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Abstract

Background

Many national cardiovascular disease (CVD) risk factor management guidelines now rec-

ommend that drug treatment decisions should be informed primarily by patients’ multi-

variable predicted risk of CVD, rather than on the basis of single risk factor thresholds. To

investigate the potential impact of treatment guidelines based on CVD risk thresholds at a

national level requires individual level data representing the multi-variable CVD risk factor

profiles for a country’s total adult population. As these data are seldom, if ever, available, we

aimed to create a synthetic population, representing the joint CVD risk factor distributions of

the adult New Zealand population.

Methods and results

A synthetic population of 2,451,278 individuals, representing the actual age, gender, ethnic-

ity and social deprivation composition of people aged 30–84 years who completed the 2013

New Zealand census was generated using Monte Carlo sampling. Each ‘synthetic’ person

was then probabilistically assigned values of the remaining cardiovascular disease (CVD)

risk factors required for predicting their CVD risk, based on data from the national census

national hospitalisation and drug dispensing databases and a large regional cohort study,

using Monte Carlo sampling and multiple imputation. Where possible, the synthetic popula-

tion CVD risk distributions for each non-demographic risk factor were validated against inde-

pendent New Zealand data sources.

Conclusions

We were able to develop a synthetic national population with realistic multi-variable CVD

risk characteristics. The construction of this population is the first step in the development

of a micro-simulation model intended to investigate the likely impact of a range of national
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CVD risk management strategies that will inform CVD risk management guideline updates

in New Zealand and elsewhere.

Introduction

While not currently widely established in the health field, the use of microsimulation is grow-

ing [1–4] and the technique has been in use in other areas of analysis and research for a num-

ber of decades[5]. Common in fields such as economics[6], policy analysis [7] and engineering

[8]; simulation is often used where the ability to experimentally test an idea is not feasible due

to cost, time constraints or ethical/legal considerations. A key distinction of microsimulation

is that within the model each ‘elemental decision making unit’, as Orcutt put it [5], is indivisi-

ble; typically in health this unit is a person. This contrasts with other forms of simulation

where cohorts of individuals; with a shared set of characteristics (determined by the goal of the

simulation), typically representing average values of the population of interest, are simulated.

As microsimulations are on an individual basis each synthetic ‘person’ has a set of characteris-

tics assigned to them individually which allows for the greater capture of the heterogeneity of

population characteristics, something not possible with a cohort, which is important in the

assessment of many healthcare interventions.

The requirement for individual level data however can be a barrier to undertaking a micro-

simulation analysis. The scope and quality of individual level data available can be limited, par-

ticularly where the simulation is on a national or regional scale, as large amounts of detailed

information on a broad cross-section of the population is required. When the microsimulation

involves a health application the likelihood of privacy issues arising is high; creating issues

with access to key data and further problems with the wider dissemination of this data among

analysts and researchers for collaboration and replication of results. To overcome the hurdles

of the high data requirements and the privacy implications of individual level data a synthetic

population, consisting of generated data that closely resembles the real population, can be

developed to be used within the microsimulation.

Where all the required characteristics are represented in a single, aggregated source a syn-

thetic population can be developed from a single data repository data [9, 10], often census

data. When there is no single source which has data on all the required characteristics a syn-

thetic population can be developed from a number of data sources [11, 12]. The advantage of

combining information from multiple sources is that each individual repository can contain

high quality data about one or more of the variables required in the population to be simulated

without a requirement for it to be directly linked to all other repositories. This method of com-

bining data, when undertaken carefully, can allow for a more complete dataset to be developed

than is available in any single existing data source and is particularly appropriate for popula-

tion studies of cardiovascular disease (CVD) as the condition has a complicated aetiology

stemming from multiple risk factors [13]. To maintain the appropriate correlations between

datasets there must be variables in common between the datasets. This allows for the appropri-

ate combining of the separate information sources. The correlation between the datasets

will only be maintained on the basis of the variables in common between datasets (e.g. age,

gender, ethnicity and disease status) so maximising the ‘overlap’ of variables between datasets

is beneficial.

For the preventive management of CVD there is now broad consensus among researchers

and policy makers that the optimal clinical strategy should be based primarily on a person’s
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multi-variable predicted absolute CVD risk rather than on the basis of individual risk factor

levels [13–15]. There is however less agreement on the most appropriate method of predicting

CVD risk or the thresholds at which treatment should be initiated. Our study was inspired by

a UK project that used microsimulation to compare two CVD risk management strategies; a

multi-variable risk-based strategy and one based simply on treating all people above specified

age thresholds. The number of people in the United Kingdom (UK) who would meet treat-

ment criteria and the number of CVD events likely to be prevented through treatment was

estimated for the two strategies [16]. The investigators developed a multi-variable synthetic

population based on UK health survey data and used micro-simulation methods to estimate

treatment effects. In contrast to the general trend of national policies, which focus on absolute

risk [13, 17–19], the authors concluded that an age-alone strategy for determining treatment

assignment was similar in terms of predictive accuracy and was superior on a cost-effective-

ness basis compared to a multi-variable strategy. We planned to replicate and extend the UK

study in a New Zealand setting, to inform the development of new national CVD risk manage-

ment guidelines [20, 21].

