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Combination antidepressant pharmacotherapies are frequently used to treat major depressive disorder (MDD). However, there is no
evidence that machine learning approaches combining multi-omics measures (e.g., genomics and plasma metabolomics) can
achieve clinically meaningful predictions of outcomes to combination pharmacotherapy. This study examined data from 264 MDD
outpatients treated with citalopram or escitalopram in the Mayo Clinic Pharmacogenomics Research Network Antidepressant
Medication Pharmacogenomic Study (PGRN-AMPS) and 111 MDD outpatients treated with combination pharmacotherapies in the
Combined Medications to Enhance Outcomes of Antidepressant Therapy (CO-MED) study to predict response to combination
antidepressant therapies. To assess whether metabolomics with functionally validated single-nucleotide polymorphisms (SNPs)
improves predictability over metabolomics alone, models were trained/tested with and without SNPs. Models trained with PGRN-
AMPS’ and CO-MED’s escitalopram/citalopram patients predicted response in CO-MED’s combination pharmacotherapy patients
with accuracies of 76.6% (p < 0.01; AUC: 0.85) without and 77.5% (p < 0.01; AUC: 0.86) with SNPs. Then, models trained solely with
PGRN-AMPS’ escitalopram/citalopram patients predicted response in CO-MED’s combination pharmacotherapy patients with
accuracies of 75.3% (p < 0.05; AUC: 0.84) without and 77.5% (p < 0.01; AUC: 0.86) with SNPs, demonstrating cross-trial replication of
predictions. Plasma hydroxylated sphingomyelins were prominent predictors of treatment outcomes. To explore the relationship
between SNPs and hydroxylated sphingomyelins, we conducted multi-omics integration network analysis. Sphingomyelins
clustered with SNPs and metabolites related to monoamine neurotransmission, suggesting a potential functional relationship.
These results suggest that integrating specific metabolites and SNPs achieves accurate predictions of treatment response across
classes of antidepressants. Finally, these results motivate functional investigation into how sphingomyelins might influence MDD
pathophysiology, antidepressant response, or both.
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INTRODUCTION
Major depressive disorder (MDD) is a significant public health
challenge and an economic burden [1]. Selective serotonin
reuptake inhibitors (SSRIs) are first-line pharmacotherapy for
MDD, but more than 50% of patients fail to respond [2]. Multiple
studies have investigated combination therapies as a subsequent
strategy, with mixed results in terms of improved efficacy [3–6].
Given that the full effects of these medications are often not
experienced for months, predicting whether a patient will respond
prior to therapy or shortly thereafter would advance clinical
practice and future clinical translational research.
Several studies have established the predictability of antidepres-

sant response by employing machine learning strategies [7–15].
Machine learning strategies using clinical and sociodemographic

factors predicted response to escitalopram/citalopram with accura-
cies of 59.6% but could not achieve statistically significant
predictions across groups of patients receiving combination
antidepressant therapies [12]. Two other independent strategies
have demonstrated that augmenting clinical and sociodemo-
graphic factors with biological measures can improve the predict-
ability of antidepressant treatment outcomes. First, including
plasma p180 metabolomics improved predictability of changes in
depression severity in a single cohort of the Combining Medica-
tions to Enhance Outcomes of Antidepressant Therapy (CO-MED
[5]) subjects receiving mono or combination antidepressant
therapies [13]. Second, including six functionally validated genomic
biomarkers (i.e., single-nucleotide polymorphisms (SNPs) with
mechanisms related to MDD severity, or citalopram or escitalopram
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response) in the Pharmacogenomic Research Network Antidepres-
sant Medication Pharmacogenomic Study (PGRN-AMPS [16])
improved predictive accuracies of treatment response to >69% in
patients treated with either citalopram or escitalopram [7]. These
prior studies using either plasma metabolomics or genomics were
limited, because they did not demonstrate cross-trial replication of
predictions in patients receiving combination pharmacotherapy.
The present study examined data from the PGRN-AMPS and CO-

MED studies with a machine learning and multi-omics strategy
(Fig. 1) to address key questions. Can machine learning strategies
combining plasma metabolomic and genomic measures from
MDD patients receiving antidepressant monotherapy (citalopram
or escitalopram) achieve statistically significant predictions of
response to combination pharmacotherapy? If combining these
multi-omics measures improves predictability of response to
multiple classes of antidepressants, can multi-omics integration
networks elucidate biologically meaningful relationships between
metabolomic predictors of antidepressant response and function-
ally validated genomic biomarkers? This present study hypothe-
sized that augmenting clinical measures (e.g., symptom severity
scores) with multiple biological measures (e.g., metabolomics and
genomics) might improve the predictability of response to
combination antidepressant therapies.

