP₃-evoked Ca²⁺ release [36] via all three vertebrate IP₃R subtypes. Furthermore, MLCK peptide is more potent in the presence of Ca^{2+} [35]. This inhibition is entirely independent of CaM and involves interaction of MLCK peptide with the NT in a manner that requires the SD [35]. We speculate, by analogy with RyRs, that inhibition of IP₃Rs by MLCK peptide might result from disruption of an interaction between endogenous CaM-like and CaM-binding domains within IP₃Rs, and that, for IP₃Rs, this interaction is essential for activation. In the present study, we explored this hypothesis further.

EXPERIMENTAL

Materials

Cell culture materials were from Gibco, except for fetal bovine serum (Sigma). CaM purified from bovine brain was from Calbiochem. [³H]IP₃ (18 Ci/mmol) was from PerkinElmer. IP₃ was from Alexis Biochemicals. Peptides were synthesized and purified by Sigma or New England Peptide, and each was shown to be >90 % pure by HPLC. The peptide sequences are listed in Supplementary Table S1 (at http://www.biochemj.org/bj/ 449/bj4490039add.htm).

Site-directed mutagenesis

The NT (residues 1-604) and IBC (residues 224-604) of rat IP₃R1 were amplified by PCR from the full-length receptor clone lacking the SI splice region (GenBank® accession number GQ233032.1) as described previously [33]. The fragments were ligated into pTrcHis A (Invitrogen) to allow expression of N-terminally His₆-tagged proteins. Mutagenesis of the 1-8-14 motif within the NT used the QuikChange® II XL site-directed mutagenesis kit (Stratagene) for single mutants (F53E, L60E, Y66E and K52E) and the QuikChange® multi-site-directed mutagenesis kit for the double mutant (F53E and Y66E). The primers used are listed in Supplementary Table S2 (at http://www.biochemj.org/bj/449/bj4490039add.htm). The same primers and conditions were used for mutagenesis of full-length IP₃R using IP₃R1 in the pENTR 1A vector. Full-length constructs were subcloned into pcDNA3.2/V5-DEST for expression in DT40 cells. The complete sequence of every mutant construct was verified by sequencing.

Culture and stable transfection of DT40 cells

DT40 cells in which the genes for all three IP₃R subtypes had been disrupted (DT40-KO) [37] and DT40 cells stably expressing rat IP₃R1 (DT40-IP₃R1) were grown in RPMI 1640 medium supplemented with 10% (v/v) fetal bovine serum, 1% (v/v) heat-inactivated chicken serum, 2 mM L-glutamine and 50 μ M 2-mercaptoethanol. Cells were grown in suspension in 175 cm² flasks at 37 °C in an atmosphere of 5% CO₂. They were used or passaged when they reached a density of ~2×10⁶ cells/ml. To generate stable cell lines expressing mutant IP₃R, the mutant construct in pcDNA3.2/V5-DEST was linearized, and DT40 cells were transfected by nucleofection (Amaxa, protocol B-23). Cell lines were selected with G-418 (2 mg/ml) and screened initially by Western blotting using a peptide antiserum to IP₃R1 [38] as described previously [33], and then using the functional assay described below.

Ca²⁺ release from the intracellular stores of permeabilized cells

The free Ca²⁺ concentration of the intracellular stores of permeabilized cells was measured using a low-affinity Ca²⁺ indicator trapped within the endoplasmic reticulum as reported previously [39]. Briefly, DT40 cells $(4 \times 10^7 \text{ cells/ml})$ were suspended in HBS (Hepes-buffered saline: 135 mM NaCl, 5.9 mM KCl, 11.6 mM Hepes, 1.5 mM CaCl₂, 11.5 mM glucose and 1.2 mM MgCl₂, pH 7.3) containing 1 mg/ml BSA, 0.4 mg/ml Pluronic F127 and 20 µM mag-fluo-4/AM (Invitrogen). After 1 h at 20 °C in the dark with gentle shaking, cells were centrifuged at 650 g for 2 min and resuspended to 10^7 cells/ml in Ca²⁺-free CLM (cytosol-like medium) (20 mM NaCl, 140 mM KCl, 1 mM EGTA, 20 mM Pipes and 2 mM MgCl₂, pH 7.0) containing 20 μ g/ml saponin. After incubation at 37 °C with gentle shaking for 4 min, permeabilized cells were centrifuged at 650 g for 2 min and resuspended in Mg^{2+} -free CLM, supplemented with CaCl₂ to give a final free Ca²⁺ concentration of 220 nM. The free Ca²⁺ concentration of CLM was calculated using the MaxChelator program (http://maxchelator.stanford.edu) and then measured using fluo-3 or fura-2. Cells were then washed, resuspended in Mg²⁺-free CLM containing 10 μ M FCCP (carbonyl cyanide p-trifluoromethoxyphenylhydrazone) to inhibit mitochondria, and distributed into a 96-well plate (10^6 cells in 50 μ l of CLM/well). After centrifugation, fluorescence from the luminal indicator was recorded using a FlexStation II platereader (Molecular Devices) equipped to allow automated additions [39]. In all experiments,

the intracellular stores were allowed to load to steady-state with Ca²⁺ after addition of MgATP. IP₃ was then added with thapsigargin (1 μ M, to inhibit Ca²⁺ reuptake). The Ca²⁺ release evoked by IP₃ is expressed as a fraction of the ATP-dependent Ca²⁺ uptake.

Patch-clamp recording

Currents were recorded from patches excised from the outer nuclear envelope of DT40 cells expressing recombinant rat IP_3R1 using symmetrical caesium methanesulfonate (140 mM) as the charge-carrier. The composition of recording solutions and methods of analysis were otherwise as described previously [40].

Expression of N-terminal fragments of IP₃R

The pTrcHis constructs were used for expression of N-terminally His_6 -tagged proteins in *Escherichia coli* strain BL21(DE3) cells. Before use for [³H]IP₃ binding, proteins were cleaved from the His_6 tags using biotinylated thrombin (Novagen) at the engineered thrombin-cleavage site [33]. Complete cleavage was verified by Western blotting using an anti-His₆ antibody. The proteins were used for [³H]IP₃ binding without further purification [33].

[³H]IP₃ binding

Equilibrium-competition binding assays were performed at 4 °C for 5 min in CLM (500 μ l) with a free Ca²⁺ concentration of 220 nM and containing [³H]IP₃ (0.75–1.5 nM), bacterial lysate (10 μ g of protein for IBC and 100 μ g of protein for NT) or cerebellar membranes (50 μ g of protein) and competing ligands. Non-specific binding was defined by addition of 10 μ M IP₃. Bound and free [³H]IP₃ were separated by centrifugation at 20000 *g* for 5 min, after addition of poly(ethylene glycol) (15 % final concentration) and γ -globulin (0.75 mg) for soluble proteins. Results were analysed by fitting to a Hill equation (using GraphPad Prism) from which the IC₅₀ (half-maximal inhibitory concentration) and thereby the *K*_d (equilibrium dissociation constant) were calculated [33].

Western blotting

Cells in Ca²⁺-free CLM containing 2-mercaptoethanol (1 mM) and protease inhibitors were lysed by addition of PopCulture (10%), lysozyme (10 μ g/ml), DNAse (5 units/ml) and RNAse (10 μ g/ml). The proteins were separated using SDS/PAGE pre-cast mini-gels (Invitrogen) and transferred on to a PVDF membrane using an Iblot dry-transfer apparatus (Invitrogen). The primary antibodies were rabbit anti-His₆ (1:3000 dilution) (Sigma) and anti-IP₃R1 (1:1000 dilution) [33]. HRP (horseradish peroxidase)-conjugated anti-rabbit secondary antibodies (1:5000 dilution) (AbCam) and the Super Signal West Pico chemiluminescence reagent (Pierce) were used to detect immunoreactivity. Bands were quantified using GeneTools software (Syngene).

