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Farnesiferol c induces apoptosis 
via regulation of L11 and c-Myc 
with combinational potential with 
anticancer drugs in non-small-cell 
lung cancers
Ji Hoon Jung1,*, Moon Joon Kim1,*, Hyemin Lee1,*, Jihyun Lee1, Jaekwang Kim1, 
Hyun Joo Lee1, Eun Ah Shin1, Yoon Hyeon Kim2, Bonglee Kim1, Bum Sang Shim1 &  
Sung-Hoon Kim1

Though Farnesiferol c (FC) has been reported to have anti-angiogenic and antitumor activity, the 
underlying antitumor mechanism of FC still remains unclear. Thus, in the present study, we investigated 
the apoptotic mechanism of FC in human H1299 and H596 non-small lung cancer cells (NSCLCs). FC 
significantly showed cytotoxicity, increased sub-G1 accumulation, and attenuated the expression 
of Bcl-2, Bcl-xL, Survivin and procaspase 3 in H1299 and H596 cells. Furthermore, FC effectively 
suppressed the mRNA expression of G1 arrest related genes such as Cyclin D1, E2F1 transcription 
factor and CDC25A by RT-PCR. Interestingly, FC inhibited the expression of c-Myc, ribosomal protein 
L11 (L11) and nucleolin (NCL) in H1299 and H596 cells. Of note, silencing of L11 by siRNA transfection 
enhanced the expression of c-Myc through a negative feedback mechanism, while c-Myc knockdown 
downregulated L11 in H1299 cells. Additionally, combined treatment of FC and puromycin/doxorubicin 
promoted the activation of caspase 9/3, and attenuated the expression of c-Myc, Cyclin D1 and CDK4 
in H1299 cells compared to single treatment. Taken together, our findings suggest that FC induces 
apoptosis and G1 arrest via regulation of ribosomal protein L11 and c-Myc and also enhances antitumor 
effect of puromycin or doxorubicin in NSCLCs.

Lung cancer is the leading cause of cancer related death all over the world and its main primary types are small 
lung cancer (10~15%) and non-small lung cancer (85~90%)1,2. In general, the treatment for lung cancer is sur-
gery, chemotherapy, radiotherapy and targeted therapy mainly for EGFR or NF-κB3.

It was well documented that c-Myc is involved in proliferation, apoptosis, tumorigenesis, and cell cycle pro-
gression as one of the most frequently activated oncogene in human lung cancers4–7. Also, c-Myc was known to 
be regulated by ribosomal biogenesis related proteins, including L11, RPL5 and RPS148–10. Especially, L11 was 
known to act as a novel c-Myc inhibitor8. Recently many natural compounds are attractive due to their cancer 
chemopreventive effects and potential to synergize with classical anticancer agents11–13.

Farnesiferol C (FC), a compound isolated from Ferula assafoetida L. has been reported to have cytotoxic14 and 
anti-angiogenic and antitumor effects15. Nonetheless, the underlying antitumor mechanism of FC was not fully 
understood so far. Thus, in the present study, the antitumor mechanism of FC was investigated in human H1299 
and H596 non-small lung cancer cells (NSCLCs) in association with c-Myc and ribosomal protein L11 and also 
combinational potential of FC was examined with classical anticancer agents such as puromycin or doxorubicin 
in H1299 NSCLCs.
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Results
FC induces cytotoxicity and apoptosis in non-small lung cancer cells. Cytotoxicity of FC was eval-
uated in H1299 and H596 cells using MTT assay. As shown in Fig. 1B, FC significantly decreased the viability of 
H1299 and H596 cells. To examine whether or not the cytotoxic effect of FC is associated with apoptosis, cells 
were treated with various concentrations of FC in H596 and H1299 cells for 24 h. As shown in Fig. 1C, FC atten-
uated the expression of pro-caspase3, Bcl-2, Bcl-xL and Survivin in H596 and H1299 cells.