MATERIALS AND METHODS
Data sources
MDD outpatients with complete clinical assessments, baseline metabo-
lomics, and genomics from PGRN-AMPS and CO-MED were included in this
work (Supplementary Fig. 1 and Supplementary Table 1). Patients were
split into training and testing cohorts. The training cohort consisted of
patients taking citalopram, escitalopram, or escitalopram plus placebo,
whereas the testing cohort comprised patients receiving combination
pharmacotherapies (Table 1). Briefly, the PGRN-AMPS 8-week SSRI clinical
trial (NCT00613470) enrolled 529 MDD patients who scored ≥14 on the 17-
item Hamilton Depression Rating Scale (HAMD-17). Patients received either

escitalopram (10mg/day) or citalopram (20mg/day). The CO-MED 7-month
clinical trial (NCT00590863) enrolled 665 MDD patients who scored ≥16 on
the HAMD-17 and who met criteria for either recurrent or chronic (current
episode ≥2 years) depression. Patients were randomized to one of the
following treatment regimens: (1) escitalopram (up to 20mg/day) plus
placebo, (2) bupropion (up to 400mg/day) plus escitalopram (up to 20mg/
day), or (3) extended-release venlafaxine (up to 300mg/day) plus
mirtazapine (up to 45mg/day). These studies were conducted in
accordance with the approval of respective Institutional Review Boards
to include informed consent. Both studies have been characterized in prior
publications [5, 16].

Measures and outcomes
Race and ethnicity data were self-reported in both studies (Table 1 and
Supplementary Table 1). History of prior suicide attempts was collected as
a binary yes/no question; this variable represents the number of unique
patients who have had at least one prior suicide attempt (Table 1 and
Supplementary Table 1). Depression symptom severity and treatment
outcomes were assessed using the Clinician-Rated Quick-Inventory of
Depressive Symptomatology (QIDS-C). Response to therapy at 8 weeks was
defined as ≥50% reduction in QIDS-C total score from baseline [17].
Remission (reported to characterize the samples in Table 1 and
Supplementary Table 1) was defined as achieving a score of ≤5 on the
QIDS-C [18].

Model definitions
We developed two sets of prediction models. The first model set
(“Metabolomic Models”) included clinical, sociodemographic, and meta-
bolomic features common to both the PGRN-AMPS and CO-MED studies.
All sociodemographic and metabolomic features common to both data
sets were included (Table 1 and Supplementary Table 2). Clinical features
included baseline and week 4 change of individual QIDS-C items
belonging to a “core set” previously defined to extract homogeneous
patterns of citalopram/escitalopram response from diverse response
trajectories [19] (Supplementary Table 2). Independent studies also
demonstrate the predictive utility of QIDS-C baseline totals and early
change in total QIDS-C [20]. Therefore, QIDS-C baseline totals and QIDS-C
week 4 percent change were also included as clinical predictors

Fig. 1 Conceptual overview of model development and evaluation. PGRN-AMPS (Pharmacogenomic Research Network Antidepressant
Medication Pharmacogenomic Study) and CO-MED (Combining Medications to Enhance Outcomes of Antidepressant Therapy) participants
were partitioned into training/testing groups based upon treatment allocation.
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(Supplementary Table 2). The second model set (“Multi-Omics Models”)
augmented model set 1 with the inclusion of six previously functionally
validated SNPs (Supplementary Table 2).

Metabolomics
Plasma metabolites in both the PGRN-AMPS and the CO-MED cohorts were
measured by targeted metabolomics with the AbsoluteIDQ p180 assay
platform (BIOCRATES Life Science AG, Innsbruck, Austria) [21] with quality-
control and metabolomic profiling as previously published [13, 22, 23]. One
hundred and fifty-three metabolites that met quality-control criteria in
both the PGRN-AMPS and CO-MED data sets were included. The p180 kit
includes all quality control (QC) samples, and calibration and internal
standards; therefore, quantifications can be directly compared across
studies. This assay detects metabolites from five analyte groups as follows:
acylcarnitines, amino acids, biogenic amines, glycerophospholipids, and
sphingolipids assayed by use of triple quadrupole tandem mass spectro-
metry operated in Multiple Reaction Monitoring mode.

Genomics
Six functionally validated pharmacogenomic SNP biomarkers in or near the
TSPAN5, ERICH3, DEFB1, and AHR genes, and related to MDD pathophysiol-
ogy or citalopram/escitalopram response [24–27], were included in the
multi-omics models. These six SNPs were selected, because their
mechanisms have been extensively characterized with multiple experi-
mental models, including human induced pluripotent stem cells (iPSC)-
derived astrocytes and neurons [25, 26]. These SNPs were initially pursued
as top signals in metabolomics-informed-genomics studies in PGRN-AMPS
depressed patients [24, 27]. The metabolomics-informed-genomics strat-
egy moves beyond heterogeneous clinical disease and outcome pheno-
types to help identify genomic and metabolomic variation, which might

contribute to individual differences in response to pharmacological agents
[28]. In those studies, serotonin and kynurenine concentrations were most
significantly associated with SSRI outcomes and baseline depression
severity, respectively [24, 27]. Top SNPs that were functionally pursued
from the serotonin genome-wide association study (GWAS) were in or near
TSPAN5 (rs10516436) and ERICH3 (rs696692), and top SNPs from the
kynurenine GWAS were in or near DEFB1 (rs5743467, rs2741130, and
rs2702877) and AHR (rs17137566). These SNPs were then demonstrated to
be predictive of escitalopram/citalopram treatment outcomes in multiple
large MDD cohorts [7].
These six SNPs are not exhaustive of the list of SNPs, which may be

predictive of antidepressant outcomes. For example, the International
Study to Predict Optimized Treatment in Depression found a significant
main effect of the rs10245483 SNP, which alters P-glycoprotein expression
in lymphoblast cells [29], on predicting remission [30]. To test whether the
predictability of outcomes using PGRN-AMPS-derived metabolomic-
informed-genomic SNPs may be augmented with rs10245483, we
conducted additional experiments incorporating this SNP (Supplementary
Table 3).
PGRN-AMPS genotyping was done using Illumina human 610-Quad

