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Localizing hyperexcitable brain tissue to treat focal seizures remains challenging. We want to identify the seizure onset zone from

interictal EEG biomarkers. We hypothesize that a combination of interictal EEG biomarkers, including a novel low frequency

marker, can predict mesial temporal involvement and can assist in prognosis related to surgical resections. Interictal direct current

wide bandwidth invasive EEG recordings from 83 patients implanted with 5111 electrodes were retrospectively studied. Logistic

regression was used to classify electrodes and patient outcomes. A feed-forward neural network was implemented to understand

putative mechanisms. Interictal infraslow frequency EEG activity was decreased for seizure onset zone electrodes while faster fre-

quencies such as delta (2–4 Hz) and beta-gamma (20–50 Hz) activity were increased. These spectral changes comprised a novel

interictal EEG biomarker that was significantly increased for mesial temporal seizure onset zone electrodes compared to non-seizure

onset zone electrodes. Interictal EEG biomarkers correctly classified mesial temporal seizure onset zone electrodes with a specificity

of 87% and positive predictive value of 80%. These interictal EEG biomarkers also correctly classified patient outcomes after sur-

gical resection with a specificity of 91% and positive predictive value of 87%. Interictal infraslow EEG activity is decreased near

the seizure onset zone while higher frequency power is increased, which may suggest distinct underlying physiologic mechanisms.

Narrowband interictal EEG power bands provide information about the seizure onset zone and can help predict mesial temporal

involvement in seizure onset. Narrowband interictal EEG power bands may be less useful for predictions related to non-mesial tem-

poral electrodes. Together with interictal epileptiform discharges and high-frequency oscillations, these interictal biomarkers may

provide prognostic information prior to surgical resection. Computational modelling suggests changes in neural adaptation may be

related to the observed low frequency power changes.
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Introduction
Approximately one-third of epilepsy patients are resistant

to anti-seizure medications and are candidates for second-

line treatments, including surgical resection or neuromo-

dulation. Often it is imperative to precisely localize the

epileptogenic zone, the region of brain tissue that gener-

ates spontaneous unprovoked seizures. This is typically

accomplished by determining the location from which

seizures arise, or the seizure onset zone (SOZ), with

intracranial EEG monitoring. Appropriately sampling seiz-

ures in order to localize the SOZ remains challenging due

to the unpredictability of seizures, sparse spatial sampling

of EEG and associated morbidities. In addition, the opti-

mal EEG spectral range for mapping the SOZ remains

unclear.1

Improved interictal biomarkers to assist in the localiza-

tion of the SOZ could decrease patient morbidity and im-

prove outcomes. Prior work on interictal localization of

SOZ has focused on interictal epileptiform spikes2–4 and

high-frequency oscillations (HFOs).5–11 Both spikes and

HFOs have been associated with hyperexcitable tissue. In

contrast to spikes and HFOs, here we focus on lower fre-

quency activity. The appearance of slow-wave EEG shifts

is well-described at the onset of focal seizures.12–14

However, the role of pathological focal interictal low fre-

quency activity in epileptogenic brain has received less at-

tention.15 Recent work from eight patients suggested that

for SOZ electrodes infraslow activity is decreased relative

to fast delta activity, and gamma (30–50 Hz) activity is

increased.16

Single neuron physiology and modelling suggest that

activity less than approximately 4 Hz may be related to

neural mechanisms controlling excitability.17–20 Low fre-

quency EEG activity has been shown to modulate cortical

excitability: Low frequency activity modulates interictal

epileptiform activity and sleep architecture,1,21,22 is

related to periods of increased and decreased neuronal

activity during sleep,23 and may be transiently decreased

during activation tasks as gamma activity increases.24

Delta activity during sleep is correlated with local synap-

tic strength,25–27 and during wakefulness increased focal

delta is often considered a marker of cortical dysfunc-

tion.28 Our hypothesis is that interictal EEG slowing can

be used as a feature in a statistical model to: (i) classify

electrodes as involved in seizure onset or not and (ii) pro-

vide prognostic information regarding outcome following

surgical resection.

We examine the utility of these interictal biomarkers to

localize seizure onset without ictal data. For example,

although unilateral mesial temporal lobe epilepsy can be

effectively treated with surgical resection,29 a common

challenge is to accurately determine whether patients

have only unilateral temporal onset seizures. The average

time to record the first contralateral seizure in patients

with bilateral seizures was approximately 6 weeks,30 lon-

ger than typical admissions for invasive monitoring.

Patients with bilateral onset seizures can be effectively

treated with electrical stimulation.31 Here, we find that

mesial temporal electrodes can be classified as SOZ elec-

trodes with a high specificity and positive predictive

value. Finally, we show that by using the available elec-

trodes for each patient, patient outcome following resec-

tive epilepsy surgery can be predicted with high

specificity and positive predictive value. Results from a

feedforward neural network suggest that infraslow activ-

ity is related to in inhibitory neuronal and synaptic

mechanisms.