Statistical analysis

For comparisons of K_d , EC₅₀ (half-maximally effective concentration) or IC₅₀ values, their negative logarithms (p K_d , pEC₅₀ and pIC₅₀; means \pm S.E.M.) were used for statistical analyses. For clarity, some Figures show normalized results, but all statistical analyses were performed on the raw data using

The author(s) has paid for this article to be freely available under the terms of the Creative Commons Attribution Licence (CC-BY) (http://creativecommons.org/licenses/by/3.0/) which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

paired or unpaired Student's t tests. P < 0.05 was considered significant.

RESULTS AND DISCUSSION

Reversible inhibition of IP_3 -evoked Ca^{2+} release by an endogenous 1-8-14 peptide

A sequence within the SD of all known IP₃Rs (residues 53–66 in rat IP₃R1; Supplementary Figure S1 at http://www.biochemj. org/bj/449/bj4490039add.htm) includes the critical hydrophobic residues of a 1-8-14 CaM-binding motif appropriately oriented within the known structure of the SD [41] (Figures 1B and 1C) and with the required net positive charge [35]. The sequence lies within one of the two regions (residues 49–81; Figure 1A) within the NT reported to bind CaM [42] and CaBP1 [14]. A similar sequence is present within the N-terminal of all RyRs (Supplementary Figure S1). To test our hypothesis that inhibition of IP₃R by MLCK peptide results from disruption of an essential interaction involving an endogenous 1-8-14 motif, we assessed the effects of a peptide derived from this motif (1-8-14 peptide; Figure 1B and Supplementary Table S1) on IP₃-evoked Ca²⁺ release.

The 1-8-14 peptide inhibited IP₃-evoked Ca²⁺ release via IP₃R1 without affecting either Ca^{2+} uptake or the sensitivity (EC₅₀) to IP₃ (Figures 2A-2D). A maximally effective concentration of the peptide reduced the maximal response to IP₃ by 77 ± 7 %. The IC₅₀ for 1-8-14 peptide was 767 μ M (pIC₅₀, 3.1 ± 0.25) (Figure 2C). Neither a mutant 1-8-14 peptide, in which two critical hydrophobic residues are mutated (1-8-14^c, 3 mM) nor a scrambled peptide (1-8-14^s, 3 mM) had any effect on IP₃evoked Ca²⁺ release (Figure 2C). Both MLCK peptide (isoelectric point, pI 14.0) and 1-8-14 peptide (pI 11.6) are very basic and might therefore have inhibited IP₃-evoked Ca^{2+} release by binding directly to IP₃. We demonstrated previously that this was not the case for MLCK peptide [35], and it is also unlikely for the 1-8-14 peptide. The 1-8-14 and 1-8-14^s peptides are equally basic, but only the former inhibited IP₃R; the percentage inhibition caused by 3 mM 1-8-14 peptide is similar for all IP₃ concentrations (\sim 75%), and neither was the inhibition reduced by increasing the IP₃ concentration beyond that required to stimulate maximal Ca^{2+} release (Figure 2B). We conclude that 1-8-14 peptide inhibits IP₃-evoked Ca²⁺ release by binding to IP₃R.

The 1-8-14 peptide is only 16 residues long. A longer peptide (30 residues, 1-8-14^L), which includes additional N- and C-terminal residues that are conserved in all IP₃Rs (Figure 1B and Supplementary Figure S1), also inhibited IP₃-evoked Ca²⁺ release without affecting Ca²⁺ uptake (Figure 2D). Although IP₃R may be slightly more sensitive to the longer peptide (IC₅₀, 326 μ M; pIC₅₀, 3.5 \pm 0.25) than to the 1-8-14 peptide (767 μ M, 3.1 \pm 0.25); the difference was not statistically significant. Subsequent studies used the shorter 1-8-14 peptide because it was less expensive.

The results shown in Figure 2(E) demonstrate that the effects of a maximally effective concentration of 1-8-14 peptide (3 mM) are fully reversible. These experiments, which require extensive washing of the cells between successive challenges with the peptide, confirm that the inhibition of IP₃Rs by the 1-8-14 peptide, like that by MLCK peptide [35], does not result from dissociation of CaM from IP₃R [36]. Our previous study demonstrated that MLCK peptide more potently inhibited IP₃R when the cytosolic free Ca²⁺ concentration was increased [35]. Similar results were obtained with 1-8-14 peptide (Figure 2F). We conclude that 1-8-14 peptide inhibits IP₃-evoked Ca²⁺ release by binding to

the IP_3R and the inhibition is enhanced at elevated cytosolic Ca^{2+} concentrations.

Inhibition of single-channel currents through $\ensuremath{\text{IP}_3\text{Rs}}$ by 1-8-14 peptide

In patch-clamp recordings from the nuclear envelope of DT40 cells expressing rat IP₃R1, a maximally effective concentration of IP₃ stimulated IP₃R activity and this was massively attenuated by the 1-8-14 peptide (3 mM) (Figures 3A and 3B). Our results are consistent with the peptide causing a 50% decrease in the mean channel open time (τ_0) (Figure 3C). However, the overall channel activity (NP_{o}) was so low under these conditions that we cannot reliably estimate the number of active IP_3Rs (N) within each patch. We cannot therefore entirely eliminate the possibility that each patch fortuitously included several IP₃Rs and that their clustering caused τ_{o} to fall from ~ 10 ms to ~ 5 ms as we reported previously [40]. An effect on τ_{o} would be unusual because most regulators of IP₃Rs affect the duration of closed states (τ_c) [6,40]. The effect of the peptide on τ_{o} is not, however, sufficient to account for the \sim 10-fold decrease in NP_o (Figure 3A), suggesting that the 1-8-14 peptide must also affect the rate of channel opening (i.e. $\tau_{\rm c}$). Because it was impossible to determine the number of active IP₃Rs in the presence of 1-8-14 peptide (see above), we could not reliably determine τ_c . The single-channel conductance $(\gamma_{\rm Cs})$ was unaffected by 1-8-14 peptide: it was 214 ± 6 pS (n = 3)and 209 ± 6 pS (n=3) for control and peptide-treated IP₃Rs respectively (Figure 3D).

These results establish that a peptide derived from an endogenous 1-8-14 motif within the SD of the IP_3R is similar to MLCK peptide in causing substantial and reversible inhibition of IP_3Rs that is independent of CaM. This conclusion is consistent with our suggestion that MLCK peptide inhibits IP_3Rs by mimicking an endogenous 1-8-14 motif, and so perhaps 'unzipping' an interdomain interaction [43] that is essential for activation of IP_3Rs .

1-8-14 peptide uncouples IP₃ binding from activation of IP₃Rs

Removal of the SD increases the affinity of both full-length IP_3Rs and the NT for IP_3 [33]. We [33] have suggested that this reflects the use of binding energy to drive conformational rearrangement of SD-IBC interfaces during the initial steps of IP_3R activation [5,44].

1-8-14 peptide (3 mM) increased specific binding of $[{}^{3}H]IP_{3}$ to full-length IP₃R1. Similar results were obtained with the NT, but IP₃ binding to the IBC was unaffected (Figure 4A). The latter demonstrates that 1-8-14 peptide does not interact directly with either the IP₃-binding site or with IP₃. Neither the mutated (1-8-14^c) nor scrambled (1-8-14^s) peptide had any effect on IP₃ binding to the NT (Figure 4A). These results with IP₃R fragments expressed in *E. coli*, which lack CaM, also further support our conclusion that the effects of 1-8-14 peptide are entirely independent of CaM.