BeadChips (Illumina, San Diego, CA, USA), with imputation and QC as
previously reported [27]. CO-MED genotyping was done using Illumina
Quad, Human Omni 2.5 bead chip, as previously published [31]. One of the
six SNPs was genotyped in the CO-MED sample with a LooRsq > 99% and
the remaining five SNPs were imputed using the Michigan Imputation
Server with an imputation R2 > 97.5% and a call rate > 99%.

Machine learning strategy
Data preprocessing. Features with ≥10% missingness and individuals
missing ≥20% of features were excluded (Supplementary Fig. 1). Serotonin

Table 1. Clinical and sociodemographic features of training and testing cohorts.

Training and testing cohort

N= 375 Model Set 1 (Metabolomic) N= 348 Model Set 2 (Multi-omics)

Training Set
N= 298

Testing Set
N= 77

Training Set
N= 277

Testing Set
N= 71

PGRN-AMPS patients (N) 264 0 245 0

CO-MED patients (N) 34 77 32 71

Sex [% female] 66.1% 71.4% 65.3% 70.4%

Age [mean (SD)] 40.6 (13.3)* 43.3 (11.5)* 41.0 (13.3) 43.4 (11.6)

Years of education
[mean (SD)]

14.7 (2.5)* 13.9 (2.4)* 14.8 (2.5)* 13.9 (2.4)*

Race [% White] 93.6%* 77.9%* 96.0%* 77.5%*

Race [% Black or African
American]

3.4%* 16.9%* 2.2%* 16.9%*

Race [% Other] 3.0% 5.2% 1.8% 5.6%

Ethnicity [% Hispanic] 2.0%†* 20.8%* 1.4%†* 21.1%*

Depression onset < age 18
years [%]

43.6% 39.0% 41.5% 39.4%

Prior suicide attempts
[N (%)]

46 (15.4%) 7 (9.1%) 40 (16.3%) 6 (8.4%)

Antidepressants (N) Citalopram (112)
Escitalopram (152)
Escitalopram +
Placebo (34)

Venlafaxine +
Mirtazapine (42)
Escitalopram +
Bupropion (35)

Citalopram (99)
Escitalopram (146)
Escitalopram +
Placebo (32)

Venlafaxine +
Mirtazapine (38)
Escitalopram +
Bupropion (33)

QIDS-C at baseline
[mean (SD)]

15.1 (3.4) 15.5 (3.8) 15.1 (3.3) 15.3 (3.7)

QIDS-C response at week 4 47.0% 40.2% 47.7% 42.2%

QIDS-C remission at week 4 26.2% 26.0% 26.7% 28.2%

QIDS-C response at week 8 67.8% 62.3% 69.0% 63.3%

QIDS-C remission at week 8 47.0% 42.9% 48.4% 43.7%

*Significantly different (p < 0.05) between training and testing sets according to Mann-Whitney U or chi-square tests. †Ethnicity characterization in PGRN-
AMPS is based off data from 205 out of 264 patients, per availability of data.
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and body mass index (BMI) were among the features that were excluded
for having ≥10% missingness. This yielded a complete data set, except for
one missing taurine value, which was imputed using K-nearest neighbor’s
imputation. Metabolites were transformed by the Yeo-Johnson transfor-
mation then centered at zero and scaled to unit variance. Nominal
variables were converted to binary numerical values. Additive allele effects
were assumed for SNPs.

Prediction model development. Models predicting antidepressant
response at 8 weeks of therapy were trained on a treatment-
homogenous set of patients taking the following SSRI monotherapies:
citalopram, escitalopram, or escitalopram plus placebo (Fig. 1 and Table 1).
In order to minimize the chance of overfit, estimate prediction

performance, and tune model hyperparameters, we used fivefold cross-
validation with three repeats. For robustness, we also conducted
experiments utilizing threefold and tenfold cross-validation with three
repeats (Supplementary Table 4). Both linear and nonlinear algorithms
were tested. As a linear penalized regression approach using clinical and
metabolomic features successfully yielded predictive insights into change
in QIDS Self-Report score in the CO-MED data set [13], we tested penalized
regression performance in our combined cohorts. We then tested extreme
gradient-boosted decision tree-based ensembles (XGBoost) as nonpara-
metric models. Nonparametric models identify possible nonlinear relation-
ships among predictors (e.g., metabolites and age [32]), while predicting
treatment outcomes. These models both have the advantage of being
tolerant to multi-collinear data [33]. For all models, upsampling was used