FC increases sub G1 population and attenuates the expression of Cyclin D1 and CDK4. To con-
firm the effect of FC on cell death and cell cycle arrest in cancer cells, H1299 cells were treated with various 
concentrations of FC for 24 h. The cells were stained with propidium iodide, and cell-cycle was analyzed by flow 
cytometry. As shown in Fig. 2A, FC increased sub G1 population up to 5.39% and 16.14% by at the concentra-
tions of 60 μM and 120 μM, respectively, compared to untreated control (2.83%) in H1299 cells. Consistently, FC 
treatment significantly decreased the expression of Cyclin D1 and CDK4 in H1299 and H596 cells, since Cyclin 
D1 binds and activates Cyclin-dependent kinases 4 and 6 (CDK4 and CDK6), which regulate G1/S transition16 
(Fig. 2B). Also, mRNA levels of E2F1, CCND1, and transcription factor and cell division cycle 25 homolog A 
(CDC25A), which are related to G1 phase17, were dramatically suppressed by FC treatment compared to untreated 
control (Fig. 2C).

Regulation of L11 and c-Myc is critically involved in apoptosis induced by FC in H1299 
cells. Apoptosis is regulated by various proteins such as c-Myc, caspase3, and bcl-218,19. FC dose-dependently 
suppressed the protein expression of c-Myc and its downstream NCL (nucleolin; c23) in H1299 cells, while it 
attenuated the expression of c-Myc alone in H596 cells (Fig. 3A). In contrast, FC attenuated the mRNA expression 

Figure 1. FC exerts cytotoxic and apoptotic activity in H1299 and H596 cells. (A) Chemical structure of FC. 
(B) Cytotoxicity of FC in H1299 and H596 cells by MTT assay. Data represent means ± SD. *p < 0.05. **p < 0.01 
vs untreated control. (C) Effect of FC on procaspase 3, Bcl-2, Bcl-xL, and Survivin in H1299 and H596 cells by 
Western blotting.
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of c-Myc and NCL by only ~25% in H1299 cells (Fig. 3B). To validate the regulation of L11 and/or c-Myc in apop-
tosis induced by FC treatment, we performed siRNA transfection assay for L11 and/or c-Myc. Silencing of c-Myc 
promoted the ability of FC to exert cytotoxicity and sub G1 accumulation, while L11 knockdown suppressed 
the antitumor activity of FC in H1299 cells (Fig. 4A,C). In contrast, L11 overexpression using Flag L11 plasmid 
attenuated the expression of c-Myc in a concentration dependent fashion in H1299 cells. Furthermore, silencing 
of both L11 and c-Myc promoted cytotoxicity and sub G1 accumulation in H1299 cells compared to single treat-
ment. Unexpectedly, Western blotting revealed that FC downregulated the expression of not only c-Myc but also 
L11 compared to untreated control in H1299 cells as shown in Figs 3C and 4B. Furthermore, overexpression of 
L11 using Flag tagged L11 expression vector suppressed the expression of c-Myc in a concentration dependent 
fashion in H1299 cells (Fig. 3D) and also FC attenuated the expression of c-Myc and overexpressed L11 in H1299 
cells. Of note, c-Myc knockdown enhanced downregulation of L11, whereas silencing of L11 induced upregula-
tion of c-Myc in H1299 cells (Fig. 4B).