Methods

Data acquisition and processing

This retrospective analysis was approved by the Mayo

Clinic Institutional Review Board. As described previous-

ly,32,33 wide-bandwidth intracranial EEG were acquired

on a direct current (DC)-capable (0–5 kHz) Neuralynx

(Bozeman, MT) electrophysiology system from standard

clinical electrodes during evaluation of patients for epilepsy

Graphical Abstract

2 | BRAIN COMMUNICATIONS 2021: Page 2 of 13 B. N. Lundstrom et al.



surgery between October 2005 and February 2014. All

patients with DC-coupled invasive EEG recordings (83

patients and 5111 total electrode contacts) were included.

39 patients had contacts in the mesial temporal brain

regions. Depth electrode platinum-iridium contacts

(n¼ 485) were 2.3 mm long, 1 mm diameter, and spaced

5 or 10-mm centre-to-centre. Subdural grid and strip con-

tacts (n¼ 4626) were 4.0 mm diameter (2.3 mm exposed)

with 10 mm centre-to-centre distance. Referential data

(inverted subgaleal electrode as reference) were chosen

from between 1 am and 3 am from the first night follow-

ing electrode implantation. Data were sampled at 32 kHz,

filtered using a Bartlett–Hanning window finite impulse

response low-pass filter with 1 kHz cut-off, and down-

sampled to 5 kHz.

Electrode localization

Three-dimensional coordinates were obtained for all

electrode contacts in standard space, as previously

described.32 Briefly, using the Freesurfer image analysis

suite (http://surfer.nmr.mgh.harvard.edu/, Accessed 12

October 2021) preoperative MRIs were mapped from pa-

tient space to the FreeSurfer average pial surface and co-

registered with post-operative CT scans. Electrode loca-

tions were manually labelled in BioImage Suite 3.34 Using

iELVis,35 electrode locations were determined in average

FreeSurfer brain space with segmentation labels from the

Desikan–Killiany brain atlas.36 Electrode segmentation

labels were categorized as follows: mesial temporal lobe

included labels for amygdala, hippocampus, entorhinal

and para-hippocampal brain regions; non-mesial temporal

lobe regions were termed neocortex and included all

other grey matter segmented brain regions.

Electrophysiology analysis

1.5–2-h epochs of DC-coupled referential EEG data with

inverted subgaleal reference were analysed per patient for

EEG power, interictal discharges and HFOs. Candidate

SOZ electrodes were determined from the clinical invasive

EEG report; SOZ electrodes were determined by a board

certified epileptologist (GW) as the earliest EEG change

in a clear electrographic seizure. Distance to the SOZ

was defined as the Euclidean distance to the nearest SOZ

electrode. Non-SOZ electrodes were contacts from which

no initial seizure activity was observed. For each patient,

baseline seizure frequency prior to admission was deter-

mined from retrospective chart review. HFOs were identi-

fied as previously reported32 using an automated

detector33 for the full epoch. For analysis of low fre-

quency activity, data were decimated to 250 Hz, and a

multi-taper spectrum was computed using Chronux

(http://chronux.org/, Accessed 12 October 2021) with

time-bandwidth product of 5 and 9 tapers.37 Frequency

spectra were filtered with a 0.012 Hz median filter and

down sampled by 25–50 to facilitate data analysis.

Similar to previous work,32 interictal spike times and

amplitudes were found using an automated detector with

standard parameters,38 and HFOs were identified using a

high specificity and sensitivity automated detector.33

Classification

We performed classification for two cases: electrodes and

patient outcomes. To assess the ability of biomarkers to

classify electrodes, biomarker values were used in a logis-

tic regression model (linear terms only) to generate prob-

ability scores for each contact and were compared to

electrode labels, i.e. SOZ or non-SOZ. Features for the

model included a Novel Marker (median powerband

ratio 2–50 Hz/0.02–0.5 Hz), derived from physiological

results. Additional features included the rate of interictal

discharges per hour, the rate of HFOs, and the patient’s

baseline seizure frequency. Multicollinearity was evaluated

with the variance inflation factor,39 with values <1.6

suggesting predictor variables were not closely related to

one another. The scores and labels were used to create a

receiver operating characteristics (ROC) curve. The area

under the curve (AUC) is a performance measure of the

classifier that reflects trade-offs between sensitivity and

specificity. For a given threshold value, particular values

for sensitivity, specificity, positive predictive value and

negative predictive value are generated. Electrodes were

grouped by patient. To classify electrodes for a given pa-

tient, model training did not include electrodes for that

patient, i.e. leave-one-patient-out cross validation was

performed.