Fig. 2 Comparison of test-set accuracies for metabolomic and multi-omics models, with variable importance. Dashed line: null information
rate (NIR). The NIR represents the response rate of 63.4% at 8 weeks of therapy. This serves as a benchmark to assess the significance of
prediction accuracy.
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to correct for the class imbalance (67% response, 33% non-response).
Upsampling injects minority class data points into the training set,
equalizing the counts of both classes and preventing model inclination
towards the majority class [34]. Variable importance plots were generated
to show top predictors of antidepressant response (Fig. 2). We report the
expanse of the grid search and tuned hyperparameters for both
approaches in Supplementary Table 5.
The best-trained models based on the area under the receiver operating

characteristic curve (AUC) during cross-validation were tested on an
independent set of cases receiving combination pharmacotherapy (Table
2A). AUC is a widely used classification performance metric that ranges
from 0.5 (random guessing) to 1.0 (perfect prediction). Model performance
on the test set was evaluated according to accuracy, sensitivity, specificity,
and AUC. Preprocessing and machine learning analyses were performed
using the tidymodels package version 0.1.2 [35] implemented in R 4.0.3
[36] using RStudio version 1.3 [37].

Cross-trial replication experiment. We conducted an additional analysis to
determine whether models trained with citalopram or escitalopram-
treated patients (PGRN-AMPS monotherapy-treated patients) could predict
outcomes in the CO-MED combination therapy-treated patients (Table 2B).
This additional analysis enhances the validity of the cross-trial prediction

performance. These additional models were trained and tested according
to the previously outlined approaches.

Multi-omics integration. The goal of the multi-omics integration analysis
was to understand the interaction of predictive plasma metabolomic
measures with functionally validated SNPs (Fig. 1). The multi-omics
integration network analysis tool xMWAS [38] took all 153 metabolomic,
6 genomic, and clinical response features from all 348 participants as input
(Supplementary Table 1). Network analysis was performed using sparse
partial least squares (sPLS) regression analysis, a multivariate approach for
data integration, with |r| > 0.1 and p < 0.05. sPLS simultaneously performs
variable selection and feature integration, and was originally designed for
scenarios with highly correlated variables [39]. As output, the community
detection method in xMWAS generates a network of communities (sub-
networks) comprising nodes (highly correlated SNPs and metabolites),
which are tightly associated within the community but sparsely associated
to nodes of other communities [40]. We hypothesized that we would find
interactions between kynurenine and the DEFB1 and AHR SNPs, as these
SNPs were originally pursued as top signals from a GWAS for kynurenine
[24]. Therefore, we performed a second multi-omics integration analysis
excluding kynurenine, to assess changes in community membership in the
absence of this known strong correlation. Multi-omics integration uncovers
associations (via community membership) between top metabolite
predictors and functionally characterized SNPs.

RESULTS
Prediction of combination therapy-treated patients with
citalopram-, escitalopram-, and escitalopram+ placebo-
treated patients
Model training. In the citalopram/escitalopram/escitalopram+
placebo monotherapy training set (which used repeated cross-
validation to train prediction models), clinical, sociodemographic,
and metabolomic features of the “metabolomics models”
predicted response to treatment at 8 weeks with an AUC of 0.69
in both machine learning algorithms. When metabolomic and
clinical predictor variables were further augmented with six
pharmacogenomic SNPs (“multi-omics models”), the training-set
prediction AUCs were 0.68 (XGBoost) and 0.72 (penalized
regression)—representing an improvement of 0.03 for penalized
regression (Table 2A).

Model testing. Using the “metabolomics models” feature set, the
best-trained classifiers predicted response to combination anti-
depressant therapies at 8 weeks with accuracies of 76.6% (p <
0.005; AUC: 0.85) and 72.7% (p= 0.053; AUC: 0.76) for penalized
regression and XGBoost, respectively. Using the “multi-omics
models” feature set, accuracies improved to 77.5% (p < 0.01; AUC:
0.86) and 76.1% (p= 0.017; AUC: 0.83) (Table 2A).

Prediction of combination therapy-treated patients with
citalopram and escitalopram-treated patients
Model training. In the citalopram/escitalopram monotherapy
training set (comprising only PGRN-AMPs patients and which
used repeated cross-validation to train prediction models), clinical,
sociodemographic, and metabolomic features of the “metabolo-
mics models” predicted response to treatment at 8 weeks with an
AUC of 0.68 in both machine learning algorithms. When
metabolomic and clinical predictor variables were augmented
with six pharmacogenomic SNPs (“multi-omics models”), the
training-set prediction AUCs increased to 0.72 for both XGBoost
and penalized regression—representing an improvement of 0.04
for both algorithms (Table 2B).

Model testing. Using the “metabolomics models” feature set, the
best-trained classifiers from PGRN-AMPS subjects receiving
citalopram or escitalopram monotherapy predicted response to
combination antidepressant therapies at 8 weeks with accuracies
of 75.3% (p= 0.026; AUC: 0.84) and 75.3% (p= 0.026; AUC: 0.75),
and for penalized regression and XGBoost, respectively. Using the

Table 2. Metrics of prediction performance.