There were two primary reasons for the development of a new population rather than

using the work from the existing study. Firstly the maintenance of the relationships between

variables is key in multivariate equations, if there are is a clustering of risk factors the esti-

mates from a populations where the variables are developed via independent draws even

from appropriate distributions will not give an accurate result. Secondly, to develop locally

relevant outcomes a population reflecting New Zealand rather than English demographics

was required.

As the characteristics of the study population are so critical to the outcome of a micro-simu-

lation, the development and validation of these population data was considered a critical step

in the process. The goal of this paper is to describe the development and validation of a syn-

thetic New Zealand population.

Methods

We constructed a synthetic New Zealand (NZ) population aged 30 to 84 years with each ‘syn-

thetic’ person having the complete set of CVD risk factors used in two CVD risk prediction

equations; the New Zealand Framingham CVD risk equation [18] and a risk equation recently

developed by our research group. This was undertaken in three broad steps, first a demo-

graphic framework was created from census data to ensure the representative nature of key

demographics. Secondly, disease and medication histories were developed for each individual

from linked hospital admission and pharmacy dispensing data. Finally a large cohort of indi-

vidual level CVD risk assessment data was used to develop required biological variables for all

individuals created in the prior steps. Methods allowing the retention of correlations between

variables while retaining variable heterogeneity were used to replicate the true population as

accurately as possible.

The variables required for the CVD risk equations are: age, gender, ethnicity, social depri-

vation, smoking status, diabetes status, personal history of CVD, blood pressure and lipid

lowering drug treatment, systolic blood pressure (SBP), the total cholesterol to high density

lipoprotein cholesterol ratio (TC: HDL), and family history of premature CVD. The overall

goal was to create a population of synthetic individuals representing all 2,451,278 people

aged 30 to 84 years who completed the 2013 New Zealand census.

Within the methods section the five data sources used in the synthetic population develop-

ment are first described. The stages of the synthetic population development are then outlined.

Finally the steps used to validate the population are described.
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Data sources

Five data sources were used to assign risk factors to the synthetic population,

i. The usually resident population count from the 2013 national census [22] cross- tabulated

by age, sex, ethnicity, social deprivation and smoking was obtained from Statistics New

Zealand. The census data were provided with the age at time of census variable (the only

continuous variable) aggregated into single year brackets (see appendix 2 for an example).

Individual level census data (unit file data) is available for the New Zealand population

however low level aggregated data was preferred as a key goal was to develop a freely dis-

tributable synthetic population. The use of individual level census data would have likely

entailed additional restrictions on the basis of privacy considerations. As the only contin-

uous variable represented in the census data was age the aggregated nature of the data

was not considered to diminish the quality of the remaining variables. The ethnicity cate-

gories were; Maori, Pacific Island, Indian, Chinese, Other Asian, Other Ethnicities and

European. For those individuals who self-identified with more than one ethnicity in the

2013 census, a single, prioritized ethnicity was generated with the prioritization based on

the order listed above. Socioeconomic status was derived from the New Zealand Depriva-

tion Index Score (NZDep), which is a measure assigned to a person’s area of residence.

NZDep is based on nine variables from the census, reflecting eight dimensions of relative

deprivation of census tracts [23]. For these analyses individuals were assigned to one of

five quintiles (from least deprived = 1, to most deprived = 5) of the nationwide distribu-

tion of NZDep score. Smoking data was categorised as ‘non-smoker’, ‘ex-smoker’ and

‘current smoker’, coded as 0, 1 and 2 respectively. Due to the Statistics New Zealand con-

fidentialityrules [22] associated with the census data, cells containing small counts (less

than 6 individuals) were suppressed (coded ‘..C’). To allow for the inclusion of these indi-

viduals a realistic values, based on the censoring rules and existing data, was developed

(see appendix 2 for further details). While census data was complete for the age and gen-

der variables, some individuals were assigned a ‘not otherwise known’ ethnicity or

NZDep status. As everyone in the synthetic population required complete data, missing

variables were assigned based on the proportion of known ethnicities and NZDep in the

census population.