Figure 2. FC induces accumulation of subG1 phase in H1299 cells. (A) H1299 cells were treated with FC  
(0, 60, or 120 μM) for 24 h. Thereafter the cells were washed, fixed, stained with PI, and analyzed for DNA contents 
using a flow cytometry. **p < 0.01 vs untreated control. (B) Effect of FC on Cyclin D1 and CDK4 in H1299 and 
H596 cells by Western blotting. (C) Effect of FC on E2F1, CCND1, and CDC25A in H1299 cells by qRT-PCR.
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FC promotes puromycin or doxorubicin-induced apoptosis in H1299 cells. Previous studies sug-
gested that puromycin enhanced apoptosis with melatonin in human leukemia HL-60 cells20. In the same line, 
to evaluate the combinational potential of FC with puromycin or doxorubicin, MTT assay and Western blotting 
were performed in H1299 cells. FC enhanced weak cytotoxicity of puromycin at a nontoxic concentration of 
0.5 μg/ml in H1299 cells by combination treatment (Fig. 5A) Consistently, Western blotting showed that FC pro-
moted weak apoptotic potential of puromycin to cleave caspase 9 and attenuate the expression of pro-caspase3, 
Bcl-2, Bcl-xL, Survivin Cyclin D1, CDK4 and c-Myc in H1299 cells (Fig. 5B–D). In addition, we used 0.25 μM of 
doxorubicin for combination therapy with FC, since Rathos et al. reported the IC50 of doxorubicin is 0.23 μM in 
H1299 cells21. FC enhanced weak cytotoxicity and apoptotic activity of doxorubicin via the cleavage of caspase 3 
and reduced expression of c-Myc in H1299 cells (Fig. 6A,B).

Discussion
Lung cancer still remains the leading cause of cancer-related mortality in the world. The majority of the lung 
cancer patients are the non-small cell (NSCLC) subtype22. Since, identification of epidermal growth factor recep-
tor (EGFR) mutations and anaplastic lymphoma kinase (ALK) rearrangements in NSCLCs promoted targeted 

Figure 3. FC regulates c-Myc and L11 through a negative feedback mechanism. (A) FC downregulates 
c-Myc and NCL (C23) in H1299 and H596 cells by Western blotting. (B) FC attenuates mRNA expression of 
c-Myc and NCL in H1299 cells. H1299 cells were treated with FC for 24 h. RNA was isolated and analsis was 
performed to detect mRNA of c-Myc and NCL by qRT-PCR. (C) L11 knockdown activates c-Myc expression 
in H1299 cells. H1299 cells were transfected with L11 siRNA oligonucleotide (40 nM) for 48 h and then 
treated with FC for 24 h. Cells were prepared and subjected to Western blotting for c-Myc and L11. (D) FC 
downregulates c-Myc and L11 in Flag tagged L11 overexpression vector transfected H1299 cells. H1299 cells 
were transfected with Flag tagged L11 vector (1 μg) for 48 h and then treated with FC (0, 60, or 120 μM) for 24 h. 
Cells were prepared and subjected to Western blotting for c-Myc and L11.
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therapies3,23, several phytochemicals are attractive due to less toxicity and synergistic potential with classical anti-
cancer agents12,24–29.

Previously our group reported that FC had anti-angiogenic and antitumor activity targeting VEGFR1 or 
VEGFR2 signaling cascades. Nevertheless, the underlying antitumor mechanism of FC is not still unclear. Thus, 
in the current study, molecular antitumor mechanism of FC was examined in non-small lung cancer cells.

FC significantly exerted cytotoxicity, increased sub-G1 accumulation for apoptotic portion and attenuated the 
expression of survival genes such as Bcl-2, Bcl-xL, Survivin and pro-caspase 3 in H1299 and H596 cells, strongly 
implying the apoptotic activity of FC.

Cell cycle arrest is known as a stopping point in the cell cycle transition such as G0, G1, S and G2/M phases for 
cell duplication and division. Binding of Cyclin D1 and CDK4 or CDK6 was well known to trigger the transition 
from G1 to S phase17,28,32. Thus, cell cycle regulation is regarded as a good target for cancer therapy30. In the cur-
rent study, FC effectively induced G1 arrest by suppressing G1/S transition phase related mRNA such as Cyclin 