Prediction model metrics

2A: Models trained with PGRN-AMPS escitalopram, PGRN-AMPS
citalopram, and CO-MED escitalopram+ placebo patients.

Model Set 1
(Metabolomic)

Model Set 2 (Multi-
omics)

XGBoost Penalized
regression

XGBoost Penalized
regression

Testing-set metrics

AUC 0.76 0.85 0.83 0.86

Accuracy 0.727 0.766 0.761 0.775

NIR 0.62 0.62 0.63 0.63

p-Value 0.053 0.0045 0.017 0.0067

Sensitivity 0.75 0.69 0.69 0.71

Specificity 0.69 0.90 0.88 0.88

Training-set metrics (in cross-validation)

AUC 0.69 0.69 0.68 0.72

Accuracy 0.64 0.66 0.67 0.65

NIR 0.68 0.68 0.69 0.69

2B: Models trained with PGRN-AMPS escitalopram and PGRN-AMPS
citalopram patients.

Testing-set metrics

AUC 0.75 0.84 0.74 0.86

Accuracy 0.753 0.753 0.732 0.775

p-Value 0.026 0.026 0.085 0.0067

Sensitivity 0.65 0.73 0.80 0.71

Specificity 0.93 0.79 0.62 0.88

Training-set metrics (in cross-validation)

AUC 0.68 0.68 0.72 0.72

Accuracy 0.64 0.65 0.67 0.68

NIR 0.69 0.69 0.70 0.70

For the penalized regression models, cartesian grid search was used to
tune penalty and mixture hyperparameters, with 20 evenly spaced penalty
values ranging from 1e− 6 to 10 and mixture values of 0, 0.05, 0.2, 0.4, 0.6,
0.8, and 1. For the XGBoost models, we tuned the number of trees, tree
depth, minimum number of data points to split a node, learning rate, loss
function reduction, and sample size using Bayesian optimization and a
stopping criterion of no improvement over 30 iterations.
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“multi-omics models” feature set from these subjects, accuracies
changed to 77.5% (p= 0.0067; AUC: 0.86) and 73.2% (p= 0.085;
AUC: 0.74) (Table 2B)—representing an improvement of 2.2% for
penalized regression.

Top predictor variables. The top predictors were calculated using
the models trained on escitalopram, citalopram, or escitalopram
+ placebo-treated patients, to maximize the number of patients in
the variable importance calculations. The top predictors varied by
algorithm and feature set, but hydroxylated sphingomyelins,
glycerophospholipids, clinical/sociodemographic features, and
acylcarnitines, and were all represented (Fig. 2). Although SNPs
were not among top predictors in both approaches, augmenting
the models with SNPs increased the predictive importance of
clinical/sociodemographic features (ethnicity, baseline depression,
and change in energy). In addition, in the XGBoost models,
change in QIDS-C score was a top predictor of treatment
outcomes and inclusion of SNPs increased the predictive
importance of hydroxylated sphingomyelins.

Multi-omics network integration. Integrative network analysis was
used to establish relationships between top metabolite predictors
(i.e., hydroxylated sphingomyelins) and SNPs whose MDD-related
mechanisms have been functionally characterized. The commu-
nity detection algorithm in this analysis identifies communities as
groups of nodes (metabolites and SNPs), which are tightly
associated with nodes inside but loosely associated with nodes
outside the community [40].
The input to the network analysis included all 153 metabolites,

6 SNPs, and treatment response labels. The analysis identified five
communities of statistically related (|r| > 0.1 and p < 0.05) entities,
comprising 32 metabolites and 6 SNPs (Fig. 3). All communities
contained both SNPs and metabolites. SNPs in or near the DEFB1
and AHR genes clustered into communities 1, 3, 4, and 5, whereas
SNPs in or near TSPAN5 and ERICH3 clustered with sphingomyelins
and amino acids in community-2 (Fig. 3B). The ERICH3 SNP in
community-2 correlated negatively with various sphingomyelins
and a hydroxylated sphingomyelin. Both the TSPAN5 and ERICH3
SNPs in community-2 correlated negatively with taurine and

Fig. 3 Multi-omics integration network analysis. A Multi-omics integration network. Each metabolite is labeled with a number. Metabolite
names corresponding to these numbers can be found in Supplementary Table 6. Correlation values between metabolites and SNPs can be
found in Supplementary Table 7. B Labeled and enlarged community-2 containing sphingomyelins. Represented genotypes are: TSPAN5
(rs10516436), ERICH3 (rs696692), AHR (rs17137566), DEFB1_1 (rs5743467), DEFB1_2 (rs2741130), DEFB1_3 (rs2702877).
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aspartate, and the TSPAN5 SNP correlated positively with tyrosine.
Sphingomyelins were absent from communities 1, 3, 4, and 5,
where glycerophospholipids, amino acids, and acylcarnitines were
represented (Fig. 3 and Supplementary Table 6). Kynurenine
clustered with the DEFB1 and AHR SNPs, as expected, as these
SNPs were originally pursued from a GWAS for kynurenine (Fig.
3A). When the analysis was repeated without kynurenine,
community membership remained consistent (Supplementary
Fig. 2). Pearson’s correlation coefficients between SNPs and
metabolites can be found in Supplementary Table 7.