ii. The National Minimum dataset (NMDS) contained individual patient hospitalisation

data on all NZ public hospital discharges coded according to The International Classifica-

tion of Diseases, version 10 Australian Modification (ICD-10 AM). This dataset was used

to derive a patient history of prior CVD (appendix 1 lists the ICD codes used). Compre-

hensive national hospitalisation data was available starting from 1993 through to the end

of 2013, with significant partial data available from 1986.

iii. The national Virtual Diabetes Register (VDR) [24] is an annually updated database that

identifies all New Zealanders believed to have been diagnosed with diabetes, based on an

algorithm that combines national laboratory test reimbursement data (indicating HbA1c

testing) with diabetes-related dispensing and hospital admission data.

iv. The national pharmaceutical dispensing database (PHARMS) records all subsidised and

controlled drugs dispensed by community pharmacies in NZ. All commonly used CVD

preventive medications in NZ are subsidised so we were able to derive medication data

for the two main classes of CVD preventive medication (i.e. lipid lowering and blood

pressure lowering medications) from this database. Reliable recording of individual

patient dispensing episodes has increased over the last decade from 64% in 2004, to 92%
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in 2006 to over 96% from 2010 onwards and currently captures virtually all dispensing

episodes (S. Ross, Ministry of Health, personal communication, 2014).

v. The PREDICT primary care CVD risk factor dataset [25] was used to derive the remain-

ing CVD risk factors required for the risk prediction models, namely: SBP, TC:HDL ratio

and family history of premature CVD. This dataset is generated from the PREDICT web-

based CVD risk assessment and management decision support system used by approxi-

mately 80% of general practitioners in the Auckland and Northland regions of New Zea-

land (approximately 35–40% of all New Zealand general practitioners). A 2013 PREDICT

dataset extract contained the baseline CVD assessments of 272,645 people with complete

data recorded on age, sex, ethnicity, NZDep, smoking status, diabetes, SBP, TC:HDL

ratio, prior personal history of CVD and family history of premature CVD. The dataset

included approximately 50% of all people eligible for risk assessment in the region, but

was biased towards higher risk population groups (such as older age groups, people with

diabetes and Maori, Pacific and Indian ethnic groups)[25], so could not be used alone to

derive the synthetic population.

The four non-census data sources listed above (ii-v) all include individually identifiable per-

son level data that are able to be linked using an encrypted version of the National Health

Index (NHI) number. The NHI is a unique national identifier number is attached to records of

publicly funded and subsidised health service interactions for over 98% of New Zealanders as

well as a range of demographic data (e.g. date of birth, gender, ethnicity and NZDEP). The

encrypted nature of the NHI meant that the individual level data used in this study would not

be able to be further linked to any information coded with an unencrypted NHI; helping,

along with other safe guards, to maintain the anonymity of the individuals in the dataset. New

Zealand ethics committees allow secondary re-use of health data without individual patient

consent where data are not identifiable. Information about the PREDICT study is available at

all general practice locations, and patients may opt out of having their de-identified data being

included in the cohort. The PREDICT study was approved by the Northern Region Ethics

Committee Y in 2003 (AKY/03/12/314) with subsequent annual approval by the National

Multi-region Ethics Committee since 2007 (MEC07/19/EXP).

Synthetic population generation

In summary; the first step was to construct a synthetic population in which the joint distri-

butions of the demographic variables age, sex, ethnicity and SES were exactly matched to

the distribution of these factors in the 2013 NZ Census (data source [i] above). This first

step was largely deterministic, with age being the limited exception, based on the fact that

there was low measurement uncertainty or variability over time for these ‘demographic’

characteristics.

The second step involved using Monte Carlo sampling and multiple imputation to ran-

domly assign the remaining variables: smoking, diabetes, prior CVD, medications, SBP, TC:

HDL ratio, and family history, conditional on the Census demographic variables. These ‘non-

demographic variables’ were assigned at using a Monte Carlo method based on observed pro-

portions to capture the inherent variability of these characteristics.

Demographic variables. The initial stage of the development involved setting up a realis-

tic structure for the New Zealand population. This was done by moving through the aggre-

gated census data supplied by Statistics New Zealand (see example in appendix 2) row-by-row

with the goal of creating a representative synthetic population were each individual was repre-

sented by a row in the dataset. Each strata or row was defined by an age, sex, ethnicity and SES
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group. The number of individuals in the strata was found by summing the smoking statuses to

get a total number of individuals represented.

Age was assigned by random draw of X values from a uniform distribution bounded by Y

and Y+1 where Y is the minimum age group and X is the number of individuals in the age/

gender/ethnicity group. Sex, ethnicity and SES were then deterministicallyapplied per strata as

there was no variation.

