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Although many computational models have been proposed to explain orientation maps
in primary visual cortex (V1), it is not yet known how similar clusters of color-selective
neurons in macaque V1/V2 are connected and develop. In this work, we address the
problem of understanding the cortical processing of color information with a possible
mechanism of the development of the patchy distribution of color selectivity via
computational modeling. Each color input is decomposed into a red, green, and blue
representation and transmitted to the visual cortex via a simulated optic nerve in a
luminance channel and red–green and blue–yellow opponent color channels. Our model of
the early visual system consists of multiple topographically-arranged layers of excitatory
and inhibitory neurons, with sparse intra-layer connectivity and feed-forward connectivity
between layers. Layers are arranged based on anatomy of early visual pathways, and
include a retina, lateral geniculate nucleus, and layered neocortex. Each neuron in the V1
output layer makes synaptic connections to neighboring neurons and receives the three
types of signals in the different channels from the corresponding photoreceptor position.
Synaptic weights are randomized and learned using spike-timing-dependent plasticity
(STDP). After training with natural images, the neurons display heightened sensitivity
to specific colors. Information-theoretic analysis reveals mutual information between
particular stimuli and responses, and that the information reaches a maximum with fewer
neurons in the higher layers, indicating that estimations of the input colors can be done
using the output of fewer cells in the later stages of cortical processing. In addition,
cells with similar color receptive fields form clusters. Analysis of spiking activity reveals
increased firing synchrony between neurons when particular color inputs are presented or
removed (ON-cell/OFF-cell).

Keywords: brain modeling, visual cortex, neocortex, color, color selectivity, self-organizing color maps,

self-organizing feature maps, STDP

INTRODUCTION
It has long been known that many neurons in primary visual
cortex (V1) are tuned to exhibit preference to particular simple
oriented line segments, forming orientation maps that capture
the preferred orientation of neurons across the cortical surfaces
(Hubel and Wiesel, 1962). Similarly, clusters of color-selective
neurons in areas V1/V2 have been reported, as mapped with opti-
cal imaging and electrophysiological recordings (Landisman and
Ts’O, 2002; Friedman et al., 2003; Xiao et al., 2003; Lu and Roe,
2008; Salzmann et al., 2012). While several computational studies
have been conducted to explain the emergence of the orienta-
tion map (Somers et al., 1995; Choe and Miikkulainen, 1998;
Paik and Ringach, 2011), only a few have been done over such
patchy distribution of color selectivity within an area of V1/V2
(Bednar et al., 2005; Rao and Xiao, 2012). Barrow et al. (1996)
have proposed a model for the formation of cortical blobs, regions
in primary visual cortex that are densely stained by cytochrome
oxidase (CO) (Livingstone and Hubel, 1984), using the Hebbian

learning rule. This model reproduces receptive fields of neurons
inside and outside CO blobs, and the results showed that neurons
outside the blobs are selective for orientation while neurons inside
the blobs are selective for color. However, the spatial organization
of a large number of color-selective areas was not studied in their
model. In this paper, we investigate the emergence of the spatial
organization of color preference maps by developing a hierar-
chical neural network model that reflects anatomically faithful
processing pathways and projections.

Physiological studies have shown that color information is first
represented by the activity of specific types of photoreceptors and
transmitted along specific fibers in the optic nerve (Komatsu,
1998). Visual signals leaving the eyes then reach the primary
visual cortex via the lateral geniculate nucleus (LGN). LGN has
multi-layered organization, and different color information is
coded at specific layers (Chatterjee and Callaway, 2003). Although
actual neural processing is not known, Komatsu and Goda (2009)
theorized that a two-stage model can explain the transformation
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of color signal that takes place between photoreceptors and V1,
resulting in forming the color selective neurons. At the first stage,
signals from color opponent neurons are linearly summed with
various combinations of weights, with the results rectified. This
information is then propagated to neurons in the second stage
where a further linear summation and rectification is performed.

Rao and Xiao (2012) have recently started investigating sim-
ilar principles in computational simulations and successfully
produced maps of orientation and color selectivity using anatom-
ically realistic projections incorporating two color opponent
channels and a luminance channel. However, this model used
rate-coded neurons, which do not convey the precise times of
action potentials or spikes emitted by cells. Various physiological
studies have indicated that spiking dynamics can be important
for the simulation and information processing (Sugase et al.,
1999; Freiwald and Tsao, 2010). Although our current model
does not investigate orientation selectivity, one of the aims of our
study is to expand the focus in previous research (Bednar et al.,
2005; Rao and Xiao, 2012) to see if it is possible to observe the
spatial organization of color preference maps and spike-timing
related phenomena such as ON/OFF selectivity using more phys-
iologically realistic Hodgkin–Huxley (HH) neuron models via
Spike-Timing Dependent Plasticity (STDP).