Comparison of the effects of 1-8-14 peptide on stimulating [³H]IP₃ binding to the NT (EC₅₀, 615 μ M; pEC₅₀, 3.21 ± 0.19) (Figure 4B) with its inhibitory effect on IP₃-evoked Ca²⁺ release (IC₅₀, 767 μ M; pIC₅₀, 3.1 ± 0.25) (Figure 2C) demonstrates that each is similarly sensitive to the peptide. These results are consistent with our hypothesis that the 1-8-14 peptide disrupts an interaction between the SD and IBC that is essential for IP₃R activation. The peptide thereby inhibits IP₃-evoked Ca²⁺ release (Figure 2) and IP₃R activity (Figure 3) and, by uncoupling IP₃ binding from subsequent conformational changes, it stimulates

The author(s) has paid for this article to be freely available under the terms of the Creative Commons Attribution Licence (CC-BY) (http://creativecommons.org/licenses/by/3.0/) which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

Figure 2 Inhibition of IP₃R by 1-8-14 peptide

(A) Typical recording of the free Ca²⁺ concentration within the endoplasmic reticulum of a population of permeabilized DT40-IP₃R1 cells showing Ca²⁺ uptake after addition of MgATP (1.5 mM), release of Ca²⁺ after addition of IP₃ (10 μ M, with 1 μ M thapsigargin to inhibit Ca²⁺ re-uptake) and inhibition of that release by 1-8-14 peptide (3 mM), present throughout as indicated, upper trace). Results are means \pm S.E.M. for three replicates from a single experiment. (B) Concentration-dependent release of intracellular Ca²⁺ stores by IP₃ alone or after pre-incubation for 2.5 min with 1-8-14 peptide (3 mM). Inhibition by 1-8-14 peptide at each IP₃ concentration is also shown (%). 1-8-14 peptide caused a significant decrease in the maximal response (P < 0.001) without significantly changing the sensitivity to IP₃. (C and D) Permeabilized cells pre-incubated for 10-20 min with the indicated concentrations of peptide). Results show the Ca²⁺ content of the stores before addition of IP₃, and the Ca²⁺ release evoked by IP₃. (E) Permeabilized cells were incubated alone or with 1-8-14 peptide (3 mM) for 10-20 min with the indicated concentrations of 1-8-14 peptide (3 mM) for 10-20 min with the results stablish that the effects of 1-8-14 peptide at each the results evoked by IP₃. (F) Permeabilized cells pre-incubated with 0 multiputide estimated with 0 multiputide is shown for naive cells and after the pre-treatment with 3 mM peptide. The results establish that the effects of 1-8-14 peptide are fully reversible. (F) Permeabilized cells pre-incubated with or without 1-8-14 peptide at each free Ca²⁺ concentration of IP₃ in the continued presence of peptide in CLM with the indicated free Ca²⁺ concentration. Results show the inhibition of IP₃-evoked Ca²⁺ release (%) by 1-8-14 peptide at each free Ca²⁺ concentration. Results in (**B**)–(**F**) are means \pm S.E.M. ($n \ge 3$). *P < 0.05, **P < 0.01 and ***P < 0.001.

 IP_3 binding (Figure 4). Subsequent experiments used mutagenesis of residues within the endogenous 1-8-14 motif to test this hypothesis further.

Mutations within the endogenous 1-8-14 sequence increase $IP_3\mbox{-}binding$ affinity

If, as we suggest, the 1-8-14 peptide disrupts an essential interaction between the endogenous 1-8-14 sequence and another domain within the NT, we might expect mutation of appropriate

residues in the SD to both disrupt IP₃R activation and increase IP₃-binding affinity. We tested the latter prediction by examining IP₃ binding to the NT in which each of the critical (1, 8 and 14) hydrophobic/aromatic residues that are important for Ca^{2+} -CaM binding to 1-8-14 motifs [45] was replaced with a charged hydrophilic residue (glutamate). The same hydrophobic residues are essential for MLCK [35] and 1-8-14 (Figure 2C) peptides to disrupt IP₃R activation.

NTs of IP_3R1 with point mutations in positions equivalent to the 1- (F53E), 8- (L60E) or 14-position (Y66E) of the

43

Figure 3 Inhibition of IP₃R gating by 1-8-14 peptide

(A) Typical recordings from excised nuclear patches stimulated with IP₃ (10 μ M) with and without 1-8-14 peptide (3 mM) in the pipette solution. The holding potential was + 40 mV. The closed state is shown. (B and C) NP₀ (B) and τ_0 (C) for IP₃R stimulated with IP₃ alone or with 1-8-14 peptide (3 mM, + Pep). Results for IP₃R^{L60E} are also shown. *P<0.05, ***P<0.001 and ****P<0.001 relative to native IP₃R without peptide. (D) Single-channel current (*i*)–voltage (V) relationships for the three stimulation conditions. Results in (B)–(D) are means ± S.E.M. ($n \ge 3$).

Figure 4 1-8-14 peptide directly stimulates IP₃ binding to the NT of IP₃R

(A) Specific equilibrium binding of [3 H]IP₃ (1.5 nM) to membranes from rat cerebellum (tull-length IP₃R, FL) or to isolated NT or IBC, alone or in the presence of 3 mM of the indicated peptide. **P* < 0.05 and ***P* < 0.01 relative to control; comparisons were performed on the raw data. (B) Concentration-dependent effects of 1-8-14 peptide on specific [3 H]IP₃ binding to NT in CLM with 220 nM free Ca²⁺ concentration, plotted as the increase in specific [3 H]IP₃ binding as a percentage of that evoked by the maximal concentration of peptide. Results are means \pm S.E.M. (*n* \ge 3).

endogenous 1-8-14 motif (Figure 1A) were expressed in E. coli. Expression levels of the NT and its mutants were not identical (Figure 5A), but they were each sufficient to allow the affinity for IP₃ and the effects of peptides to be determined after cleavage of the His₆ tag, but without further purification [33]. As expected, IP₃ bound to the IBC with greater affinity (17fold) than to the NT (Figure 5B) [33,46,47], consistent with our suggestion that, in the absence of the SD, less binding energy is diverted into conformational changes [33]. Mutation of critical residues within the endogenous 1-8-14 motif significantly increased the affinity of the NT for IP₃ (Figure 5B and Table 1), although none was as effective as complete removal of the SD. This is consistent with our observation that neither the 1-8-14 (Figure 2) nor MLCK [35] peptide entirely inhibits IP₃-evoked Ca²⁺ release, whereas removal of the SD totally uncouples IP₃ binding from IP₃R activation [48]. Although maximally effective concentrations of MLCK (100 μ M) or 1-8-14 (3 mM) peptides similarly increased IP₃ binding to the NT, neither peptide had any effect on [3H]IP₃ binding to the NT with mutations in any of the critical 1-8-14 residues (Figures 5C and 5D). Mutation of a residue immediately preceding the critical 1position of the 1-8-14 motif (K52E), which did not increase the affinity of IP₃ for the NT (Supplementary Figure S2A at http://www.biochemj.org/bj/449/bj4490039add.htm), had no effect on the responses to MLCK or 1-8-14 peptides (Figures 5C and 5D) and neither did it affect IP3-evoked Ca2+ release [33] (Supplementary Figure S2B). These results establish that mutation of critical residues within the endogenous 1-8-14 motif selectively increases IP₃-binding affinity and these effects are non-additive with those of either MLCK or 1-8-14 peptide.