Non-demographic variables. The non-demographic variable distributions in the syn-

thetic were developed as follows:

i. Smoking was assigned in a Monte Carlo fashion to one of the three potential outcomes

(‘current smoker’, ‘ex-smoker’ and ‘non-smoker’) according to the observed frequency of

smoking categories in the 2013 census, conditional on age, sex, ethnicity and NZDep.

Despite this data coming from the census a Monte Carlo method was used in preference

to creating further strata based on smoking and deterministically assigning smoking sta-

tus. This was on the basis that self-report of smoking is less reliable than the other vari-

ables defined by the census data and that smoking was thought to have greater variability

over time (i.e. it is more likely your smoking status will change that your age, gender, eth-

nicity and SES).

ii. Diabetes and prior CVD statuses were jointly derived due to their strong association. We

first linked previous CVD hospitalisations (from data source [ii] above) and the VDR

(data source [iii]) via the encrypted NHI using a database which also included age, gender

and ethnicity which gave a joint probability of disease state. A disease status was then

probabilistically assigned to each individual (CVD only, diabetes only, diabetes and CVD,

or neither) using Monte Carlo sampling, conditional on age, gender and ethnicity.

iii. Medication status for lipid lowering (LL) and blood pressure lowering (BPL) drugs was

derived using a similar approach to the diabetes and prior CVD variables. The propor-

tions of people taking these medications came from the national drug dispensing database

(data source [iv]). A current medication status (LL and BPL drugs, LL drugs only, BPL

drugs only, or neither) was assigned to each individual using Monte Carlo sampling, con-

ditional on age, sex, ethnicity and history of CVD. Further details of steps i-iii are pro-

vided in appendix 2.

Imputed variables.

iv. The final step was to assign a SBP, TC:HDL ratio, and a family history of premature CVD

derived from the individual-level PREDICT data (data source [v]) utilising multiple

imputation [26–28]. This was done by treating the remaining variables as ‘missing’ for

the purposes of the imputation process. Conventionally imputation has been used to

replace missing data with plausible values given the known or non-missing data. In this

circumstance the PREDICT data was used as the ‘known’ data whereas all required data

values (i.e age, gender, ethnicity as well as SBP, TC:HDL ratio, and a family history of pre-

mature CVD) were established. The synthetic data contained the variables previously

developed in steps i-iii but ‘missing’ values for SBP, TC:HDL ratio, and a family history of

premature CVD. To undertake the imputation the PREDICT dataset was appended to

the synthetic population to create a single dataset containing both real (PREDICT) and

synthetic data allowing the generation of realistic values for the synthetic population

based on real world data. Further details of the imputation process are provided in appen-

dix 3 and a summary of the use of the datasets is suppled in Table 1.
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Validation

We then followed a two-stage validation process; first validating against the datasets used to

develop the synthetic population (internal validation) and then against datasets which had not

been involved in the development of the synthetic population (external validation). The inter-

nal validation simply compared the synthetic population variable distributions to the equiva-

lent distributions in datasets used to generate the synthetic population, to ensure that the

synthetic data reflected the source data and the relationships between the variables. The syn-

thetic population was then externally validated by comparing the risk factor distributions gen-

erated in the synthetic population with equivalent data from external sources not used in the

development of the synthetic population. Internal validation, but not external validation, was

done for the age, sex and ethnicity variables as these data were derived directly from the NZ

Census, which was considered to be the gold standard. Only internal validation was possible

for current drug treatment and family history of CVD, as no relevant external datasets were

available for these variables.

The data used for external validation was sourced from the published studies conducted in

the New Zealand population. As these data were only available in an aggregated form, this

placed some restrictions on how it could be compared with the synthetic population data. In

cases where high quality, recent national level data was not available, regional studies were

used. To enable valid comparisons, the age and ethnicity aggregations in the synthetic popula-

tion had to be modified to match those in the external validation data. Mean values from the

external validation sources were then plotted against equivalent values from the synthetic pop-

ulation. Where possible, 95% confidence intervals for the external validation data were also

plotted.

In situations where the synthetic and external data used for the validation were clearly dif-

ferent, a second external data source was sought. If the two external sources were consistent

but were different from the synthetic data distributions, then the synthetic data was modified

post-hoc so that the mean values of the synthetic and external data were similar, see appendix

four for further details.

The analysis and all other the computational work was undertaken in the R 3.1.3 computing

environment [29] and used the MICE [26] and dplyr [30] packages extensively.

Results

Table 2 presents a summary of the synthetic population variables by age group. Europeans

accounted for the majority of the population in all age groups and this proportion increasing

with age, while the proportions of all other ethnic groups decreased with increasing age.