To classify patient outcomes, patients were divided into

those with good outcomes (seizure-free or only auras,

International League Against Epilepsy (ILAE) outcome

scale 1 or 2) and poor outcomes (continued seizures,

ILAE outcome scale 3 or greater). To obtain a single fea-

ture value for each patient, the standard deviation of all

electrode values for a given biomarker was used. In all,

three features were used: the Novel Marker, interictal

epileptiform discharge rates and the patient’s baseline

seizure frequency. Logistic regression then classified pa-

tient outcome, which was compared to known outcomes.

Ten-fold cross-validation was performed across patients.

Statistical analysis

Statistical testing was conducted using the non-parametric

Wilcoxon rank sum test for equal medians, with distribu-

tions considered to be significantly different when

P< 0.05. Boxplots represent the median value, interquar-

tile range (IQR) and 1.5 � IQR with the horizontal line,

rectangle and whiskers, respectively. Statistical signifi-

cance for AUC values is reported via the P-value for the

Chi-squared test between the logistic regression model

and a constant model. 95% confidence intervals (bias

corrected and accelerated) were obtained by bootstrap-

ping (1000 to 10 000 iterations), which is a widely
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accepted statistical resampling technique that relies on

random sampling with replacement of the distribution in

question to provide a non-parametric and robust confi-

dence interval estimate.40

Neural network modelling

Similar to previously,19 the feed-forward neural network

consisted of conductance-based Hodgkin–Huxley neurons

and synapses that incorporated facilitation and depres-

sion.41 Three slow adaptation currents were added to the

Hodgkin–Huxley neurons as previously17 with time con-

stants of s ¼ 0.3, 1 and 6 s and conductances of

g1¼ 0.05, g2¼ 0.006 and g3¼ 0.004 times the leak con-

ductance, respectively. For synapses, parameters were

similar to those fitted to physiologic data41 and those

used previously.19 Facilitation and depression variables

(F, d and D) in the synapses relaxed exponentially to one

with time constants of 0.1, 0.7 and 9 s for facilitation,

fast depression and slow depression, respectively. For fa-

cilitation, each input spike increased F by 0.2, and for

depression each input spike decreased d and D to new

values of 0.4d and 0.975D, respectively. The synaptic

conductance amplitude (F d D) for each neuron was then

summed and filtered by an exponential with a time con-

stant of 300 ms. Equations were solved numerically using

fourth-order Runge–Kutta integration with a fixed time

step of 0.05 ms. Spike times were identified as the up-

ward crossing of the voltage trace at �10 mV (resting po-

tential ¼ �65 mV). Input to each neuron of the neural

network was zero-mean exponential filtered (s ¼ 1 ms)

Gaussian white-noise stimuli with standard deviations of

10 and 16 mA cm�2. For the loss of adaption conditions,

D¼ 0, g2¼ 0 and g3¼ 0.

Data availability

De-identified data are available upon request.

Results
Overnight DC-EEG recordings from between 1 am and

3 am for 83 patients (53 women) were included in this

retrospective Institutional Review Board-approved ana-

lysis. Forty-five (76%) patients were right-handed, and

median age was 40 years (range 5–75 years). Median age

of seizure onset was 13 years (range 0–55 years). Prior to

implantation the median seizure frequency was 6 seizures

per month (range 0.4–360 seizure per month). Of the

83 patients, 61 had post-implant imaging sufficient for

electrode localization (Fig. 1). Thirty-nine patients had

electrodes located in the mesial temporal head region,

and 56 had electrodes in identifiable neocortex. Forty-

eight patients (58%) underwent surgical resection. Median

follow-up time was 5.4 years (range 0.3–14.5 years), and

31 (65%) patients were free of disabling seizures with

either an ILAE Class 1 or Class 2 response. SOZ and

non-SOZ contacts that were in identifiable grey matter

brain regions included: 162 mesial temporal lobe contacts

(110 depth contacts), 940 non-mesial temporal lobe con-

tacts (34 depth contacts), 1297 frontal lobe contacts

(5 depth contacts) and 578 parietal-occipital lobe contacts

(17 depth contacts).

Given our prior results from eight patients,16 we exam-

ined the power spectra of all 5111 electrodes from 83

patients and found that infraslow activity was decreased

for SOZ electrodes compared to non-SOZ electrodes

(Fig. 1). We used the same powerbands 2–4 Hz and

20–50 Hz. However, here we choose the powerband

0.02–0.5 Hz as 0.02 was the lower limit used in prior

work1 and 0.5 Hz is often considered to be the upper

limit of infraslow activity (or lower limit of delta fre-

quency activity); we take advantage of DC-coupled

amplifiers that were not used in our prior results.16

We found that the ratios of powerbands 2–4 Hz to

0.02–0.5 Hz and 20–50 Hz to 0.02–0.5 Hz were signifi-

cantly increased for SOZ compared to non-SOZ electro-

des (Fig. 2C).

Then, we focused on electrodes in the mesial temporal

head region and found similar results with decreased

infraslow activity relative to beta-gamma activity (Fig. 3).