Mutations within the 1-8-14 motif selectively increase agonist affinity

Our hypothesis is that the apparent affinity of agonists (such as IP_3) for native IP_3Rs is reduced because some of their binding energy is diverted into the conformational changes that activate

Figure 5 Mutations within the 1-8-14 motif mimic the effect of 1-8-14 peptide on IP₃ binding

(A) Western blot (typical of three independent experiments) with an anti-His₆ antibody of lysates (5 μ g of protein/lane) from bacteria expressing NT with the indicated mutations. The 80 kDa molecular-mass marker is shown. (B) Concentration-dependent effect of IP₃ on specific [³H]IP₃ binding to the IBC, NT and mutated NT. (C and D) Effects of MLCK peptide (C, 100 μ M) and 1-8-14 peptide (D, 3 mM) on specific binding of [³H]IP₃ (1.5 nM) to the NT and the indicated mutants (each expressed as a percentage of the control). (E) Specific binding of [³H]IP₃ (1.5 nM) to the IBC, NT and mutated NT in the presence of the indicated concentrations of heparin. (F) Summary results from experiments similar to those in (E) showing the K_d for IP₃ and heparin binding to the IBC, NT and mutated NT. Results in (B)–(F) are means ± S.E.M. ($n \ge 3$). *P<0.05, **P<0.01 and ***P<0.001 relative to control; comparisons were performed on the raw data.

Table 1 Binding of IP₃ and heparin to N-terminal fragments of IP₃R1

Equilibrium competition binding using $[{}^{3}H]IP_{3}$ was used to measure the pK_{d} of IP₃ and heparin for the N-terminal fragments of IP₃R1. Affinities for ligands are also shown expressed as fold increase relative to wild-type NT (i.e. $K_{d}^{NT}/K_{d}^{mutant}$). Results are means \pm S.E.M. ($n \ge 3$). *P < 0.05, **P < 0.01 and ***P < 0.001 relative to NT.

Fragment	p <i>K</i> _d , /M IP ₃	Affinity	p <i>K</i> _d , /g/ml heparin	Affinity
	(<i>K</i> _d , nM)	relative to NT	(K _d , ng/ml)	relative to NT
NT F53E L60E Y66E IBC	$\begin{array}{c} 7.40 \pm 0.11 \ (40.0) \\ 7.97 \pm 0.05^{**} \ (10.8) \\ 7.84 \pm 0.08^{*} \ (14.5) \\ 7.64 \pm 0.04 \ (22.8) \\ 8.62 \pm 0.05^{***} \ (2.4) \end{array}$	1 4 3 2 17	$\begin{array}{c} 6.62\pm 0.06\ (239)\\ 6.92\pm 0.06^{\star\star}\ (120)\\ 6.70\pm 0.04\ (200)\\ 6.77\pm 0.03\ (171)\\ 6.93\pm 0.04^{\star\star}\ (117) \end{array}$	1 2 1.2 1.4 2.0

the IP₃R [33]. Antagonists, because they need not evoke the rearrangement of the IBC and SD that initiates IP_3R activation, may be less affected by disruption of these interactions. We therefore examined the effects of the SD and of point mutations

within the endogenous 1-8-14 sequence on binding to the NT of heparin, a competitive antagonist of IP₃ [49]. The results demonstrate that, whereas removal of the SD increased the affinity of the NT for IP₃ 17-fold, it caused only a 2-fold increase in the affinity for heparin. Point mutations within the endogenous 1-8-14 motif also caused larger increases in the affinity for IP₃ than for heparin (Figures 5E and 5F, and Table 1). These results are important because they demonstrate that the effects of the SD and of mutations within the 1-8-14 sequence on ligand binding are specific for an agonist of the IP₃R. They thereby demonstrate the importance of the 1-8-14 motif in specifically mediating activation of IP₃Rs.

Mutations within the endogenous 1-8-14 motif uncouple $\ensuremath{\text{IP}_3}$ binding from gating of $\ensuremath{\text{IP}_3}\ensuremath{\text{Rs}}$

It proved difficult to establish stable DT40 cell lines expressing rat IP_3R1 in which critical residues within the 1-8-14 motif were mutated, but we succeeded with two mutants (Figure 6A). The first (IP_3R^{L60E}) is mutated at the 8-position of the 1-8-14 motif

Figure 6 The endogenous 1-8-14 motif is essential for activation of IP₃R

(A) Expression of IP₃R1 in DT40 cells stably expressing each of the indicated mutants. Each lane was loaded with 4×10^3 cells and probed with antisera to IP₃R1 (upper panel) or β -adaptin (lower panel). The R568Q mutant (which reduces the affinity of the IP₃R for IP₃) [50] is shown because it provides a control for functional assays of cells expressing IP₃R at low density. Molecular-mass markers are shown on the right. The Western blot is typical of three independent experiments. The lower panel shows summary results (means \pm S.E.M., n = 3), where IP₃R expression was calculated from blots that included DT40-IP₃R1 membranes in which levels of expression were established by equilibrium competition [³H]IP₃ binding. (B) Typical responses to IP₃ (10 μ M) (from DT40 cells lacking IP₃R (KO) or expressing wild-type IP₃R1 or IP₃R with the indicated mutations (see the text for details). (C) Summary results show the Ca²⁺ content of the loaded stores (\oplus) and the Ca²⁺ released by IP₃ (histograms) for each of the indicated cell lines. (D) Specific [³H]IP₃ binding (1.5 nM) to full-length IP₃R (FL) with the indicated mutations (L60E or FY, see the text for details) in permeabilized DT40 cells alone or in the presence of 100 μ M MLCK peptide. Results in (C) and (D) are means \pm S.E.M. ($n \ge 3$). (E) Typical records from active excised nuclear patches of DT40 cells expressing IP₃R1 or IP₃R1 (10 μ M). The holding potential was + 40 mV. C denotes the closed state. Summary data are provided in Figures 3(B)–3(D). **P<0.001 and ****P<0.0001 relative to IP₃R1 (A and C) or control (D).

and the second has mutations at both the 1- (F53E) and 14positions (Y66E) (IP_3R^{FY}). As expected, a maximally effective concentration of IP₃ (10 μ M) failed to stimulate Ca²⁺ release from permeabilized DT40 cells lacking IP₃R (DT40-KO cells) [37,40], but it caused release of 81 ± 1 % of the Ca²⁺ stores of DT40-IP₃R1 cells (Figures 6B and 6C). In the cell lines expressing IP₃R with a mutated 1-8-14 motif, there was barely detectable Ca^{2+} release that was not significantly different from that observed in DT40-KO cells (Figures 6B and 6C). ATP-dependent Ca²⁺ uptake into the ER was similar for each cell line (Figure 6C). We were concerned that the lower level of expression of mutant IP_3R relative to wild-type (~30–50%, Figure 6A) might have contributed to the lack of detectable IP₃-evoked Ca²⁺ release. However, in another stable DT40 cell line where the IP₃-binding site was mutated (R568Q), causing a \sim 10-fold decrease in IP₃ affinity [50], IP₃R expression (\sim 15 % of wild-type) was less than half that of the cell lines with mutations in the 1-8-14 motif (Figure 6A). Nevertheless, IP₃ caused a readily detectable release of Ca²⁺ from the intracellular stores of DT40-IP₃R^{R568Q} cells $(49 \pm 2\%)$ of that detected in DT40-IP₃R1 cells) (Figures 6B and 6C). We conclude that the lack of detectable Ca^{2+} release in cells expressing IP₃R with a mutant 1-8-14 motif is not attributable to reduced IP₃R expression. Neither is it likely that the lack of response to IP₃ from mutant IP₃R reflects a more global disruption of IP₃R structure because each of the full-length mutant IP₃Rs bound IP₃, although, as predicted, addition of MLCK peptide increased IP₃ binding to only the wild-type IP₃R (Figure 6D). Furthermore, DT40 cells expressing IP₃R1 with a mutation in an adjacent residue (DT40- IP_3R1^{K52E}) responded normally to IP_3 [33] (Supplementary Figure S2B). These results are consistent with the suggestion that mutations within the endogenous 1-8-14 motif mimic addition of exogenous MLCK peptide by uncoupling IP₃ binding from the conformational changes that lead to opening of the IP₃R pore. Single-channel analyses provide further support for this conclusion.