Table 1. Summary of data sources and contribution to synthetic population.

Data Source Name Source Variables derived from

data source

Linked by

New Zealand Census Statistics New Zealand Age, Gender, Ethnicity,

SES, Smoking

Framework created from this dataset

National Minimum dataset New Zealand Ministry of

Health

History of CVD status Age, ethnicity, gender

National Virtual Diabetes

Register

New Zealand Ministry of

Health

Diabetes status Age, ethnicity, gender

National pharmaceutical

dispensing database

New Zealand Ministry of

Health

Blood pressure and lipid

lowering medication

Age, ethnicity, gender, history of CVD, diabetes status

PREDICT primary care CVD

risk factor dataset

VIEW/PREDICT CVD risk

screening project

SBP, TC:HDL ratio family

history of CVD

Age, ethnicity, gender, history of CVD, diabetes status,

Blood pressure and lipid lowering medication status

https://doi.org/10.1371/journal.pone.0173170.t001

Derivation and validation of a synthetic population to test CVD risk management strategies

PLOS ONE | https://doi.org/10.1371/journal.pone.0173170 April 6, 2017 7 / 19

https://doi.org/10.1371/journal.pone.0173170.t001
https://doi.org/10.1371/journal.pone.0173170


Smoking prevalence and familial history of premature CVD decreased with increasing age

whereas diabetes prevalence, prior CVD, mean SBP, and medication usage increased with

advancing age.

Age, gender and ethnicity (Internal Validation Only)

Fig 1a demonstrates that the synthetic population (illustrated the solid lines) is, as expected,

identical to the 2013 Census population (the dots) by age and gender.

Fig 1b shows that the ethnicity by age group patterns of the synthetic data (dots) are also mir-

rored in the Census population (solid lines), although the synthetic population numbers are

slightly higher. The lack of an exact match is due to the assignment of individuals in the Census

population with missing ethnicity data to existing ethnicity categories (described in the Methods).

Smoking prevalence by age, gender and ethnicity (Internal & External

Validation)

The synthetic population smoking prevalence distributions by age, gender, ethnicity and dep-

rivation showed close correlation with the Census population smoking data used to generate it

(see Figure A-C in S5 File). There was also good agreement on smoking rates between the syn-

thetic population and the NZ Ministry of Health (MoH) 2012/13 Tobacco Use Survey [31], by

age, gender and ethnicity (Fig 2a and 2b). Fig 2a illustrates a declining trend in smoking preva-

lence with increasing age in both men and women in the synthetic population (line) and MoH

Table 2. The synthetic population variable distributions by age group.

Variables Age

30–44 45–54 55–64 65–74 75–84

Number of individuals 828,518 600,532 491,463 344,559 186,206

Male (%) 47.3 48.0 48.7 48.4 45.3

Ethnicity(% of age) Maori 13.9 12.0 9.5 6.8 4.5

Pacific 6.1 4.8 3.6 2.7 1.9

Indian 5.0 3.1 2.4 1.6 0.9

Chinese 4.6 3.6 3.6 2.6 2.2

Other Asian 4.9 3.5 2.0 0.8 0.4

Other 1.6 0.8 0.5 0.2 0.1

European 63.9 72.3 78.5 85.2 90.0

Deprivation Quintile(1 is least deprived) 1 20.9 25.1 24.5 22.5 19.2

2 21.2 22.0 21.9 21.6 20.5

3 20.7 19.6 19.9 20.4 20.9

4 19.5 17.4 18.1 19.3 22.2

5 17.6 15.9 15.7 16.2 17.2

Smoking Current 18.9 17.7 13.8 9.9 6.6

Ex-smoker 22.3 25.3 30.1 35.1 35.0

Never smoked 58.9 57.0 56.0 55.0 58.5

Diabetes (%) 4.1 8.2 13.8 19.4 22.6

Prior CVD (%) 0.6 2.5 6.1 12.6 22.4

LL medication (%) 1.6 8.2 20.5 34.8 41.3

BPL medication (%) 3.1 12.7 28.5 47.4 60.6

SBP(mean, sd) 122.7 (17.3) 127.9(17.2) 132.5(17.3) 136.9(17.4) 140.4(17.5)

TC:HDL(mean, sd) 4.0(1.4) 4.2(1.2) 4.1(1.2) 4.0(1.1) 3.8(1.1)

Family history of premature CVD (%) 16.5 13.5 12.1 10.6 8.5

https://doi.org/10.1371/journal.pone.0173170.t002

Derivation and validation of a synthetic population to test CVD risk management strategies

PLOS ONE | https://doi.org/10.1371/journal.pone.0173170 April 6, 2017 8 / 19

https://doi.org/10.1371/journal.pone.0173170.t002
https://doi.org/10.1371/journal.pone.0173170


data (points and 95% CIs). While there was a very good level of agreement throughout the

middle age bands, there was a slightly lower estimate in the youngest age band and higher esti-

mate in the oldest age band in the synthetic population compared to the MoH survey popula-

tion. This is likely to be due to the exclusion of people aged 25–30 years and over 85 years from

synthetic population but not from the MoH data.