DISCUSSION
The present findings integrated clinical and multiple biological
measures to achieve 77.5% accuracy (p= 0.0067; AUC= 0.86) in
predicting cross-trial outcomes to combination antidepressant
therapy. The multi-omics driven augmented prediction perfor-
mance marks an improvement over prior work in that (1) baseline
clinical and sociodemographic measures alone previously
achieved 51.4% accuracy in the CO-MED cohort [12] and (2) there
is no prior evidence that omics-based models can achieve cross-
trial replication in predicting response to combination antide-
pressant pharmacotherapies. Up to this point, it had been
demonstrated that augmenting clinical and sociodemographic
measures with either genomics [7] or metabolomics [13] alone
improves predictability of treatment outcomes—this work
demonstrates for the first time that incorporating SNPs and
metabolites together can achieve cross-trial replication in
predicting response to combination antidepressant therapies.
Cross-trial replication was achieved despite characteristic differ-
ences in the PGRN-AMPS training and CO-MED testing cohorts,
including race, ethnicity, and antidepressant therapy (Table 1).
PGRN-AMPS patients represent a population based in the Upper
Midwest of the United States, whereas CO-MED patients represent
a more diverse population recruited from 15 sites throughout the
United States. These findings encourage future antidepressant
studies to assay a wider range of biological measures (e.g.,
proteomics, transcriptomics, and epigenomics), which might not
only continue to improve predictability but might also advance
our molecular understanding of MDD pathophysiology, antide-
pressant response, or both.
The six SNPs included in this work are not meant to be

exhaustive or definitive of the entire set of SNPs, which are
predictive of antidepressant therapy outcomes. Instead, they were
selected, because their MDD-related mechanisms have been
characterized extensively [24–27] and they previously increased
the predictability of SSRI treatment outcomes compared with
models utilizing clinical or sociodemographic factors alone [7].
Incorporating an additional P-glycoprotein SNP (rs10245483)
yielded no further improvements in predictability (Supplementary
Table 3). This may be related to drug-specific effects of rs10245483
[30], although future experiments would be needed to clarify this.
Future experiments should aim to identify additional SNPs, which
may synergize with the six metabolomics-informed-genomics
SNPs included in this work to improve predictability in the future.
The multi-omics network analysis aimed to elucidate how the

combination of these SNPs and metabolites (the “multi-omics
models”) continued to improve the predictability of treatment
outcomes. The network analysis clustered TSPAN5 and ERICH3 in
community-2, separate from communities that include DEFB1 and
AHR (Fig. 3). Human iPSC-derived astrocytes and neurons, and
rodent models have demonstrated that DEFB1 and AHR regulate
central and peripheral inflammation via modulation of the
kynurenine pathway, whereas TSPAN5 and ERICH3 impact mono-
amine neurotransmission via multiple mechanisms (reviewed in
ref. [41]) [24–27]. These monoamine-related SNPs cluster with the
monoamine-related metabolites taurine and tyrosine (Fig. 3).
Tyrosine is a precursor to catecholamine monoamines, whereas

taurine is a natural analog to the alcohol-use-disorder treatment
acamprosate, a drug which impacts monoamine-pathway enzyme
concentrations [26]. Incorporating both SNPs and metabolites
(“multi-omics” models) likely improved predictive accuracy over
single-omics models through complimentary biological measure-
ments of processes perturbed in MDD, including monoamine
neurotransmission [38] and inflammation [42, 43].
This current analytical workflow ranks biomarkers by their

contributions to improved predictions and elucidates opportu-
nities for laboratory-based studies accordingly. Based on these
results, laboratory-based experiments might explore individual
variation in hydroxylated sphingomyelins, as they are both top
predictors of treatment response and are also associated with the
monoamine neurotransmission community-2 (Fig. 3B). The impor-
tance of hydroxylated sphingomyelins in predicting MDD treat-
ment outcomes is also highlighted by the following evidence:
hydroxylated sphingomyelins were represented in a signature of
ketamine treatment response [44] and the baseline ratio of
hydroxylated to non-hydroxylated sphingomyelins, as well as a
larger change in this ratio by 12 weeks of therapy, predicted
greater reduction in depressive symptoms with escitalopram or
combined medication [13]. Our current analytical approach
extends these findings to associate hydroxylated sphingomyelins
with markers of monoamine neurotransmission, providing a
foundation for follow-up mechanistic studies.
Sphingomyelins are dominant lipids in the outer leaflet of the