Yamazaki et al. [51] reported recently the functional effects of mutations within IP_3R including some within the 1-8-14 motif (F53D and Y66A). We note, however, that some of their

mutations, e.g. Y167A, which is clearly implicated in IP₃R activation, abolished IP₃-evoked Ca²⁺ release from microsomes without affecting Ca²⁺ signals evoked by activation of the BCR (B-cell receptor) in intact cells. This unexplained disparity casts some doubt over whether in these assays responses from intact cells faithfully report the activity of IP₃R. In DT40 cells expressing an IP₃R with five mutations that included Y66A (the 14-position of the 1-8-14 motif), activation of the BCR evoked a Ca^{2+} signal, suggesting that the mutant IP₃R was functional [51]. However, in this IP₃R, the mutant had one hydrophobic residue replaced by another and this might not radically affect the behaviour of the 1-8-14 motif. In preliminary analyses of cells expressing IP₃Rs in which the first position of the 1-8-14 motif was mutated (F53D), Ca^{2+} signals were also observed after activation of the BCR [51]. This may reflect a limitation of the BCR-based assay (see above) or it may provide evidence for a lesser role of the 1-position in the 1-8-14 motif. We have not succeeded in establishing a DT40 cell line expressing IP₃Rs with only this mutation, although our results do clearly show that IP₃Rs with mutations in both the 1and 14-positions (IP_3R^{FY}) are barely responsive to IP_3 (Figure 6).

Mutation of the endogenous 1-8-14 motif attenuates IP_3R gating without affecting single-channel conductance

In keeping with the reduced expression of IP₃R^{L60E} in DT40 cells (Figure 6A), the frequency with which functional IP₃Rs were detected in excised nuclear patches was much lower for nuclei from paired experiments with DT40-IP₃R1^{L60E} cells (three of 48 patches) than from DT40-IP₃R1 cells (five of 13 patches). In parallel analyses, functional IP₃Rs were never detected in DT40-KO cells (none of 30 patches). The single-channel conductances (γ_{Cs}) of the mutant IP₃R^{L60E} (209 ± 8 pS) and normal IP₃R $(214 \pm 6 \text{ pS})$ were indistinguishable (Figure 3D), but NP_o was massively decreased in the mutant (Figures 3B and 6E). Our interpretation of the latter is, as we described in our analyses of the 1-8-14 peptide, limited by our inability, when NP_o is so low for $IP_3 \hat{R} 1^{L60E}$, to estimate reliably the number of active IP₃R within a patch. Nevertheless, it is clear that the major effect on single-channel behaviour of mutating the endogenous 1-8-14 motif of IP₃R1 (Figures 3B-3D and 6E) and of adding 1-8-14 peptide to normal IP₃R1 (Figure 3) is similar: both decrease NP_o without affecting γ_{Cs} . These results establish that mutations in the endogenous 1-8-14 motif or addition of 1-8-14 peptide uncouple ligand binding from channel gating without compromising the behaviour of the pore.

Conclusions: interactions between endogenous 1-8-14 and CaM-like motifs mediate activation of IP_3Rs

CaM [22] or related EF-hand-containing proteins [14,25], peptides that comprise 1-8-14 CaM-binding motifs [35,36] (Figures 2–4) or disruption of a conserved endogenous 1-8-14like motif within the SD of IP₃Rs inhibit IP₃-evoked Ca²⁺ release (Figures 5 and 6) by massively reducing NP_0 of IP₃R (Figures 3 and 6E). We conclude that an endogenous 1-8-14 motif within the SD (Figure 1) is essential for IP₃R activation. Where it has been examined, the inhibitory proteins or peptides are more potent when Ca²⁺ is bound to the IP₃R [26,35] (Figure 2F). We therefore speculate that the endogenous 1-8-14 motif may interact with an unidentified domain that includes an EF-hand-like structure and that these interactions might be related to Ca²⁺ regulation of IP₃R (Figure 7). We suggest that competing peptides (CaM-like or 1-8-14 motifs) or mutagenesis of the endogenous 1-8-14 motif inhibit IP₃Rs by disrupting this essential interaction in a manner

Figure 7 Activation of IP₃Rs requires an endogenous 1-8-14 motif

IP₃ binding to the IBC initiates conformational changes that pass via the SD and lead, via regulation of Ca²⁺ binding to the IP₃R, to opening of the pore [33]. (A) An endogenous 1-8-14 motif within the SD is essential for IP₃R activation. We speculate (upper panel) that interaction of this CaM-binding motif (red, conserved hydrophobic residues in dark blue) with an endogenous, but presently unknown, CaM-like structure (pale blue) within the NT may link IP₃ binding to Ca^{2+} binding. (B) Another possibility is that IP₃ binding rearranges the 1-8-14 motif and so repositions a critical acidic residue (Glu²⁴⁶) that may then contribute to a Ca²⁺-binding site (Ca-1) [55]. The NT without IP₃ bound (PDB code 3UJ0) [5] is shown with the IBC in grey and the SD in green to highlight Phe⁵³ (within the 1-8-14 motif) and Phe²²³ to which it is closely apposed (yellow box), residues proposed to form the Ca-1 site (pink box) and the β -sheet that links Phe²²³ to Glu²⁴⁶ (cyan box). The expanded views (each rotated to show key movements) show the critical residues and the linking β -sheet before (green) and after IP₃ binding (blue, PDB code 3UJ4). The carboxy oxygen atoms in Glu²⁴⁶ are shown in magenta. We speculate that separation of Phe⁵³ and Phe²²³ when IP₃ binds is associated with twisting of the linking β -sheet and movement of Glu²⁴⁶ towards three other acidic residues (Glu⁴²⁵, Asp⁴²⁶ and Glu⁴²⁸) and that they may then together form an effective Ca2+ -binding site.

similar to the 'unzipping' of interdomain interactions in RyRs [32,43,52]. The scheme is appealing because IP₃ regulates binding of Ca^{2+} to IP₃Rs and thereby leads to channel gating [34,53]. The identity of this Ca^{2+} -binding site is unknown. It is, however, clear that Ca^{2+} regulates IP₃ binding to the NT only when the SD is present [42], suggesting that a Ca^{2+} -binding site within the NT may be regulated by interactions between the SD and IBC. One

The author(s) has paid for this article to be freely available under the terms of the Creative Commons Attribution Licence (CC-BY) (http://creativecommons.org/licenses/by/3.0/) which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

possibility is that an endogenous EF-hand-like structure might provide the Ca²⁺-binding site and that its interaction with the 1-8-14 motif links IP_3 and Ca^{2+} binding (Figure 7A). Bioinformatic analyses had suggested the presence of two possible EF-hand-like structures within the IBC [9,54], but neither is evident in high-resolution structures of the IBC [55] and NT [5,56]. Neither have we succeeded in identifying a complementary partner of the 1-8-14 motif. Another possibility is suggested by comparison of the structures of the NT with and without IP₃ bound [5,56], which reveal that Phe⁵³ (the first hydrophobic residue of the 1-8-14 motif) and Phe²²³ are closely apposed (\sim 3.9 Å; 1 Å = 0.1 nm), but they move apart (~ 5.3 Å) when IP₃ binds (Figure 7B). A β -sheet links Phe²²³ to Glu²⁴⁶, and the movement of Phe²²³ is associated with a repositioning of an acidic residue in the β -domain of the IBC (Glu²⁴⁶). This brings Glu²⁴⁶ closer to three other acidic residues (Glu⁴²⁵, Asp⁴²⁶ and Glu⁴²⁸). The rearrangement is interesting because these four residues have been proposed to form a Ca²⁺-binding site (Ca-I) [55]. Furthermore, a peptide (residues 378-450) that includes most of these residues binds Ca²⁺, and the binding is abolished by mutation of the acidic residues [42]. A second possibility is therefore that IP₃-evoked movement of the critical 1-8-14 motif contributes to formation of an effective Ca²⁺-binding site within the IBC by bringing a fourth acidic residue into appropriate association with three others.