Figure 4. Regulation of L11 and c-Myc is critically involved in apoptosis induced by FC in H1299 cells. 
(A) Effect of c-Myc and/or L11 depletion by siRNA on the viability of H1299 cells by MTT assay. Data 
represent means ± SD. *p < 0.05, **p < 0.001, ***p < 000.1 (B) Effect of c-Myc and/or L11 depletion by 
siRNA on the expression of c-Myc and L11 in H1299 cells. H1299 cells were transfected with c-Myc and/
or L11 siRNA oligonucleotide (40 nM) for 48 h and then treated with FC for 24 h. Cells were prepared and 
subjected to Western blotting for c-Myc and L11. (C) Effect of c-Myc and/or L11 depletion by siRNA on sub G1 
accumulation in H1299 cells. H1299 cells were treated with FC (120 μM) for 24 h. Then the cells were washed, 
fixed, stained with PI, and analyzed for DNA contents using a flow cytometry.
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D1, E2F1 and CDC25A and significantly decreased the protein expression of Cyclin D1 and CDK4 in H1299 and 
H596 cells, indicating G1 phase arrest by FC treatment.

The c-Myc is a multifunctional oncogene involved in cell growth, proliferation, tumorigenesis, and so is fre-
quently upregulated in various types of cancer cells31. One of the key biological functions of c-Myc is to promote 
cell-cycle progression in several cancers32. After serum stimulation, c-Myc is induced at mRNA and protein lev-
els and the cells enter the G1 phase of the cell cycle to promote biological processes including proliferation or 
apoptosis33. Interestingly, FC inhibited the expression of c-Myc and its downstream NCL at mRNA and protein 
levels in H1299 and H596 cells, demonstrating the role of c-Myc inhibition in FC-induced apoptosis and G1 
arrest in NSCLCs. Also, it is noteworthy that FC reduced mRNA level of c-Myc by about 25%, while the protein 
level c-Myc was almost disappeared by FC, implying that FC works on c-Myc rather at posttranscriptional level, 
though further study is required in the near future.

Ribosomes are essential components of the protein synthesis machinery and ribosomal proteins play a critical 
role in cell proliferation, differentiation, apoptosis, DNA repair, and other cellular processes10. Among many 
ribosomal proteins, ribosomal protein L5 or L11 binds to c-Myc8 and also activates TAp73 by overcoming MDM2 
inhibition9, consequently leading to inhibition of c-Myc activity. Here, silencing of c-Myc promoted the ability 
of FC to exert cytotoxicity and sub G1 accumulation in H1299 cells, whereas L11 knockdown abrogated the 
antitumor activity of FC in H1299 cells. Of note, though FC downregulated the expression of not only c-Myc but 
also L11 compared to untreated control in H1299 cells, c-Myc knockdown enhanced the downregulation of L11 
and silencing of L11 induced upregulation of c-Myc in H1299 cells, indicating the possible feedback regulation 
of c-Myc by L11. These results were supported by previous report34 by Dai et al. that reduction of L11 by siRNA 
increases c-Myc levels through a negative feedback mechanism, since L11 directly binds to the Myc box II (MB II) 
for c-Myc-enhanced ribosomal biogenesis.

Recently combination therapy of anticancer agents and natural compounds are on the spotlight for reducing 
side effect and enhancing antitumor activity35,36. Here, combined treatment of FC and puromycin/doxorubicin 
promoted the activation of caspase 9/3, and attenuated the expression of c-Myc, Cyclin D1 and CDK4 in H1299 
cells compared to single treatment, demonstrating the potential of using FC for combination therapy with classi-
cal anticancer agents such as puromycin or doxorubicin.