With increasing distance from SOZ electrodes, infraslow

power increased relative to 2–4 Hz and 20–50 Hz power

(Fig. 3C).

Next, we wanted to see whether these power differen-

ces between SOZ and non-SOZ electrodes could help

classify electrodes. Specifically, we wanted to know the

extent to which interictal data could predict ictal onset in

individual electrode contacts. We constructed a straight-

forward logistic regression classifier based on interictal

EEG features: a Novel Marker (powerband ratio

20–50 Hz/0.02–0.5 Hz), interictal epileptiform discharges

Figure 1 Electrode contact locations from 61 patients on

the Desikan–Killiany atlas. Seizure onset zone (SOZ) contacts

(n¼ 512, red dots) and non-SOZ contacts (n¼ 2758, black dots)

are displayed on the pial surface of the atlas.
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and HFOs. Using all mesial temporal electrodes (n¼ 163)

(Fig. 4A), results of the classifier are shown for the three

features separately as well as with all three features to-

gether (Fig. 4B). Spikes, HFOs and the Novel Marker all

perform similarly alone but show improved results when

combined, which suggests that each contributes distinct in-

formation to the classifier; higher AUC values reflect

improved overall performance (P< 0.001 for each value).

There is a trade-off between sensitivity and specificity such

that as the decision threshold increases specificity increases

and sensitivity decreases (Fig. 4C); a threshold of 0.5

yielded a sensitivity of 72% and specificity of 86%.

To emphasize increased specificity, we chose a thresh-

old of 0.6. Classifier results are shown for five individual

example patients (Fig. 4D). The classifier is not trained

using data from the patient for whom results are shown,

i.e. leave-one-patient-out cross validation was performed.

Thus, these examples suggest real-world performance for

a similar patient cohort. The specificity and positive pre-

dictive value of this classifier suggest high per patient ac-

curacy. The classifier correctly lateralized the SOZ (i.e.

left, right, bilateral or neither) in 89% (95% confidence

intervals are 79 and 95%) of patients using interictal

data. Accuracy dropped from 89% to 77% (95% confi-

dence intervals are 66 and 85%) when the Novel Marker

was excluded. Overall, specificity was 87% and positive

predictive value was 80% for individual contacts.

We used a similar classifier to predict whether electro-

des were involved in the SOZ for all neocortical electro-

des (Fig. 5). The high prevalence of non-SOZ electrodes

compared to SOZ electrodes led to a high negative pre-

dictive value for this classifier with overall lower perform-

ance than for mesial temporal structures. For threshold

0.15 with leave-one-patient-out cross-validation, sensitivity
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Figure 4 Classifying electrodes as SOZ or non-SOZ in the mesial temporal lobe. (A) 77 SOZ (red) and 85 non-SOZ (black)

electrodes from 39 patients are displayed from the left (upper) and right (lower) mesial temporal brain regions. (B) Receiver operating

characteristic (ROC) curve showing logistic regression classification for four models with features based on the novel marker, high-frequency

oscillations (HFOs), and interictal epileptiform spikes. Increased area under the curve (AUC) reflects improved classification (P< 0.001 for all

AUC values; Chi-squared statistics are 47, 19, 37 and 55, respectively). False positive rate equals one minus the specificity. True positive rate is

equal to the sensitivity. (C) Sensitivity and specificity for varying threshold levels when all features are used for classification. (D) Predicted SOZ
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was 36% and specificity was 79% with negative predictive

value of 89% and positive predictive value of 21%. In

other words, although the classifier missed many SOZ elec-

trodes, the prediction that an electrode was non-SOZ was

89% correct. Classification for extra-temporal electrodes

(SOZ¼ 235; non-SOZ¼ 1640) yielded similar results with

31% sensitivity, 79% specificity, 89% negative predictive

value and 17% positive predictive value. These results sug-

gest increased performance and utility for this biomarker

when applied to the mesial temporal lobe brain regions.

Given the overall promising classifier performance for

SOZ electrodes, we wondered whether these interictal

EEG markers could classify patients by outcome follow-

ing surgical resection. Patients were divided into those

with good outcomes (seizure-free or only auras, ILAE

outcome scale 1 or 2) and poor outcomes (continued

seizures, ILAE outcome scale 3 or greater). For each pa-

tient, the standard deviation of the Novel Marker values

and the standard deviation of interictal spike rates across

electrodes was used. Patients with a good outcome had a

greater variance of these interictal biomarkers across elec-

trodes compared to poor outcome patients (Fig. 6A).