Fig 2b compares smoking prevalence by age, gender and ethnicity in the MoH survey and

synthetic population and also shows reasonable agreement. Due to the restricted sample

size in the MoH survey, some ethnic/gender/age groupings have wide confidence intervals.

Previously reported ethnic differences in smoking prevalence were observed, including the

Fig 1. Internal validation comparing the synthetic (line) and 2013 Census population (dots) by one-year age group counts (A) for the total

population and gender, and (B) for each ethnic group.

https://doi.org/10.1371/journal.pone.0173170.g001
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high smoking prevalence in Maori, particularly females, and the very low prevalence in Asian

females.

Diabetes prevalence by age, gender and ethnicity (Internal & External

Validation

There was very close agreement between the synthetic population diabetes prevalence and the

national Virtual Diabetes Register (VDR)-based prevalence estimates used to generate it (see

Fig 2. External validation comparing smoking prevalence by gender and age in the synthetic population (line) and the 2012/13 MoH

Tobacco survey (points and 95% CIs) (A) the total population and (B) separate ethnic groups.

https://doi.org/10.1371/journal.pone.0173170.g002
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Figure D in S5 File). Similarly, in the external validation, there was reasonably good agreement

between diabetes prevalence in the synthetic population and in the New Zealand 2008/09

Adult Nutrition Survey [32] by age and gender, for the total population (Fig 3a) and by ethnic-

ity (Fig 3b). The ethnicity data from the New Zealand 2008/09 Adult Nutrition Survey was

Fig 3. External validation comparing diabetes prevalence in the synthetic population (line) and the 2008/9 National Adult Human Nutrition

Survey (points and 95% CIs) by age group. (A) the total population and (B) separate ethnic groups.

https://doi.org/10.1371/journal.pone.0173170.g003
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categorised as Maori, Pacific and New Zealand European/Other (NZEO). While there were

some small differences, all synthetic population values fell within the 95% confidence intervals

of the survey-based prevalences, with the exception of Pacific individuals between the ages of

65 and 74. The overall fit of the synthetic data, compared to the nutrition survey, was adequate

and the reliability of the VDR data (being a nationwide, regularly updated database) was pre-

ferred to the survey data so no post-hoc modification was made to the prevalence of diabetes

in the synthetic population.

Personal history of CVD by age, gender and ethnicity (Internal

Validation)

The synthetic population accurately reflected the prevalence of a personal history of prior

CVD derived from the national hospitalisation data stratified by age, gender and ethnicity (see

Figure E in S5 File). In the external validation, the synthetic population was compared to a

national CVD prevalence study conducted by the New Zealand Ministry of Health during the

2013–14 New Zealand health survey [33]. As shown in Fig 4, the prevalence of CVD in syn-

thetic population was similar to the prevalence observed in the health survey by age and

gender.

The Health Survey reported age-adjusted prevalence ratios by ethnicity, rather than preva-

lence proportions, which we compared with age and gender adjusted odds ratios for Maori,

Pacific Island and Asian populations derived for the synthetic population using logistic regres-

sion controlling for age, gender and the binary ethnicity variable.

For people who identified as Maori in the synthetic population, the OR for prior CVD was

1.58 compared to non-Maori, which was similar to the Health Survey adjusted prevalence

ratio of 1.57 (95% CI 0.1, 25.71). For Pacific people in the synthetic population, the odds ratio

was 1.85, compared to a prevalence ratio of 1.71 (95% CI 0.1, 28.55) in the Health Survey, and

for Chinese and Other Asians combined, the adjusted OR was 0.43 in the synthetic population

and 0.58 (95% CI 0.03,9.92) in the Health Survey.

Fig 4. External validation comparing the prevalence of previous CVD by gender and age in the synthetic population (line) and data from the

2013/14 Zealand health survey (points and 95% CIs).

https://doi.org/10.1371/journal.pone.0173170.g004
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Systolic Blood Pressure (SBP) by age, gender and ethnicity (Internal and

External Validation)

The SBP variable in the synthetic population was imputed using data from the PREDICT data-

set[25]. The internal validation of systolic blood pressure levels by age and gender (Figure F in

S5 File) indicated a close alignment between the synthetic population and the PREDICT data-

set except for women under about 45 years of age (note: there were very few younger women

in the PREDICT dataset). However in the external validation against independent national

[34] and regional surveys [35], the gender differences in SBP in the synthetic population were

not as pronounced as generally observed in other studies (Fig 5a).