In summary, FC significantly showed cytotoxicity, increased sub-G1 accumulation, attenuated the expression 
of Bcl-2, Bcl-xL, Survivin and procaspase 3, suppressed the mRNA expression of G1 arrest related genes such as 
Cyclin D1, E2F1 and CDC25A, reduced the expression of c-Myc and NCL at mRNA and protein levels in H1299 

Figure 5. Combination effect of FC and puromycin on cytotoxicity and apoptosis or G1 phase related 
proteins in H1299 cells. (A) FC significantly enhanced cytotoxicity of puromycin in H1299 cells. The cells were 
treated with FC (50 μM) and/or puromycin (0.5 μg/ml) for 24 h. Cytotoxicity of FC and puromycin in H1299 
and H596 cells by MTT assay. Data represent means ± SD. *p < 0.05, ***p < 000.1 vs untreated control.  
(B) Combinational effect of FC and puromycin on caspase9/3, Bcl-2, Bcl-xL and Survivin in H1299 cells by 
Western blotting. (C) Combinational effect of FC and puromycin on cyclin D1, CDK4 and c-Myc in H1299 cells 
by Western blotting.
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and H596 cells. Interestingly, knockdown of L11 enhanced the expression of c-Myc through a negative feedback 
mechanism in H1299 cells. Furthermore, combined treatment of FC and puromycin/doxorubicin promoted the 
activation of caspase 9/3, and attenuated the expression of c-Myc, Cyclin D1 and CDK4 in H1299 cells. Overall, 
our findings suggest that FC induces apoptosis and G1 arrest via regulation of L11 and c-Myc with combinational 
potential with puromycin or doxorubicin in NSCLCs.

Methods
Reagents. FC was extracted from Ferula assafoetida as previously described37. FC (C24H30O4, MW 382; 
Fig. 1A) with the purity (over 98% by HPLC) was dissolved in DMSO, stored as small aliquots at −80 °C, and then 
diluted for cell culture study.

Cell culture. Human lung cancer cell lines H1299 and H596, which are non-small lung cancer cell lines were 
obtained from American Type Culture Collection, and maintained in RPMI1640 medium supplemented with 
10% fetal bovine serum (Gibco, Carlsbad, CA, USA), 2 μM L-glutamine and penicillin/streptomycin (WelGene, 
South Korea).

Cytotoxicity assay. Cytotoxic effect of FC was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetra-
zolium bromide (MTT) assay. Cells were seeded onto 96-well microplates at a density of 1 × 104 cells/well and 
treated with various concentrations of FC (0, 10, 20, 40, 80 or 160 μM) for 24 h. The cells were incubated with 
MTT solution (1 mg/ml) (Sigma Chemical Co., USA) for 2 h and DMSO for 2 h. Optical density (OD) was meas-
ured using a microplate reader (Molecular Devices Co., Sunnyvale, CA) at 570 nm. Cell viability was calculated as 
a percentage of viable cells in FC-treated group versus untreated control by the following equation. Cell viability 
(%) = [OD (FC) − OD (Blank)]/[OD (Control) − OD (Blank)] × 100.

Cell cycle analysis. Cell cycle analysis was performed by propidium iodide (PI) staining. Cells were fixed in 
75% ethanol, incubated with 0.1% RNaseA in PBS at 37 °C for 30 min and resuspended in PBS containing 25 μg/ml  
PI for 30 min at room temperature. The stained cells were analyzed for DNA content by FACSCalibur (Becton 
Dickinson, Franklin Lakes, NJ, USA) using Cell Quest program (Becton Dickinson, Franklin Lakes, NJ, USA).

Western blot analysis. Cells were lysed in RIPA buffer (50 mM Tris-HCl, pH 7.4, 150 mM NaCl, 1% NP-40, 
0.25% sodium deoxycholic acid, 1 M EDTA, 1 mM Na3VO4, 1 mM NaF and protease inhibitors cocktail). Protein 
samples were quantified by using a Bio-Rad DC protein assay kit II (Bio-Rad, Hercules, CA), separated by electro-
phoresis on 8 to 15% SDS-PAGE gel and electro transferred onto a Hybond ECL transfer membrane (Amersham 
Pharmacia, Piscataway, NJ). After blocking with 3–5% nonfat skim milk, the membrane was probed with anti-
bodies for cleaved Caspase 9, Bcl-xL, (Cell signaling Technology, Danvers, MA), c-Myc, L11 (Abcam, Cambridge, 