plasma membrane of most cells and are especially prevalent in the
brain [45, 46]. Their hydrogen-bonding capabilities confer unique
functional properties distinct from glycerophospholipids and
other membrane lipids [45]. Sphingomyelins help maintain the
structural integrity of lipid rafts [47], which are highly ordered
membrane domains involved in cell signaling [48, 49]. Hydro-
xylated sphingomyelins are a more polar species that promote
fluidization of lipid rafts [47]. Sphingomyelin species, including
hydroxylated and long-chain sphingomyelins, affect a multitude of
processes such as the regulation of endocytosis [45], ligand
binding to the serotonin1A receptor [50, 51], and receptor-
mediated ligand uptake [45]. The sphingomyelin-ceramide system
has also been demonstrated to play a role in antidepressant
response through mechanisms related to autophagy [52].
Given the known roles of sphingomyelins at the plasma

membrane and the correlations that we observed between
sphingomyelins and the TSPAN5 and ERICH3 SNPs in our network
analysis, we hypothesize a functional, as well as a statistical
relationship between hydroxylated sphingomyelins (or their
isomeric/isobaric relatives) and TSPAN5/ERICH3 mechanisms of
pathophysiology in MDD. Both TSPAN5 and ERICH3 physically
interact with neurotransmitter vesicle-associated proteins; there-
fore, previous work suggests that neurotransmitter vesicle
biogenesis and/or function is a mechanism by which both genes
influence monoamine availability [25, 26]. Vesicles store mono-
amine neurotransmitters until exocytosis at the plasma membrane
[53]. The plasma membrane itself plays a pivotal role in the
neurotransmitter life cycle, influencing synaptic vesicle synthesis,
storage, release, transport, and degradation [54]. As prevalent
polar lipids in the outer leaflet of the plasma membrane [47],
sphingomyelins (hydroxylated or not) may affect any of these
processes. Gaining a clearer understanding of these processes in
future studies may elucidate the biological processes that drive
hydroxylated sphingomyelins to be top predictors of antidepres-
sant treatment outcomes among the metabolites that were
assayed.
Laboratory investigation of predictive metabolites (e.g., hydro-

xylated sphingomyelins) could begin with the repeatedly vali-
dated metabolomics-informed-genomics approach [28]. The
success of this approach in discovering novel MDD or antide-
pressant response biology is exemplified by our identification and
functional investigation of the TSPAN5, ERICH3, DEFB1, and AHR
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genes. SNPs in or near these genes associated with concentrations
of serotonin or kynurenine, which were in turn associated with
citalopram/escitalopram treatment outcomes or baseline depres-
sion in a PGRN-AMPS cohort [24, 25, 27]. The metabolomics-
informed-genomics studies, which identified those genes utilized
a liquid chromatography electrochemical coulometric array (LC-
ECA) metabolomics platform [27]. The LC-ECA platform quantified
31 known plasma metabolites in PGRN-AMPS patients, primarily in
the tryptophan, tyrosine, purine, and tocopherol pathways [27]. In
contrast, the 153 metabolites included in this work were
quantified utilizing the p180 platform, which detects up to 40
acylcarnitines, 42 amino acids and biogenic amines, 90 glycer-
ophospholipids, 15 sphingolipids, and sum of hexoses. The
expanse of metabolites assayed by the p180 platform metabolites
have previously improved predictability of change in QIDS self-
reported score [13]. By combining SNPs of established predict-
ability arising from LC-ECA detected metabolites with the expanse
of metabolites available from the p180 platform, this work
examines for the first time the joint predictability of these
independently predictive biomarkers.
Compared with the electrochemical coulometric array platform,

which quantified 31 plasma metabolites in previous work [27], the
p180 platform detected 153 metabolites after quality control in
this work. Therefore, we required a novel strategy to identify
metabolites for follow-up mechanistic investigation. Linear asso-
ciations between the 31 LC-ECA assayed metabolites and
outcomes were previously successful in identifying serotonin
and kynurenine for mechanistic investigation, linear associations
between the 153 p180-assayed metabolites and outcomes yield
many more candidate metabolites than can be immediately
pursued in laboratory-based studies. The analytical strategy
outlined here provides an alternative approach suited for
expansive assays to identify metabolites for functional studies.
This study also highlights the clinical importance of developing

better means to predict antidepressant treatment outcomes (i.e.,
incorporating biological markers for improving predictability and
achieving cross-trial replications) in depressed patients [8, 55].
Monotherapy with antidepressants is the recommended first-line
treatment approach. However, poor or incomplete responses to
monotherapy occur frequently, even at optimized doses [56].
Antidepressant combinations are important strategies to consider
in such circumstances [57]. Not surprisingly, antidepressant
combinations, including the combinations studied in this work,
are frequently encountered in clinical practice [58–62]. The field
has begun to investigate clinically accessible parameters (such as
BMI and markers of systemic inflammation, such as C-reactive
protein), which have shown promise as predictive biomarkers for
antidepressive effects with serotonergic and non-serotonergic
antidepressants [63–65]. However, there are still no widely
implemented evidence-based methods for predicting treatment
outcomes with antidepressant combinations, either at the start of
treatment or based on early (e.g., 4 weeks) response to therapy.
Future studies that focus on integrating biological and symptom-
based factors to predict clinical outcomes with other commonly
used antidepressant combinations are needed. Supporting the
validity of using a multi-omics machine learning process for
predicting clinical outcomes is the ability of the models to
generalize in diverse populations.
The top predictors varied by algorithm and feature set, as can

