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Environmental pollutants are today a major concern and an intensely discussed

topic on the global agenda for sustainable development. They include a wide

range of organic compounds, such as pharmaceutical waste, pesticides,

plastics, and volatile organic compounds that can be found in air, soil, water

bodies, sewage, and industrial wastewater. In addition to impacting fauna, flora,

and fungi, skin absorption, inhalation, and ingestion of some pollutants can also

negatively affect human health. Fungi play a crucial role in the decomposition

and cycle of natural and synthetic substances. They exhibit a variety of growth,

metabolic, morphological, and reproductive strategies and can be found in

association with animals, plants, algae, and cyanobacteria. There are fungal

strains that occur naturally in soil, sediment, and water that have inherent

abilities to survive with contaminants, making the organism important for

bioassay applications. In this context, we reviewed the applications of

fungal-based bioassays as a versatile tool for environmental monitoring.
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Introduction

The expansion of the anthropogenic activities to attend to the rising global demand

for a diversity of products has generated an exponential increase in the release of different

pollutants into the air, soil, and aquatic compartments (Esposito et al., 2021). These

pollutants, that fall into a broad category of xenobiotic compounds, are released in large

quantities into the environment, very often on the fringes of the law, and, unfortunately,

they are not readily degraded by indigenous microfauna and flora, being bioaccumulate

and biomagnified along the food chain (Wasi et al., 2013; Zenker et al., 2014). Among the

ubiquitous environmental pollutants, phenolic compounds, and transition metal cations

represent some of the major toxicants present in surface water (Wasi et al., 2008, 2013;

Tabrez and Ahmad, 2011).
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Thereby, these pollutants change the balance of biodiversity and

have led to serious health problems for humans and other living

organisms (Alharbi et al., 2018; Maurya and Pachauri, 2022).

Monitoring pollution levels is essential for restoration (bio)

remediation, as well as it might provide the basis for other

pollutants control management practices (Garg et al., 2022). There

are three classes for environmental pollution monitoring: physical

(such as odor, color, taste, porosity, temperature, conductivity, and

aggregate stability), chemical (including parameters such as redox

potential, salinity, and biological and chemical oxygen demand), and

biological (microbes, plants, and animals) indicators (Maurya and

Pachauri, 2022). Among these classes, bioassays using biological

indicators have been extensively used to either analyze target

chemicals in water, sediment, and soil samples and for evaluating

the relative ecotoxicological impact of such chemicals in these

matrices (Viegas, 2021). Mainly due to their sensitivity and

reproducibility, bioassays have great advantages over other physical

or chemical methods to detect pollutants (Maurya and Pachauri,

2022). Given their morphological and ecological diversity, exhibiting

from unicellular to multicellular forms with different growth rates

(Chethana et al., 2021; Hurdeal et al., 2021), besides their tolerance

and ability to survive in contaminated sites (Rani et al., 2014; Zapana-

Huarache et al., 2020; Hamad et al., 2021), fungi are considered

promising candidates as biological indicators in bioassays.

Moreover, fungi possess an extraordinary repertoire of

enzymes that makes them able to degrade a wide range of

environmental pollutants, even those with complex structures,

by combining different mechanisms from their intracellular and

extracellular enzymatic systems (Sánchez, 2020; Naveen et al.,

2022) (Figure 1). The intracellular enzymatic system, including

Phase I (involved in oxidation, as cytochrome P450 family

epoxidase) and Phase II enzymes (related to conjugation

processes, such as transferases), serves as a detoxifying

mechanism and plays an important role in fungal adaptability

(Shin et al., 2018; Sánchez, 2020). Additionally, the extracellular

enzymatic system, which includes hydrolases (such as the well-

known cutinolytic enzymes, able to hydrolyze cuticular polymers

even without undergoing interfacial activation) and nonspecific

oxidoreductases, comprising the class II peroxidases, laccases,

and unspecific peroxygenases, accept a wide range of substrates,

acting in the degradation of complex structures and favoring

their uptake by the cell (Sánchez, 2020).

FIGURE 1
Intra- and extracellular enzymatic systems in fungi related to the biodegradation of environmental pollutants.
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A great diversity and combination of these enzymatic

complexes can be found in several fungal species as, for

instance, some wood-degrading basidiomycetes, which

produce lignin peroxidases, manganese peroxidases, and

laccases, along with oxygenases, oxidases/dehydrogenases, and

cellulolytic enzymes (Schwartz et al., 2018; Naveen et al., 2022).