We conclude that a conserved 1-8-14 motif within the SD is essential for IP₃R activation and speculate that its interaction with either an endogenous CaM-like motif or acidic residues within the IBC may link IP₃ and Ca²⁺ binding. Inhibition of IP₃R by CaM and related proteins probably results from disruption of this essential interaction.

AUTHOR CONTRIBUTION

Yi Sun and Ana Rossi performed the Ca^{2+} -release and IP₃-binding analyses. Taufiq Rahman performed the single-channel analyses. Colin Taylor directed the study, and with input from all authors, wrote the paper.

FUNDING

Supported by the Wellcome Trust [grant number 085295], Biotechnology and Biological Sciences Research Council [grant number BB/H009736/1] and a studentship from the Engineering and Physical Sciences Research Council (to Y.S.). A.R. is a fellow of Queens' College, Cambridge. T.R. is a Drapers Research Fellow of Pembroke College, Cambridge.

REFERENCES

- Berridge, M. J., Lipp, P. and Bootman, M. D. (2000) The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell Biol. 1, 11–21
- 2 Tadross, M. R., Dick, I. E. and Yue, D. T. (2008) Mechanism of local and global Ca²⁺ sensing by calmodulin in complex with a Ca²⁺ channel. Cell **133**, 1228–1240
- 3 Marchant, J. S. and Parker, I. (2001) Role of elementary Ca²⁺ puffs in generating repetitive Ca²⁺ oscillations. EMBO J. 20, 65–76
- 4 Hamilton, S. L. and Serysheva, I. I. (2009) Ryanodine receptor structure: progress and challenges. J. Biol. Chem. 284, 4047–4051
- 5 Seo, M.-D., Velamakanni, S., Ishiyama, N., Stathopulos, P. B., Rossi, A. M., Khan, S. A., Dale, P., Li, C., Arnes, J. B., Ikura, M. and Taylor, C. W. (2012) Structural and functional conservation of key domains in InsP₃ and ryanodine receptors. Nature **483**, 108–112
- 6 Foskett, J. K., White, C., Cheung, K. H. and Mak, D. O. (2007) Inositol trisphosphate receptor Ca²⁺ release channels. Physiol. Rev. 87, 593–658
- 7 Zalk, R., Lehnart, S. E. and Marks, A. R. (2007) Modulation of the ryanodine receptor and intracellular calcium. Annu. Rev. Biochem. 76, 367–385
- 8 Chen, S. R. W. and MacLennan, D. H. (1994) Identification of calmodulin-, Ca²⁺ and ruthenium red-binding domains in the Ca²⁺ release channel (ryanodine receptor) of rabbit skeletal muscle sarcoplasmic reticulum. J. Biol. Chem. **269**, 22698–22704

- 9 Sienaert, I., Missiaen, L., De Smedt, H., Parys, J. B., Sipma, H. and Casteels, R. (1997) Molecular and functional evidence for multiple Ca²⁺ -binding domains on the type 1 inositol 1,4,5-trisphosphate receptor J. Biol. Chem. **272**, 25899–25906
- 10 Fessenden, J. D., Feng, W., Pessah, I. N. and Allen, P. D. (2004) Mutational analysis of putative calcium binding motifs within the skeletal ryanodine receptor isoform, RyR1. J. Biol. Chem. 279, 53028–53035
- 11 Miyakawa, T., Mizushima, A., Hirose, K., Yamazawa, T., Bezprozvanny, I., Kurosaki, T. and lino, M. (2001) Ca²⁺ -sensor region of IP₃ receptor controls intracellular Ca²⁺ signaling. EMBO J. **20**, 1674–1680
- 12 Chin, D. and Means, A. R. (2000) Calmodulin: a prototypical calcium sensor. Trends Cell Biol. **10**, 322–328
- 13 Wright, N. T., Prosser, B. L., Varney, K. M., Zimmer, D. B., Schneider, M. F. and Weber, D. J. (2008) S100A1 and calmodulin compete for the same binding site on ryanodine receptor. J. Biol. Chem. 283, 26676–26683
- 14 Nadif Kasri, N., Holmes, A. M., Bultynck, G., Parys, J. B., Bootman, M. D., Rietdorf, K., Missiaen, L., McDonald, F., De Smedt, H., Conway, S. J. et al. (2004) Regulation of InsP₃ receptor activity by neuronal Ca²⁺-binding proteins. EMBO J. 23, 312–321
- 15 Michikawa, T., Hirota, J., Kawano, S., Hiraoka, M., Yamada, M., Furuichi, T. and Mikoshiba, K. (1999) Calmodulin mediates calcium-dependent inactivation of the cerebellar type 1 inositol 1,4,5-trisphosphate receptor. Neuron 23, 799–808
- 16 Nosyreva, E., Miyakawa, T., Wang, Z., Glouchankova, L., Iino, M. and Bezprozvanny, I. (2002) The high-affinity calcium–calmodulin-binding site does not play a role in the modulation of type 1 inositol 1,4,5-trisphosphate receptor function by calcium and calmodulin. Biochem. J. **365**, 659–667
- 17 Zhang, X. and Joseph, S. K. (2001) Effect of mutation of a calmodulin-binding sites on Ca²⁺ regulation of inositol trisphosphate receptors. Biochem. J. **360**, 395–400
- 18 Taylor, C. W. and Laude, A. J. (2002) $\rm IP_3$ receptors and their regulation by calmodulin and cytosolic Ca^2+ . Cell Calcium 32,321–334
- 19 Rodney, G. G., Moore, C. P., Williams, B. Y., Zhang, J.-Z., Krol, J., Pedersen, S. E. and Hamilton, S. L. (2001) Calcium binding to calmodulin leads to an N-terminal shift in its binding site on the ryanodine receptor. J. Biol. Chem. **276**, 2069–2074
- 20 Yamaguchi, N., Takahashi, N., Xu, L., Smithies, O. and Meissner, G. (2007) Early cardiac hypertrophy in mice with impaired calmodulin regulation of cardiac muscle Ca²⁺ release channel. J. Clin. Invest. **117**, 1344–1353
- 21 Missiaen, L., Parys, J. B., Weidema, A. F., Sipma, H., Vanlingen, S., De Smet, P., Callewaert, G. and De Smedt, H. (1999) The bell-shaped Ca²⁺-dependence of the inositol 1,4,5-trisphosphate induced Ca²⁺ release is modulated by Ca²⁺/calmodulin. J. Biol. Chem. **274**, 13748–13751
- 22 Adkins, C. E., Morris, S. A., De Smedt, H., Török, K. and Taylor, C. W. (2000) Ca²⁺ -calmodulin inhibits Ca²⁺ release mediated by type-1, -2 and -3 inositol trisphosphate receptors. Biochem. J. **345**, 357–363
- 23 Lin, C., Widjaja, J. and Joseph, S. K. (2000) The interaction of calmodulin with alternatively spliced isoforms of the type-I inositol trisphosphate receptor. J. Biol. Chem. 275, 2305–2311
- 24 Yamada, M., Miyawaki, A., Saito, K., Yamamoto-Hino, M., Ryo, Y., Furuichi, T. and Mikoshiba, K. (1995) The calmodulin-binding domain in the mouse type 1 inositol 1,4,5-trisphosphate receptor. Biochem. J. **308**, 83–88
- 25 Li, C., Chan, J., Haeseleer, F., Mikoshiba, K., Palczewski, K., Ikura, M. and Ames, J. B. (2009) Structural insights into Ca²⁺-dependent regulation of inositol 1,4,5-trisphosphate receptors by CaBP1. J. Biol. Chem. **284**, 2472–2481
- 26 Nadif Kasri, N., Bultynck, G., Smyth, J., Szlufcik, K., Parys, J., Callewaert, G., Missiaen, L., Fissore, R. A., Mikoshiba, K. and De Smedt, H. (2004) The N-terminal Ca²⁺ -independent calmodulin-binding site on the inositol 1,4,5-trisphosphate receptor is responsible for calmodulin inhibition, even though this inhibition requires Ca²⁺. Mol. Pharmacol. **66**, 276–284
- 27 Rossi, A. and Taylor, C. W. (2004) Ca²⁺ regulation of inositol 1,4,5-trisphosphate receptors: can Ca²⁺ function without calmodulin? Mol. Pharmacol. 66, 199–203
- 28 Yamaguchi, N., Xu, L., Evans, K. E., Pasek, D. A. and Meissner, G. (2004) Different regions in skeletal and cardiac muscle ryanodine receptors are involved in transducing the functional effects of calmodulin. J. Biol. Chem. 279, 36433–36439
- 29 Rodney, G. G., Wilson, G. M. and Schneider, M. F. (2005) A calmodulin binding domain of RyR increases activation of spontaneous Ca²⁺ sparks in frog skeletal muscle. J. Biol. Chem. 280, 11713–11722
- 30 Sencer, S., Papineni, R. V., Halling, D. B., Pate, P., Krol, J., Zhang, J. Z. and Hamilton, S. L. (2001) Coupling of RYR1 and L-type calcium channels via calmodulin binding domains. J. Biol. Chem. **276**, 38237–38241
- 31 Xiong, L., Zhang, J. Z., He, R. and Hamilton, S. L. (2006) A Ca²⁺-binding domain in RyR1 that interacts with the calmodulin binding site and modulates channel activity. Biophys. J. **90**, 173–182
- 32 Zhu, X., Ghanta, J., Walker, J. W., Allen, P. D. and Valdivia, H. H. (2004) The calmodulin binding region of the skeletal ryanodine receptor acts as a self-modulatory domain. Cell Calcium 35, 165–177