Therefore, a post-imputation adjustment (Fig 5b) was made to the SBP to bring the syn-

thetic population data into alignment with previously reported data. The adjustment shifted

the age and gender specific mean levels in the population while retaining the variability devel-

oped during the imputation process (adjustments described in Appendix 4). Following these

adjustments, the synthetic population SBP distributions were very similar to those for the

National Survey data (6b).

TC:HDL ratio by age and gender (Internal and External Validation)

The TC:HDL ratio variable in the synthetic population was imputed using data from the PRE-

DICT dataset [25]. As with SBP, the synthetic population distributions showed good agree-

ment with the PREDICT population distributions by age and gender, except in younger

women (see Figure G in S5 File). However the TC:HDL ratio distributions in the synthetic

population showed less agreement with an external data source of 2.9 million TC:HDL ratio

tests from a regional laboratory database, measured between 2006 and 2012 and with a second

data source, the New Zealand 2008/9 National Adult Human Nutrition Survey findings (Fig

6a). As there was reasonable agreement between the two external data sources, the synthetic

population TC:HDL ratio distributions were adjusted to match the distribution observed in

the laboratory data (adjustments described in Appendix 4). The primary modification was a

Fig 5. External validation comparing systolic blood pressure levels by age and gender in the synthetic population (lines) and the 2008/9

National Adult Nutrition Survey (points and 95% CIs) (A) as imputed and (B) modified.

https://doi.org/10.1371/journal.pone.0173170.g005
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reduction in the ratio of younger individuals who are not as well represented in the PREDICT

dataset.

Following the modification, the distribution more closely resembled the data from the

2008/9 National Adult Human Nutrition Survey (Fig 6b).

Medication and familial history of premature CVD

We found close agreement between the synthetic and source datasets for LL and BPL medica-

tion status (see Figure H in S5 File) but there was no relevant data available for an external

validation. The medication data was derived from a comprehensive, high quality national data-

base, which like the census demographic data is essentially the gold standard and as such the

lack of external validation was considered acceptable.

The internal validation of the familial history of premature CVD (derived from the PRE-

DICT database) showed close agreement with the synthetic population distributions by age,

gender and ethnicity (see Figure I in S5 File). However, no external validation was possible

due to a lack of a relevant external data source. As the PREDICT data [25] is by far the largest

New Zealand dataset that measured this variable, it is considered to be the best current source

of this data.

Discussion

This study has demonstrated that it is possible to develop a synthetic population with demo-

graphic and CVD-risk profiles similar to the New Zealand adult population, using national

census data, routine national hospitalisation and medication data and a large sub-national pri-

mary care dataset. The aim of this study was to produce a synthetic population that could be

used to run simulations to investigate the likely impact of a range of national CVD medication

treatment policy options, on the numbers of New Zealanders meeting treatment criteria and

on the likely number of CVD events that would be prevented. If these simulations are to pro-

duce realistic and reliable outputs, it is essential they are applied to population data that accu-

rately represent the multi-variable CVD risk status of New Zealanders. The ‘individual’ level

Fig 6. External validation comparing TC:HDL ratio levels by age and gender in the synthetic population (lines) and the 2008/9 National Adult

Nutrition Survey (points and 95% CIs) (A) as imputed and (B) modified.

https://doi.org/10.1371/journal.pone.0173170.g006
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data generated were not intended to match any particular real world person, however as indi-

cated by the validation analyses performed, the synthetic population generally matches the

socio-demographic and CVD risk characteristics of the New Zealand adult population.

A strength of this study is the use of a methodology that combines total population data

from a national census and national routine hospitalisation and drug dispensing databases,

together with micro-level data from a large scale sub-national primary care database. The pri-

mary care data used in this study were collected recently in two regions that contain approxi-

mately one-third of the New Zealand population, thus increasing the likelihood of developing

a valid representation of the New Zealand population. The external validation of the synthetic

population in regard to key CVD predictors is also a strength of this study and gives us confi-

dence that the synthetic population can be used for assessing the impact of different CVD risk

management treatment options. Currently there is no equivalent single comprehensive sur-

vey-based dataset in New Zealand and to the authors’ knowledge this synthetic population is

the most complete and comprehensive multi-variable CVD risk dataset representing a national

population available.