In this scenario, the comprehension of the molecular pathways

used for fungi exposed to different environmental pollutants

could expand their implementation in bioassays for the detection

and management of contaminated areas (Sánchez, 2020; Naveen

et al., 2022). Herein, we review the application of yeasts, other

ascomycetes, and basidiomycetes in ecotoxicological studies to

predict the toxicity of environmental pollutants.

Fungal bioassays for environmental
monitoring

Fungi, together with bacteria, microalga, and protozoa, are

among the frontline biota exposed to environmental pollutants,

which makes them an interesting model to be exploited in

ecotoxicological assays (Viegas, 2021). Indeed, several fungal

species have been employed in bioassays for environmental

pollutants monitoring (Table 1).

Most reports regarding the use of fungi in bioassays show the

effect of soil pollutants or pure substances, including metal

cations, organochlorine, and phenolic compounds, on the

growth of mycelium cultures using methodologies based on

biomass quantification, enzymatic activity, bioluminescence,

and plate occupation diameters (Mendes and Stevani, 2010;

Chan-Cheng et al., 2020; Ventura et al., 2020) (Figure 2).

Recently, the application of fungi bioluminescence system

has been demonstrated to respond, albeit not specifically, to

several metal cations such as Cd(II) and Cu(II), and phenolic

compounds by bioluminescent basidiomycetes Neonothopanus

gardneri, Gerronema viridilucens, Armillaria mellea, andMycena

citricolor (Weitz et al., 2002; Mendes et al., 2010; Mendes and

Stevani, 2010; Stevani et al., 2013; Ventura et al., 2020, 2021). In

an agar medium, the bioassay with the fungus N. gardneri, which

responds in a more sensitive and repeatable way, can be

conducted by exposing the mycelium for 30 min or 24 h to an

aqueous solution containing the toxicant. Bioluminescence is a

TABLE 1 Some examples of bioassays for environmental pollutants using fungal species.

Environmental pollutant Organism References

polystyrene nanoparticles Anguillospora crassa, Tetracladium marchalianum, Tetrachaetum elegans,
Articulopora tetracladia, and Tricladium spendens

Seena et al. (2019)

2,4,6-trichlorophenol, 4-cyanophenol, 4-nitrophenol, phenol, 4-
chlorophenol, 4-methoxyphenol

Gerronema viridilucens Ventura et al.
(2020)

Cd, Cu(II), phenol, 4-nitrophenol Neonothopanus gardneri Ventura et al.
(2021)

Cd, Ni, Cu, Zn, Cr, and Pb Rhizopus sp., Cladosporium sp., Penicillium sp., Curvularia sp., Fusarium sp.,
Alternaria sp., Pestalotiopsis sp., Aspergillus sp., Trichoderma sp

Mahanty et al.
(2021)

polyethylene leachates, polyethylene terephthalate leachates, and
polypropylene leachates

Fusarium oxysporum and Phanerochaete chrysosporum Li et al. (2022)

FIGURE 2
Common steps in ecotoxicological assays, which include: the exposure of a model test organism to different concentrations of a chemical
compound or dilutions of an environmental sample; the monitoring of biological responses; and the obtention of a concentration-response curve.
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precocious endpoint that can indicate the toxic effect of the

sample. There is evidence that the decrease of light emission in

the presence of the toxicant is related to the uncoupling of

mitochondrial oxidative phosphorylation, leading to the

impairment of ATP biosynthesis (Ventura et al., 2020).

Likewise, other bioluminescent microorganisms, like bacteria,

respond to toxic substances by decreasing light emission

proportionally to concentration of the toxicant (Hollis et al.,

2000;Weitz et al., 2002; Mendes and Stevani, 2010; Ventura et al.,

2020, 2021).