© 2013 The Author(s)

- 33 Rossi, A. M., Riley, A. M., Tovey, S. C., Rahman, T., Dellis, O., Taylor, E. J. A., Veresov, V. G., Potter, B. V. L. and Taylor, C. W. (2009) Synthetic partial agonists reveal key steps in IP₃ receptor activation. Nat. Chem. Biol. 5, 631–639
- 34 Marchant, J. S. and Taylor, C. W. (1997) Cooperative activation of IP₃ receptors by sequential binding of IP₃ and Ca²⁺ safeguards against spontaneous activity. Curr. Biol. **7**, 510–518
- 35 Sun, Y. and Taylor, C. W. (2008) A calmodulin antagonist reveals a calmodulin-independent interdomain interaction essential for activation of inositol 1.4.5-trisphosphate receptors, Biochem, J. **416**, 243–253
- 36 Kasri, N. N., Török, K., Galione, A., Garnham, C., Callewaert, G., Missiaen, L., Parys, J. B. and De Smedt, H. (2006) Endogenously bound calmodulin is essential for the function of the inositol 1,4,5-trisphosphate receptor. J. Biol. Chem. **281**, 8332–8338
- 37 Sugawara, H., Kurosaki, M., Takata, M. and Kurosaki, T. (1997) Genetic evidence for involvement of type 1, type 2 and type 3 inositol 1,4,5-trisphosphate receptors in signal transduction through the B-cell antigen receptor. EMBO J. 16, 3078–3088
- 38 Cardy, T. J. A., Traynor, D. and Taylor, C. W. (1997) Differential regulation of types 1 and 3 inositol trisphosphate receptors by cytosolic Ca²⁺. Biochem. J. **328**, 785–793
- 39 Tovey, S. C., Sun, Y. and Taylor, C. W. (2006) Rapid functional assays of intracellular Ca²⁺ channels. Nat. Protoc. 1, 259–263
- 40 Rahman, T. U., Skupin, A., Falcke, M. and Taylor, C. W. (2009) Clustering of IP₃ receptors by IP₃ retunes their regulation by IP₃ and Ca^{2+} . Nature **458**, 655–659
- Bosanac, I., Yamazaki, H., Matsu-ura, T., Michikawa, M., Mikoshiba, K. and Ikura, M. (2005) Crystal structure of the ligand binding suppressor domain of type 1 inositol 1,4,5-trisphosphate receptor. Mol. Cell **17**, 193–203
- 42 Sienaert, I., Kasri, N. N., Vanlingen, S., Parys, J., Callewaert, G., Missiaen, L. and De Smedt, H. (2002) Localization and function of a calmodulin/apocalmodulin binding domain in the N-terminal part of the type 1 inositol 1,4,5-trisphosphate receptor. Biochem. J. **365**, 269–277
- 43 Ikemoto, N. and Yamamoto, T. (2002) Regulation of calcium release by interdomain interaction within ryanodine receptors. Front. Biosci. **7**, 671–683
- 44 Chan, J., Whitten, A. E., Jeffries, C. M., Bosanac, I., Mal, T. K., Ito, J., Porumb, H., Michikawa, T., Mikoshiba, K., Trewhella, J. and Ikura, M. (2007) Ligand-induced conformational changes via flexible linkers in the amino-terminal region of the inositol 1,4,5-trisphosphate receptor. J. Mol. Biol. **373**, 1269–1280

Received 26 June 2012/13 September 2012; accepted 26 September 2012 Published as BJ Immediate Publication 26 September 2012, doi:10.1042/BJ20121034

- 45 Rhoads, A. R. and Friedberg, F. (1997) Sequence motifs for calmodulin recognition. FASEB J. 11, 331–340
- 46 Yoshikawa, F., Morita, M., Monkawa, T., Michikawa, T., Furuichi, T. and Mikoshiba, K. (1996) Mutational analysis of the ligand binding site of the inositol 1,4,5-trisphosphate receptor. J. Biol. Chem. **271**, 18277–18284
- 47 Iwai, M., Michikawa, T., Bosanac, I., Ikura, M. and Mikoshiba, K. (2007) Molecular basis of the isoform-specific ligand-binding affinity of inositol 1,4,5-trisphosphate receptors. J. Biol. Chem. **282**, 12755–12764
- 48 Uchida, K., Miyauchi, H., Furuichi, T., Michikawa, T. and Mikoshiba, K. (2003) Critical regions for activation gating of the inositol 1,4,5-trisphosphate receptor. J. Biol. Chem. 278, 16551–16560
- 49 Ghosh, T. K., Eis, P. S., Mullaney, J. M., Ebert, C. L. and Gill, D. L. (1988) Competitive, reversible, and potent antagonism of inositol 1,4,5-trisphosphate-activated calcium release by heparin. J. Biol. Chem. 263, 11075–11079
- 50 Dellis, O., Rossi, A. M., Dedos, S. G. and Taylor, C. W. (2008) Counting functional IP₃ receptors into the plasma membrane. J. Biol. Chem. **283**, 751–755
- 51 Yamazaki, H., Chan, J., Ikura, M., Michikawa, T. and Mikoshiba, K. (2010) Tyr-167/Trp-168 in type 1/3 inositol 1,4,5-trisphosphate receptor mediates functional coupling between ligand binding and channel opening. J. Biol. Chem. 285, 36081–36091
- 52 Gangopadhyay, J. P. and Ikemoto, N. (2006) Role of the Met³⁵³⁴–Ala⁴²⁷¹ region of the ryanodine receptor in the regulation of Ca²⁺ release induced by calmodulin binding domain peptide. Biophys. J. **90**, 2015–2026
- 53 Adkins, C. E. and Taylor, C. W. (1999) Lateral inhibition of inositol 1,4,5-trisphosphate receptors by cytosolic Ca²⁺. Curr. Biol. 9, 1115–1118
- 54 Veresov, V. G. and Konev, S. V. (2006) Bridging the gaps in 3D structure of the inositol 1,4,5-trisphosphate-binding core. Biochem. Biophys. Res. Commun. **341**, 1277–1285
- 55 Bosanac, I., Alattia, J.-R., Mal, T. K., Chan, J., Talarico, S., Tong, F. K., Tong, K. I., Yoshikawa, F., Furuichi, T., Iwai, M. et al. (2002) Structure of the inositol 1,4,5-trisphosphate receptor binding core in complex with its ligand. Nature 420, 696–700
- 56 Lin, C. C., Baek, K. and Lu, Z. (2011) Apo and InsP₃-bound crystal structures of the ligand-binding domain of an InsP₃ receptor. Nat. Struct. Mol. Biol. **18**, 1172–1174

The author(s) has paid for this article to be freely available under the terms of the Creative Commons Attribution Licence (CC-BY) (http://creativecommons.org/licenses/by/3.0/) which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

SUPPLEMENTARY ONLINE DATA Activation of IP₃ receptors requires an endogenous 1-8-14 calmodulin-binding motif

Yi SUN^{1,2}, Ana M. ROSSI¹, Taufiq RAHMAN and Colin W. TAYLOR³

Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, U.K.