Many neural networks are implemented with rate-coded neu-
ron since it is observed that the mean firing rates of sensory
neurons are correlated with the intensity of the encoded stim-
ulus feature. For example, it is widely viewed that the infor-
mation sent to the visual cortex by the retinal ganglion cells
are encoded by the mean firing rates of spike trains gener-
ated with a Poisson process. A theoretical study conducted by
Rullen and Thorpe (2001) showed that rate codes are opti-
mal for fast information transmission but cannot account for
the efficiency of information transmission between the retina
and the brain; however, temporal structure of the spike train
can be efficiently used to maximize the information trans-
fer rate. This could therefore be an important feature that
contributes to the development of neurons tuned to specific
features.

Another benefit of our approach is that the precise firing times
of spiking HH neurons allow investigating the temporal dynam-
ics of information processing. Such investigations could include
determining the role of temporal processing of C1, C2, and L
channels in LGN (Chatterjee and Callaway, 2003), and selec-
tive representation of different stimuli by neuronal population
synchronization (Evans and Stringer, 2013). In addition, spik-
ing neurons allow incorporation of biologically plausible learning
rules, such as STDP. A number of experiments (Markram et al.,
1997; Bi and Poo, 1998) have reported that synaptic strength
changes depending on presynaptic and postsynaptic spike time,
and this mechanism has been extensively studied from a theo-
retical point of view (Gerstner et al., 1996; Abbott and Nelson,
2000).

Meanwhile, similar to the orientation maps and color maps,
physiological studies have shown that various brain areas man-
ifest a small-world structure, characterized by the presence of
highly clustered neurons (Yu et al., 2008), and the factors leading
to this organization have been investigated in several theoretical

works (Shin and Kim, 2006; Kato et al., 2007, 2009; Basalyga
et al., 2011). In the present study, we were particularly interested
in whether such small-world structures could evolve from a net-
work whose weights were initialized randomly, after learning with
natural images.

We speculated there would be difficulty in the development
of such cells since the representation of color is more complex
than oriented bars. However, with this model, we hypothesized
that the response patterns of neurons in the output layer (layer
5 of V1) would develop heightened responses to specific colors
solely due to learning taking place during exposure to multiple
image patches extracted from natural images of indoor scenes
used in Quattoni and Torralba (2009), as a result of integrating
different color opponent signals that occurred at different levels
of the network. We also hypothesized that the learning would
allow for a distribution of neurons that were tuned to similar
color input with spatial clustering, where neurons within the clus-
ter had heightened synaptic weights, relative to neurons outside of
the cluster.

MATERIALS AND METHODS
MODEL
Architecture
The model is composed of nine layers of neurons which are orga-
nized into five hierarchical areas: photoreceptor layers (R, G, B),
lateral geniculate nucleus (LGN) layers (L, C1, C2), V1 layer 4
(L4), V1 layer 2/3 (L2/3), and V1 layer 5 (L5). The dimensions of
each layer are shown in Table 1, and the total number of neurons
is thus 5700.

Each color input presented to the network is first decomposed
into an RGB representation (range: 0–1) in digital images to be
consistent with the trichromatic color vision in primates as a
result of S, M, and L cones (Rowe, 2002) (Figure 1). The degree
of each input is represented as different spiking frequencies of
photoreceptors with 10% of random noise. To be consistent with
physiology, a stimulus that a human would perceive as red acti-
vates the green channel very strongly as well. The frequency of
each cone is determined as follow:

• Sfreq = 40[Hz] × B
• Mfreq = 40[Hz] × (G + R × 0.7 + B × 0.25)/(1 + 0.7 +

0.25)

• Lfreq = 40[Hz] × (R + G × 0.7 + B × 0.25)/(1 + 0.7 + 0.25)

Specific combinations of the decomposed color signals are then
projected to cells in LGN. The projections reflect the physiolog-
ical findings that reported different characteristics in different
layers of LGN (Shapley et al., 1981). Specifically, as later studies

Table 1 | Dimensions of each layer.