This may result from a more optimal electrode coverage

or more distinct spatial borders for good outcome
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Figure 5 Classifying neocortical electrodes as SOZ or non-SOZ. (A) 378 SOZ and 2437 non-SOZ electrodes were classified using

logistic regression classification for four models with features based on the novel marker, high-frequency oscillations (HFOs), and interictal

epileptiform spikes. Increased Area Under the Curve (AUC) reflects improved classification (P< 0.005 for all AUC values; Chi-squared statistics

are 11, 33, 55 and 75, respectively). (B) Sensitivity and specificity for varying threshold levels when all features are used for classification. (C)

Predicted and Actual results (threshold 0.15) show sensitivity of 36%, specificity 79%, positive predictive value 21%, and negative predictive value

89%. Error bars are bootstrapped 95% confidence intervals. Data for the tested patients is excluded from the training data, i.e. leave-one-patient-

out cross-validation.
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patients that lead to greater differences between SOZ and

non-SOZ brain regions. These two features are plotted

against one another showing high specificity for good

outcome patients (Fig. 6B). Results from 10-fold cross-

validation show that a predicted good outcome is rarely

wrong (Fig. 6C), with a positive predictive value of 87%.

Thus, although good outcome patients were not always

detected, if the model predicted a good outcome that pre-

diction was likely correct. The addition of HFOs as a

feature did not improve performance (sensitivity was the

same and specificity was decreased to 87% from 91%).

To compare results with those that would be predicted

using existing interictal biomarkers, we predicted patient

outcomes using the rate of interictal epileptiform dis-

charges and rate of HFOs. Using the same logistic regres-

sion model, results showed a sensitivity of 36%,

specificity of 87%, positive predictive value of 75% and

negative predictive value of 56%. These measures are

reduced compared to those of the model using the novel

biomarker presented above.

Finally, we wanted to gain further insight into the pos-

sible mechanisms underlying the decreased infraslow and

increased fast activity for SOZ electrodes. We constructed

a feed-forward neural network of 100 conductance-based

neurons (Fig. 7A). Each neuron included multiple timescale

rate adaptation.17 Neuron outputs were filtered by a
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synapse with facilitation and two timescales of depression,

consistent with physiologic data and prior modelling.41

The stimulus for this network was exponential-filtered

Gaussian white noise with low and high standard devia-

tions to simulate baseline and high firing rate conditions

(Fig. 7B and C). With the baseline stimulus, the simulated

EEG power is similar to non-SOZ electrodes (Fig. 7D,

black line). With the high firing rate stimulus and loss of

adaptation (reduced rate adaptation and reduced synaptic

depression), infraslow activity is decreased while fast activ-

ity is increased relative to baseline (Fig. 7D, red line). This

signature may represent reduced or suboptimal adaptation

in the face of increased inputs, as could be the case near

the SOZ. These results suggest one plausible explanation

for the observed power spectra results of Figs 2A and 3A,

that changes in neural adaptation may be related to low

frequency spectral changes.

Discussion
We show that interictal EEG biomarkers including a

novel marker comprised of a ratio of infraslow activity

and faster EEG frequencies can predict SOZs and patient

outcomes. The novel marker is based on the observation

that infraslow activity (0.02–0.5 Hz) is decreased near the

SOZ and faster frequencies (2–50 Hz) are increased. A

neural network with decreased long-timescale adaptation

shows decreased infraslow activity. These findings sup-

port the hypothesis that distinct physiologic processes

underlie infraslow activity. In general, a power-based

interictal marker such as the novel marker offers distinct

advantages in terms of detection and computation com-

pared interictal spike rates and HFOs. Combined with

interictal spike rates and HFOs, these novel interictal fea-

tures appear related to cortical excitability and offer pre-

dictive power related to SOZ localization and patient

outcomes following resection.

Interictal low frequency activity

There remains a need for interictal biomarkers of brain

hyperexcitability.42 In clinical practice, the epileptogenic

zone is approximated by recording multiple seizures to es-

timate the SOZ. However, recording enough seizures to

properly estimate the SOZ is often difficult and associated

with increased time, expense, and patient morbidity.

Interest in high-frequency EEG phenomena such as HFOs

has been driven in large part by the desire for a better

interictal biomarker of hyperexcitability.43 Previous work

suggests that increased rates of gamma range HFOs5,6 and

increased interictal epileptiform spike rates2,3,44,45 are asso-

ciated with SOZs or hyperexcitable brain regions.

Relatively less attention has been paid to lower frequency

activity despite evidence that it modulates higher frequency
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activity,1 can be coupled to HFOs,46 and is related to