Figure 6. Combination effect of FC and doxorubicin on cytotoxicity and apoptosis related proteins in 
H1299 cells. (A) Effect of FC or doxorubicin on cytotoxicity in H1299 cells. The cells were treated with FC 
(0~120 μM) and/or doxorubicin (0~4 μM) for 24 h. Cytotoxicity of FC and/or doxorubicin in H1299 cells by 
MTT assay. Data represent means ± SD. (B) Combinational effect of FC (50 μM) and doxorubicin (0.25 μM) on 
cyctotoxicity in H1299 cells by MTT assay. **p < 0.01, ***p < 000.1 vs untreated control. (C) Combinational 
effect of FC (50 μM) and doxorubicin (0.25 μM) on cleaved caspase 9/3 and c-Myc in H1299 cells by Western 
blotting.
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United Kingdom), Cyclin D1, CDK4, Bcl-2, Caspase 3, NCL, Survivin (Santa Cruz Biotechnologies, Santa Cruz, 
CA, USA), and β-actin (Sigma Aldrich Co., St. Louis, MO) followed by exposing to horseradish peroxidase 
(HRP)-conjugated secondary anti-mouse or rabbit antibodies (AbDserotec, kidlington, UK). Protein expression 
was determined by using enhanced chemiluminescence (ECL) system (Amersham Pharmacia, Piscataway, NJ, 
USA).

Real-time quantitative RT-PCR analysis (RT-qPCR). Total RNA was isolated by using RNeasy mini 
kit (Qiagen, Valencia, CA) according to the manufacturer’s instructions and reverse transcribed using M-MLV 
reverse transcriptase (Promega, Madison, WI). The cDNA was amplified by PCR using the synthesized spe-
cific primers as follows (Bioneer, Daejeon, Korea): c-Myc forward 5′-CCACCAGCAGCGACTCTGA-3′ and 
reverse 5′-GCAGAAGGTGATCCAGACTC-3′; E2F1 forward 5′-TCCAAGAACCACATCCAGTG-3′ and 
reverse 5′-CTGGGTCAACCCCTCAAG-3′; CCND1 forward 5′- GAAGATCGTCGCCACCTG-3′ and reverse 
5′-GACCTCCTCCTCGCACTTCT-3′; CDC25A forward 5′- ATCTCTTCACACAGAGGCAGAA-3′ and reverse 
5′- CCCTGGTTCACTGCTATCTCTT-3′; NCL forward 5′-GTGGTGGACGGTGTTCACTT-3′ and reverse 
5′-GCCACGGCCAGCACATCAT-3′; GAPDH forward 5′-CTGCACCACCAACTGCTTAG-3′ and reverse 
5′-AGGTCCACCACTGACACGTT-3′.

RT-qPCR was operated with the light cycler TM instrument (Roche Applied Sciences, Indianapolis, IN) 
according to the manufacturer’s protocol. The mRNA level of GAPDH was used to normalize the expression of 
genes of interest.

RNA transfection assay. Cells were transiently transfected with a validated scrambled control small inter-
fering (si)RNA, or siRNA specifically for L11 or c-Myc (Santa Cruz Biotechnology, Santa Cruz, CA) or Flag–
tagged L11 overexpression vector kindly provided by Prof. Hua Lu (School of Medicine, Oregon Health and 
Science University, USA) by using InterferinTM transfection reagent (Polyplus-transfection Inc., New York, NY). 
Briefly, the mixture of siRNA or Flag–tagged L11 overexpression vector with InterferinTM transfection reagent was 
incubated for 10 min, added to each well of the cells (siRNA final concentration = 40 nM) and incubated at 37 °C 
for 48 h before drug treatment.

Statistical analyses. Data were presented as means ± standard deviation (SD) of three or more replicates. 
Statistical significance was verified by Student’s t-test using Sigma plot software (System Software Inc., San Jose, 
CA, USA).
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