Besides detecting air and soil pollutants, different fungal

species have also been employed as water bioindicators to

sense the quality of the environment (Maurya and Pachauri,

2022). Despite fungi respond to environmental pollution,

bioassays using aquatic fungi are scarce, even though they

would better mirror the impact of hazardous pollutants in

freshwater ecosystems (Ortiz-Vera et al., 2018). The main

issue with the use of aquatic fungi in bioassays is the

challenge to determine work experimental conditions that are

close to the natural ones (Ittner et al., 2018). There are some

reports on the use of classical growth-based methodologies, but

with fungi isolated from polluted waters (Duddridge and

Wainwright, 1980; Chandrashekar and Kaveriappa, 1989;

Jaeckel et al., 2005). Nevertheless, it is more common to find

metagenomic studies from aquatic fungi instead of

ecotoxicological bioassays, once this tool allows the assessment

of the impact of a toxic agent in a broader way at the community

level (Selvarajan et al., 2019; Usharani, 2019; Ogwugwa et al.,

2021; Zhang et al., 2022).

Usually, the fungal communities are evaluated by the

quantification of ergosterol, an alternative way to measure

growth (Bundschuh et al., 2011; Dimitrov et al., 2014; Zubrod

et al., 2015; Donnadieu et al., 2016; Gessner, 2020). Ergosterol is a

major membrane component on fungi, with similar functions to

cholesterol in animal cells but being absent in animal and plant

membranes. Hence, its quantification is a useful method because

the mycelium is not easily separated from the leaf tissue and,

therefore, an analysis method focusing on specific fungal cell

constituents, like chitin or ergosterol, is required for this type of

bioassay (Gessner, 2020; Baudy et al., 2021). Additionally, leaf

mass loss can be used to measure fungal biomass in aquatic

hyphomycetes, a group of saprotrophic fungi adapted to

submerged leaf litter (Baudy et al., 2021). Generally, there is a

strong linear association between leaf mass loss and the

cumulative activity of fungal enzymes (Flores et al., 2014;

Baudy et al., 2021).

Due to their high sensitivity to air pollutants, such as nitrogen

oxides (NOx) or SO2, fungal associations with roots (mycorrhiza)

or algae (lichens) are considered good indicators of air quality

(Hage-Ahmed et al., 2019; Castro e Silva et al., 2020; Anderson

et al., 2022). Considering that fungal-based air pollution

bioassays are scarce, this property becomes promising for

developing bioassays for the detection of atmospheric

pollutants based on fungal associations. Indeed, most recent

studies have focused on correlating air pollution with

sporulation or biodiversity of fungal communities present in

particulate matter, usually comparing fungal and bacterial

diversity by DNA sequencing (Du et al., 2018; Fan et al.,

2019; Stevens et al., 2021). However, evidence suggests that

spores concentration in air is more affected by meteorological

factors than by pollution, a finding that is difficult to confirm due

to the strong relationship between air pollution and

meteorological factors (Pyrri and Kapsanaki-Gotsi, 2017).

Among fungi, the budding yeast Saccharomyces cerevisiae is

considered a relevant animal-alternative tool in ecotoxicological

studies, mainly due to its non-pathogenicity, experimental

amenability, cost-effectiveness, and the public availability of

genomics and bioinformatics resources which aid the

interpretation of its biological processes (Viegas, 2021). For

instance, the exposure of an engineered strain of

Saccharomyces cerevisiae expressing the firefly luciferase gene

(luc) from Photinus pyralis to herbicides like mecoprop, diuron,

and the Cu ions interferes with cell membrane integrity. This

damage leads to defense responses to neutralize the toxic agent

that consumes ATP and compete with the ATP-dependent

bioluminescence, which ultimately decreases light emission

(Martin-Yken, 2020).

Conclusion and perspectives

Fungi are multi or unicellular organisms that have been

widely applied as a biological indicator responding to several

toxicants. Several reports have shown the efficient use of fungi to

assess the toxicity of metals, organic compounds, and inorganic

contaminants in bioassays using the inhibition of enzymatic

activity, mycelium growth, ergosterol measurement, and

bioluminescence intensity as parameters. Additionally, the

current genetic engineering approaches in yeasts, such as S.

cerevisiae, make possible the expression of optimized-

recombinant proteins which, combined with a specific

detection system, can expand both the type and the intensity

of the response signal (Peltola et al., 2005; Matsuura et al., 2013;

Li et al., 2016; Sun and Wang, 2021). Finally, the efficient use of

modern techniques of molecular biology such as genome

sequencing, heterologous expression of enzymes, the

transformation of filamentous fungi, and genetic modifications

using the CRISPR/Cas system (Li et al., 2017; Song et al., 2019)

can harness tools to simplify the construction of new fungal

sensors for more accurate bioassays.
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