neural mechanisms that modulate excitability.18,20,23

We recently examined interictal data (recorded without

DC-coupled amplifiers) from eight drug-resistant epilepsy

patients with extensive subdural grid electrode coverage

and found that 0.3–1 Hz activity was decreased near

the SOZ relative to higher frequency activity.16 This

decreased activity was most evident during the sleep state

but was also seen during the postictal state and wakeful-

ness. 0.02–0.2 Hz activity modulates interictal epilepti-

form spikes.1 During sleep, an increase in interictal

1–4 Hz activity was seen in scalp EEG near the SOZ25

and has been localized to the likely epileptogenic zone

using source imaging.47

Underlying mechanisms

Delta activity has been associated with increased excit-

ability. During sleep, increased delta activity appears to

be a signature of hyperexcitable cortex, associated with

seizures and interictal spikes.25 According to the synaptic

homeostatic hypothesis,26 increased neuronal activity

requires increased synaptic renormalization, which then

leads to increased delta activity during sleep. Delta activ-

ity has been associated with thalamocortical inputs, in

contrast to activity less than 1 Hz that persisted without

thalamic input.23

Activity less than 1 Hz has been associated with modu-

lation of cortical excitability, such as during sleep when

there are alternating periods of excitation termed ‘up’

and ‘down’ states.1,23,48,49 One mechanism implicated in

the determination of this slow oscillation frequency and

the cessation of the ‘up’ states50 is related to activity-de-

pendent potassium conductances; this single neuron mech-

anism regulates action potential firing via firing rate

adaptation.51 A balance between the activity of these

channels and incoming inhibition affected the slow oscil-

lation frequency in brain slices.20 Firing rate adaptation

and synaptic depression52,53 are important for gain con-

trol, especially for activity with lower frequencies. These

same mechanisms are modulated by many antiepileptic

medications including those affecting sodium54 or potas-

sium channels.52 These results highlight the importance of

firing rate adaptation and synaptic depression for control-

ling excitability.

Infraslow activity may be related to fractional differenti-

ation, a form of multiple timescale feedback inhibition.17–19

Fractional differentiation results from a balanced form of

inhibition in which a wide range of timescales are treated

in a scale invariant manner. Thus, changes in infraslow ac-

tivity may be associated with hyperexcitability.

Gamma oscillations have been associated with GABA-

related networks, interneurons, inhibition and pre-ictal

activity.55 Interictal epileptiform spikes that were pre-

ceded by gamma oscillations were found to have a high

association with the SOZ.56 Here, we measure power in

the 20–50 Hz frequency range and not necessarily gamma

oscillations. The increase in gamma power seen in the

SOZ may reflect increased neural activity over a wide

range of frequencies.57 HFOs have been postulated to re-

flect epileptogenic brain,5 although perhaps not on an in-

dividual patient level.6

The reason for the relative decrease of infraslow activ-

ity in the SOZ electrodes remains unclear. Results from

the neural network model suggest that decreased infra-

slow power may be related to changes in action potential

rate adaptation and synaptic depression in the setting of

increased neural firing rates. The input to this neural net-

work model is filtered white nose. Increased standard de-

viation of filtered white noise input has been taken to

approximate the effects of increased input synchrony,58 as

might be expected near the SOZ. When properly balanced,

adaptation mechanisms yield scale invariant power law dy-

namics consistent with fractional differentiation17 that may

alter slow oscillations.18 Thus, decreased infraslow activity

could be related to a relative loss of inhibition.

Predicting SOZs

Localizing seizures remains challenging for patients with

medication-resistant focal seizures. Patients are often

admitted to the hospital for a week or more in order to

record seizures for presurgical evaluation.59 Interictal bio-

markers predicting, for example, laterality of involvement

of mesial temporal lobes would be especially helpful. We

showed that a combination of interictal biomarkers includ-

ing the novel marker, spike rate, and HFO rate correctly

predicted whether the left, right, both or neither temporal

lobes were involved for almost 90% of patients. The util-

ity of the novel marker for predicting SOZs appears to be

most promising for mesial temporal head regions.

Quantification of HFOs has been the focus of a recent-

ly reported prospective trial where patient level predica-

tions were not helpful.6 Classification by HFO rates has

yielded an AUC of 0.61,60 while Support Vector

Machine classification using multiple HFO features from

single channels yielded an AUC of 0.65. Here, the novel

marker compares favourably with an AUC of 0.75 for

mesial temporal lobe electrodes, compared to 0.67 for

HFOs (Fig. 4B). More sophisticated machine learning

approaches with larger numbers of features can improve

results.7 Here, we focused on a straightforward approach

using logistic regression and a minimal number of fea-

tures. In general, the Novel Marker seems to confer com-

parable but distinct diagnostic information as other

markers. This physiology-based biomarker may be most

useful in combination with other biomarkers, as has also

been suggested for HFOs and interictal spikes.61

Ideally, one wants to know the epileptogenic zone ra-

ther than the SOZ. Therefore, one may question the util-

ity of predicting the SOZ. Nonetheless, defining the SOZ

remains standard-of-care clinically. Thus, predicting the

SOZ is of practical clinical benefit and, at least partially,

overlaps with the epileptogenic zone. In terms of
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classification, the SOZ is well-defined, in contrast to the

epileptogenic zone. Even when accounting for patient out-

comes to predict the epileptogenic zone, unknown details

of resection size and resection boundaries in relation to

the epileptogenic zone make it difficult to define as a

concrete clinical tool.