be expected given the different mathematical underpinnings of
penalized regression and boosting algorithms. In cross-validation,
elastic net regression was demonstrated to be the optimal
penalized regression approach for both the metabolomics and
multi-omics data sets. Elastic net regression simultaneously
performs continuous shrinkage and variable selection and is
particularly useful for selecting predictive groups of correlated
variables [66]. Elastic net regression determined sphingomyelins,
phosphatidylcholines, and carnitines to be top metabolite

predictors (Fig. 2A). In contrast to elastic net regression, boosting
algorithms are tree-based approaches. They first split the decision
trees on the feature that best classifies the training samples, then
they iteratively reduce erroneous classifications by exploring the
joint predictive capabilities of other features [67]. Given that we
know that early change in MDD severity associates with eventual
treatment outcomes [68], it is likely that XGBoost begins
classification based on early MDD severity change, thereby
making this a top predictor in its models (Fig. 2B), before
considering the contributions of other predictors in the final
adjudication of whether a patient responds or not. Neither
penalized regression nor boosting provides a definitively superior
set of top predictors—jointly assessing the top predictors of both
approaches demonstrates that hydroxylated sphingomyelins are
consistently amongst top predictors. Therefore, investigating
hydroxylated sphingomyelins in future work mechanistic work
may lead to improved insights into the biology of antidepressant
response.
In addition, non-White race was a top predictor in the multi-

omics penalized regression model, but not in the metabolomics
penalized regression model (Fig. 2A). This may have arisen from
correlations between SNPs and race, i.e., differences in SNP minor
allele frequencies among populations (Supplementary Table 8).
These SNPs were initially discovered in the context of MDD in the
PGRN-AMPS cohort, a primarily white population, which may
explain their interaction with non-white race in the penalized
regression models. Future work should aim to establish the
predictability of these SNPs, along with any SNPs arising from
mechanistic investigation of hydroxylated sphingomyelins, across
populations.
Performance metrics were lower in the training data set

compared to the testing data set (Table 2 and Supplementary
Tables 3 and 4). This may have arisen from (a) higher inter-patient
variability in measures in the training data set and/or (b) smaller
sample sizes in testing data sets that may comprise subjects with
lesser inter-patient variability in disease severity or drug response.
Although the current results are encouraging in that multi-omics
models developed with monotherapy patients established pre-
dictability of outcomes to combination antidepressant therapy,
future work with additional biomarkers (e.g., neuroimaging,
additional genomic SNPs, and proteomics) may achieve compar-
able performances in both larger and smaller sized studies.
This work has limitations. Lipids assayed by current mass

spectrometry technology may actually reflect sum signals of all
isomeric/isobaric compounds having the same parent and
daughter ions, and that phenomenon may occur with the
hydroxylated sphingomyelins [69]. Therefore, future approaches
should validate the identified variables with other assays.
Although eventual response may be predicted as early as 2 weeks
post-treatment initiation [70], this was not feasible in this work
due to lack of data at week 2. Minor allele frequencies for the
included SNPs vary by population (Supplementary Table 8), so
larger samples with individuals of diverse ancestry will be needed
to validate prediction performance across populations. Although
fasting status may not significantly affect laboratory variability for
most metabolites [71], we cannot exclude the possibility of bias
introduced by lack of fasting samples [72, 73]. This work’s analysis
includes only the clinical/sociodemographic features common to
both cohorts, so relevant features including clinical comorbidities,
socioeconomic status, and number of depressive episodes were
not examined. In addition, high missingness (>35%) in BMI and
serotonin concentration data, stemming from the absence of
collection and quantifications below the lower limit of detection
or lowest calibration standard, respectively, precluded their
incorporation in these analyses. Both studies excluded patients
with a history of psychotic symptoms, so these findings may not
generalize to patients with psychotic depression. Finally, we did
not have blood drug levels for all patients, but this limitation is

J.B. Joyce et al.

8

Translational Psychiatry          (2021) 11:513 



less concerning given that drug levels did not associate with
clinical outcomes in previous studies [7, 10].
In summary, this is the first study that demonstrates improved

predictability of antidepressant treatment outcomes in depressed
adults receiving combination antidepressant therapy by augment-
ing clinical measures with multiple biological measures. The
integration of multiple biological markers (e.g., SNPs and
metabolites) suggested the prognostic importance of hydroxy-
lated sphingomyelins in the context of monoamine neurotrans-
mission. The current workflow ranks biomarkers according to their
contributions to improved predictability of antidepressant
response and provides a foundation for future laboratory-based
studies, which may identify novel molecular mechanisms of MDD
pathophysiology, drug response, or both.

CODE AVAILABILITY
All raw and analyzed data and related materials, including programming code, are
available upon request to Mayo Clinic Ventures or University of Texas Southwestern.
PGRN-AMPS data have been deposited on dbGaP, study accession phs000670.v1.p.1
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