			1 8 14		
MLCK peptide		RRKWQKTGHAVRAIGRL		+6	
1-8-14 consensus			1XXX5XX8XXXX14		
rat	IP ₃ R1	46	LNNPPKKFRDCLFKLCPMNRYSAQKQ	71	+4
rat	IP ₃ R2	46	LTNPPKKFRDCLFKVCPMNRYSAQKQ	71	+4
rat	IP ₃ R3	45	LDNPPKKFRDCLFKVCPMNRYSAQKQ	70	+4
chicken	IP ₃ R1	46	LNNPPKKFRDCLFKLCPMNRYSAQKQ	71	+4
chicken	IP ₃ R2	48	LANPPKKFRDCLFKVCPMNRYSAQKQ	73	+4
chicken	IP ₃ R3	45	LDNPPKKFRDCLFKVCPMNRYSAQKQ	70	+4
frog	IP ₃ R1	46	LNNPPKKFRDCLFRLCPMNRYSAQKQ	71	+4
frog	IP ₃ R2	46	LANPPKKFRDCLFKVCPMNRYSAQKQ	71	+4
frog	IP ₃ R3	45	LDNPPKKFRDCLFRVCPMNRYSAQKQ	70	+4
Drosophila	IP ₃ R	49	LSCPPKKFRDCLIKICPMNRYSAQKQ	74	+4
C. elegans	IP ₃ R	124	PESPPKKFRDCLFKVCPVNRYAAQKH	149	+4
rabbit	RyR1	59	PP-DLAICCFTLEQSLSV	75	-2
rabbit	RyR2	59	PP-DLSICTFVLEQSLLV	75	-2
rabbit	RvR3	59	PP-DLCVCNFVLEOSLSV	75	-2

Figure S1 A conserved 1-8-14 motif in all IP_3Rs and RyRs

Alignments (with first and last residues numbered) of the N-terminal region of rat IP_3R1-IP_3R3 (SwissProt accession numbers NP_001007236, NP_112308 and NP_037270 respectively), chicken IP_3R1-IP_3R3 (SwissProt accession numbers XP_414438, XP_001235613 and XP_418035 respectively), *Xenopus* IP_3R1-IP_3R3 (SwissProt accession numbers NP_001084015, ABP88141 and ABP88140 respectively), *Drosophila* IP_3R (SwissProt accession number NP_730942), *Caenorhabditis elegans* IP_3R (SwissProt accession number NP_001023170) and rabbit RyR1–RyR3 (SwissProt accession numbers NP_1716, P30957 and Q9TS33 respectively) highlighting the residues proposed to form a 1-8-14 CaM-binding motif. The consensus sequence for a 1-8-14 motif is shown in the first row, with its three critical (1, 8 and 14 hydrophobic residues) and net charge of + 3 to + 6. A similar 1-8-14 motif is conserved in all IP_3R , which closely resembles a type A (1-5-8-14) motif, where position 5 is also a large hydrophobic residue. The motif within IP_3R differs from a classic 1-8-14 consensus sequence by having a tyrosine residue at position 14. All subtypes of RyR also have a similar 1-8-14 motif within a similar position in the three-dimensional structure, although the sequence lacks the usual net positive charge of a consensus 1-8-14 motif.

¹ These authors contributed equally to this work.

² Present address: Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, U.K.

³ To whom correspondence should be addressed (email cwt1000@cam.ac.uk).

Figure S2 Mutation of a non-critical residue (K52E) within the 1-8-14 motif has no effect on IP₃ binding or IP₃-evoked Ca^{2+} release

(A) Structure of the SD of IP₃R1 (PDB code 1XZZ) highlighting the 1-8-14 motif (red), the critical 1-8-14 hydrophobic residues (blue) and Lys⁵² (yellow). (B) Equilibrium competition binding of IP₃ (with 0.75 nM [³H]IP₃) to native NT and NT^{K52E}. (C) IP₃-evoked Ca²⁺ release from DT40-IP₃R1 and DT40-IP₃R1^{K52E} cells. Results are means \pm S.E.M. ($n \ge 3$).

© 2013 The Author(s)

Table S1 Peptides used in the present study

All peptides were synthesised by Sigma or New England Peptide. The isolelectric point (pl) is shown for each peptide calculated from http://www.innovagen.se/custom-peptide-synthesis/ peptide-property-calculator/peptide-property-calculator.asp. Ac, acetyl.

Peptide	Sequence	Source	pl
MLCK	Ac-RRKWQKTGHAVRAIGRL-NH ₂	Ca^{2+} –CaM-binding site of smooth muscle MLCK Fragment of IP_3R1 (residues 51–66) containing the 1-8-14 motif Inactive form of 1-8-14 peptide (mutations highlighted in bold and underlined) Scrambled form of 1-8-14 peptide Longer fragment of IP_3R1 (residues 46–75) containing the 1-8-14 motif	14.0
1-8-14	Ac-KKFRDALFKLAPMNRP-NH ₂		11.6
1-8-14 ^C	Ac-KK E RDALFKLAPMNR E -NH ₂		10.8
1-8-14 ^S	Ac-AMRFLKYLPKRFDKNA-NH ₂		11.6
1-8-14 ^L	Ac-LNNPPKKFRDALFKLAPMNRYSAQKQFWKA-NH ₂		11.7

Table S2 Primers used in the present study

Primers used for introducing mutations in the N-terminal fragment or full-length $\mbox{IP}_3\mbox{R1}$. The mutated bases are highlighted.

Primer	Sequence $(5' \rightarrow 3')$
F53E Forward F53E Reverse L60E Forward L60E Reverse Y66E Forward Y66E Reverse K52E Forward K52E Reverse	GGGGACCTTAACAATCCACCCAAGAAA <u>GAG</u> AGAGACTGCCTCTT AAGAGGCAGTCTCT <u>CTC</u> TTTCTTGGGTGGATTGTTAAGGTCCCC GAAATTCAGAGACTGCCTCTTTAAG <u>GAG</u> TCCTATGAATCGATATTCTGCA TGCAGAATATCGATTCATAGGACA <u>CTC</u> CTTAAAGAGGCAGTCTCTGAATTTC CTCTTTAAGCTATGTCCTATGAATCGA <u>GAG</u> TCTGCACAGAAGCAG CTGCTTCTGTGCAGA <u>CTC</u> TCGATTCATAGGACATAGCTTAAAGAG AACAATCCACCCAAG <u>GAA</u> TTCAGAGACTGCTC GAGGCAGTCTCTGAA <u>TTC</u> CTTGGGTGGATTGTT

Received 26 June 2012/13 September 2012; accepted 26 September 2012 Published as BJ Immediate Publication 26 September 2012, doi:10.1042/BJ20121034