Predicting patient outcomes

One of the primary challenges in treating patients with ir-

reversible therapeutic approaches such as surgical resec-

tion is determining on an individual patient level who

may benefit. For this reason, additional information that

may help determine whether benefits outweigh risks

would improve patient care. The described interictal

model has a high positive predictive value, which would

indicate patients most likely to benefit from irreversible

treatments. The ability of interictal markers to predict pa-

tient outcomes suggests that patient-level characteristics of

the EEG differ between patient groups. Here, results sug-

gest the variance of interictal biomarkers is increased

when a single SOZ is well-covered and bounded by non-

SOZ electrodes. However, we did not account for differ-

ing numbers of electrodes between patients, which could

affect standard deviation measures. We also note that

42% of patients did not undergo resective surgery follow-

ing invasive monitoring, similar to other data.62

Limitations

Multiple factors may limit the predictive potential of low

frequency activity. There is not necessarily a clear divide

between different frequency bands. Multiple processes

likely contribute to low frequency activity. Interictal epi-

leptiform activity likely contributes to observed power

changes, as the shape and frequency of spikes change

near the SOZ. Interictal epileptiform activity contains a

wide range of frequencies, including delta and beta activ-

ity, which affects multiple frequency bands. Although

these data come from 1 to 3 am in early morning, sleep

was not staged due to the absence of scalp data. It is

likely that for at least some epochs patients were awak-

ened for clinical care. Finally, neocortical data were typic-

ally recorded with subdural electrodes, whereas depth

electrodes are now more commonly used; mesial temporal

activity was primarily recorded with depth electrodes.

Conclusions
Interictal low frequency activity differs near hyperexcit-

able cortex and may reflect distinct underlying physio-

logical processes related to cortical excitability. Continued

work is needed to explore the utility of interictal bio-

markers and low frequency activity for predicting cortical

hyperexcitability and patient outcomes.

Acknowledgements
Hari Guragain and Tal Pal Attia for technical assistance

and support. Mayo Clinic Division of Epilepsy for clinical

support and care of patients. Christian Meisel, Tom Richner

and Larry Sorensen for helpful comments on draft

manuscripts.

Funding
The research was supported by the National Institutes of

Health National Institute of Neurological Disorders and

Stroke K23NS112339 (B.N.L.) and R01NS92882 (G.W.).

Competing interests
B.N.L., B.B. and G.W. are named inventors for intellectual

property developed at Mayo Clinic and licensed to Cadence

Neuroscience Inc. B.N.L. has waived contractual rights to

royalties. G.W. has licensed intellectual property developed

at Mayo Clinic to NeuroOne, Inc. G.W. and B.N.L. are

investigators for the Medtronic Deep Brain Stimulation

Therapy for Epilepsy Post-Approval Study (EPAS). B.N.L.,

B.B. and G.W. are investigators for Mayo Clinic and

Medtronic NIH Public Private Partnership (UH3-NS95495).

G.W. assisted in a Mayo Clinic Medtronic sponsored FDA-

IDE for the investigational Medtronic Activa PCþS device.

References
1. Vanhatalo S, Palva JM, Holmes MD, Miller JW, Voipio J, Kaila

K. Infraslow oscillations modulate excitability and interictal epilep-

tic activity in the human cortex during sleep. Proc Natl Acad Sci

U S A. 2004;101(14):5053–5057.
2. Staley KJ, White A, Dudek FE. Interictal spikes: Harbingers or

causes of epilepsy? Neurosci Lett. 2011;497(3):247–250.

3. Lundstrom BN, Meisel C, Van Gompel J, Stead M, Worrell G.

Comparing spiking and slow wave activity from invasive

electroencephalography in patients with and without seizures. Clin

Neurophysiol. 2018;129(5):909–919.
4. Marsh ED, Peltzer B, Brown MW III, et al. Interictal EEG spikes

identify the region of electrographic seizure onset in some, but not

all, pediatric epilepsy patients. Epilepsia. 2010;51(4):592–601.
5. Worrell GA, Parish L, Cranstoun SD, Jonas R, Baltuch G, Litt B.

High-frequency oscillations and seizure generation in neocortical

epilepsy. Brain. 2004;127(Pt 7):1496–1506.
6. Jacobs J, Wu JY, Perucca P, et al. Removing high-frequency oscil-

lations. Neurology. 2018;91(11):e1040–e1052.

7. Cimbalnik J, Klimes P, Sladky V, et al. Multi-feature localization

of epileptic foci from interictal, intracranial EEG. Clin

Neurophysiol. 2019;130(10):1945–1953.

8. Frauscher B, von Ellenrieder N, Zelmann R, et al. High-frequency

oscillations in the normal human brain. Ann Neurol. 2018;84(3):

374–385.