The synthetic population is only as good as the quality of the data used to generate it and

the two continuous variables–systolic blood pressure and the TC:HDL ratio–required adjust-

ment to more accurately reflect the mean values reported in the external data sources used in

the validation process. While the internal validation confirmed that both these variables were

imputed correctly, the age and gender distributions in the PREDICT dataset used to generate

them differed somewhat from published studies. The difference was particularly pronounced

in younger women who had higher SBP levels and higher TC:HDL ratios than observed in the

external data sources. This was not totally unexpected as there were very few younger women

(under the age of 45) in the PREDICT dataset because they do not meet nationally recom-

mended criteria for CVD risk assessment unless they are known to be at high risk. The pres-

ence of the records of the woman of a younger age in the PREDICT dataset is a potential

indication that they are a-typical in terms of CVD risk hence the screening at a earlier than rec-

ommended age. There also appeared to be some measurement error in the SBP levels recorded

in the PREDICT dataset used to impute the synthetic population SBP distributions. The PRE-

DICT blood pressure measurements were mainly taken by busy general practitioners and

practice nurses who tend to show digit preference by rounding measurements to the nearest

10 mmHg[36]. It is likely that this rounding error reduced the magnitude of the differences in

blood pressure between men and women usually observed in research studies where blood

pressure is measured and recorded more accurately. The modifications to variables were

required made were kept as simple as possible and undertaken in a manner which retained the

variability provided by the imputation process. A sensitivity analysis will be undertaken in the

simulation phase using both the adjusted and unadjusted data.

We were unable to externally validate the medication or family history of premature CVD

variables as there were no relevant national or regional survey data available. The medication

data were derived from the national PHARMS database that documents all subsidised drugs

dispensed from community pharmacies in New Zealand. As all commonly used CVD preven-

tive medications are subsidised in New Zealand and reimbursement for pharmacists is via the

reported data the level of completeness is thought to be very high. The quality of the family his-

tory of CVD variable is less certain, however this variable is a relatively weak predictor in the

CVD risk prediction equations that will be used in treatment simulations and any inaccuracies

will have minimal influence on the outputs.

The census data used in developing the synthetic population was based on the ‘usually resi-

dent population’ count. Statistics New Zealand also develops an ‘estimated resident popula-

tion’ which manages issues such as under counting due to non-response or to missing data on
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particular census questions, such as ethnicity. However, the estimated resident population

data available was not suitable for this study as known high risk ethnic populations (Pacific

and Indian individuals) were aggregated with lower risk populations. Within the census sec-

tion of the synthetic population development, individuals with missing ethnicity data were

assigned an ethnicity based on the reported ethnicities proportions by age and gender strata.

Although this approach is less sophisticated than the techniques used by Statistics New Zea-

land in developing the estimated resident population, it does partially address the ethnicity

non-response issue while providing ethnicity data in the correct format.

This population contains all the key variables required to calculate the estimated CVD risk

for individuals based on the most common equations in use in New Zealand. There are a num-

ber of variables which could be considered ‘unobserved’ which might modify CVD risk or

medication efficacy. While their addition would be useful, and is planned for the future, their

absence should not impact on the intended simulation. Within the micro-simulation an equa-

tion with pre-defined variables will be used to estimate risk which will have incorporated the

impact of the ‘unobserved’ variables so this is not thought to be a detriment to the current

work. As more integrated health data becomes available likely that it will be possible to develop

further variables for both CVD and other diseases.

As a function of the development process there will be minor variations between the syn-

thetic populations. Characterisation of this intra-population variation allows for an estimation

of the uncertainty of the synthetic population development. For the more numerous sub-pop-

ulations, for example individuals of European ethnicity, the intra-population variability of

summary values would be expected to be small. For smaller sub-populations, for example the

older age brackets of Maori and Pacific individuals, a greater degree of variability between pop-

ulations would be expected due to Monte Carlo error. This should be taken into account, and

the variability quantified, if summary data is being calculated from the synthetic populations.

To this end multiple synthetic populations will be freely provided to allow and assessment of

the intra-population variability of any subsets of interest.

Although this population is synthetic, the external validation process indicates that it pro-

vides a reasonable proxy for the multi-variable CVD risk factor levels of adult New Zealanders.

Moreover, it is possibly the most current and comprehensive nationally representative individ-

ual ‘person’ dataset of multiple CVD risk factors available. Due to its synthetic nature the popu-

lation is free of privacy issues and as such is able to be shared much more freely than actual

patient data. While the initial goal is to use this synthetic population to facilitate CVD simula-

tions for assessing the impact of different treatment strategies, there has already been interest

from research groups to use it for other applications. Future work is likely to involve extending

the population both to include new risk factors for both CVD and other diseases of such as can-

cer, and we plan to make these data available to other researchers and health service planners.
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