9. Worrell GA, Gardner AB, Stead SM, et al. High-frequency oscilla-

tions in human temporal lobe: Simultaneous microwire and clinical

macroelectrode recordings. Brain. 2008;131(4):928–937.

10. Bragin A, Engel J, Staba RJ. High-frequency oscillations in epilep-

tic brain. Curr Opin Neurol. 2010;23(2):151–156.

Novel interictal biomarker BRAIN COMMUNICATIONS 2021: Page 11 of 13 | 11



11. Traub RD, Whittington MA, Buhl EH, et al. A possible role for

gap junctions in generation of very fast EEG oscillations preceding
the onset of, and perhaps initiating, seizures. Epilepsia. 2001;
42(2):153–170.

12. Ikeda A, Taki W, Kunieda T, et al. Focal ictal direct current shifts
in humanepilepsy as studied by subdural and scalp recording.

Brain. 1999;122(5):827–838.
13. Ikeda A, Terada K, Mikuni N, et al. Subdural recording of ictal

DC shifts in neocortical seizures in humans. Epilepsia. 1996;37(7):

662–674.
14. Gnatkovsky V, De Curtis M, Pastori C, et al. Biomarkers of epi-

leptogenic zone defined by quantified stereo-EEG analysis.

Epilepsia. 2014;55(2):296–305.
15. Constantino T, Rodin E. Peri-ictal and interictal, intracranial infra-

slow activity. J Clin Neurophysiol. 2012;29(4):298–308.
16. Lundstrom BN, Boly M, Duckrow R, Zaveri HP, Blumenfeld H.

Slowing less than 1 Hz is decreased near the seizure onset zone.

Sci Rep. 2019;9(1):6218.
17. Lundstrom BN, Higgs MH, Spain WJ, Fairhall AL. Fractional dif-

ferentiation by neocortical pyramidal neurons. Nat Neurosci.
2008;11(11):1335–1342.

18. Lundstrom BN. Modeling multiple time scale firing rate adapta-

tion in a neural network of local field potentials. J Comput
Neurosci. 2015;38(1):189–202.

19. Lundstrom BN, Fairhall AL, Maravall M. Multiple timescale
encoding of slowly varying whisker stimulus envelope in cortical
and thalamic neurons in vivo. J Neurosci. 2010;30(14):

5071–5077.
20. Sanchez-Vives MV, Mattia M, Compte A, et al. Inhibitory modula-

tion of cortical up states. J Neurophysiol. 2010;104(3):1314–1324.

21. Frauscher B, von Ellenrieder N, Ferrari-Marinho T, Avoli M,
Dubeau F, Gotman J. Facilitation of epileptic activity during sleep

is mediated by high amplitude slow waves. Brain. 2015;138(Pt 6):
1629–1641.

22. Song I, Orosz I, Chervoneva I, et al. Bimodal coupling of ripples

and slower oscillations during sleep in patients with focal epilepsy.
Epilepsia. 2017;58(11):1972–1984.

23. Steriade M. Grouping of brain rhythms in corticothalamic systems.
Neuroscience. 2006;137(4):1087–1106.

24. Podvalny E, Noy N, Harel M, et al. A unifying principle underly-

ing the extracellular field potential spectral responses in the human
cortex. J Neurophysiol. 2015;114(1):505–519.

25. Boly M, Jones B, Findlay G, et al. Altered sleep homeostasis corre-
lates with cognitive impairment in patients with focal epilepsy.
Brain. 2017;140(4):1026–1040.

26. Tononi G, Cirelli C. Sleep and the price of plasticity: From synap-
tic and cellular homeostasis to memory consolidation and integra-

tion. Neuron. 2014;81(1):12–34.
27. Nir Y, Staba RJ, Andrillon T, et al. Regional slow waves and spin-

dles in human sleep. Neuron. 2011;70(1):153–169.

28. Ebersole J, Husain A, Nordli D. Current practice of clinical elec-
troencephalography, 4th ed. J Ebersole, A Husain, D Nordli, eds.
Philadelpha, PA: Wolters Kluwer; 2014.

29. Engel J, McDermott MP, Wiebe S, et al. Early surgical therapy for
drug-resistant temporal lobe epilepsy: A randomized trial. JAMA.

2012;307(9):922–930.
30. King-Stephens D, Mirro E, Weber PB, et al. Lateralization of me-

sial temporal lobe epilepsy with chronic ambulatory electrocorti-

cography. Epilepsia. 2015;56(6):959–967.
31. Hirsch LJ, Mirro EA, Salanova V, et al. Mesial temporal resection

following long-term ambulatory intracranial EEG monitoring with
a direct brain-responsive neurostimulation system. Epilepsia. 2020;
61(3):408–420.

32. Guragain H, Cimbalnik J, Stead M, et al. Spatial variation in high-
frequency oscillation rates and amplitudes in intracranial EEG.

Neurology. 2018;90(8):E639–E646.
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