Layer Dimensions (number of cells)

V1 layers (L4, L2/3, L5) 30 × 30

LGN layers (C1, C2, L) 30 × 30

Photoreceptor layers (L, M, S) 10 × 10
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revealed, different layers of LGN receive different visual informa-
tion via optic nerves and show different functionality, forming a
luminance channel (L) and two opponent color channels, com-
prising red–green (C1) and blue–yellow (C2) channels as follows
(Casagrande, 1994; Goda et al., 2009; Rao and Xiao, 2012):

• Magnocellular (MC) pathways: luminance channel L = R + G
• Parvocellular (PC) pathway: red/green opponent channel

C1 = R − G
• Koniocellular (KC) pathway: blue/yellow opponent channel

C2 = (R + G) − B

Physiological studies also report that while the MC and PC path-
ways project their output to V1 L4, the KC pathway terminates
in V1 L2/3 (Chatterjee and Callaway, 2003), and many neu-
rons in L2/3 project excitatory connections to the neurons in
V1 L5 (Douglas and Martin, 2007). Our model incorporates
this anatomical architecture (Figure 1). Physiological evidence
indicates that there is heavy feedback from V1 to LGN (from
layer 6) and the thalamic reticular nucleus is involved in both the
feed-forward and feedback pathways, and data also suggests that
retinal ganglion cells have widely different spatial extent; however,
these are beyond the scope of this paper and are not explicitly
modeled.

Synaptic connections
Convergent connections are established to each neuron from a
topologically corresponding region of the preceding layer, lead-
ing to an increase in the receptive field size of neurons through
the visual processing areas, which reflects the known physiology
of the primate ventral visual pathway (Pettet and Gilbert, 1992;
Freeman and Simoncelli, 2011). While synaptic weights between
the photoreceptor layers and LGN layers are kept static, the

L M S

Photoreceptors

LGN

V1
Luminance channel (L)

Y/B opponent channel (C2)

R/G opponent channel (C1)

V1 Layer 4 V1 Layer 2/3

V1 Layer 5

FIGURE 1 | The pathways along which color information from the

photoreceptors is conveyed to cortical area V1 (solid lines represent

excitatory connections and broken lines represent inhibitory

connections). Each color input is represented by a specific combination of
corresponding firing frequencies of trichromatic cones. Each signal is
projected to anatomically appropriate layer in LGN layers forming a
luminance channel and two color opponent channels. The output is then
projected to appropriate layer in V1.

weights of other feed-forward connections are learned through
visually guided learning.

Each feed-forward connection requires a 1 ms delay for sig-
nal transmission. Each neuron also establishes lateral short-range
excitatory connections and long-range inhibitory connections,
forming a Mexican-hat spatial profile (Figure 2). Whether this
kind of lateral connectivity exists at the anatomical level is debat-
able (Martin, 2002; Kang et al., 2003; Hopf et al., 2006; Adesnik
and Scanziani, 2010), since a detailed microcircuitry map at the
neuron-to-neuron level is not currently available. However, we
incorporated this architecture to (1) be consistent with a previous
model by Rao and Xiao (2012) and (2) to abstract the function
exhibited by this kind of architecture (Kang et al., 2003; Neymotin
et al., 2011b). Further experimental work that details the wiring
of cortical microcircuitry may reveal whether these considera-
tions were justified (Alivisatos et al., 2013). The synaptic delay
is 1 ms for the excitatory connections and 4 ms for the inhibitory
connections.

Learning mechanism (STDP)
While synaptic weights at the connections between photoreceptor
layers and LGN layers were fixed, weights in all the other feed-
forward connections were plastic. Each synaptic weight in the
model was learned using STDP, where Long-term potentiation
(LTP) is caused if the pre-synaptic spike precedes the postsynap-
tic spike, and Long-term depression (LTD) is caused if the spike
timing is in the opposite order. The degree of the modification
depends on how close the two spikes are in time (Bi and Poo,
1998) as follows:

�w =
⎧⎨
⎩

LR × exp
(−(tpost − tpre)

ptau

)
if (tpost − tpre) > 0

−LR × exp
(

tpost − tpre

dtau

)
if (tpost − tpre) < 0

(1)

FIGURE 2 | Conceptual visualization of the inter/intra layer

connectivities. Activations of adjacent cells in the preceding layer are
transmitted to a topologically corresponding cell in the following layer. Tiles
filled with red represent cells that receive excitatory lateral connections
while tiles filled with blue represent cells that receive inhibitory lateral
connections, forming a Mexican-hat spatial profile.
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where LR is a learning rate, tpre is the time when presynaptic
cell becomes activated, tpost is the time when postsynaptic cell
becomes activated, and ptau/dtau controls the range of the influ-
ence. The curve generated by this function is show in Figure 3.
Weights are originally randomly assigned within a fixed range,
and after every iteration, weights in the same layers are normal-
ized so that the mean of all the values are always kept in the middle
of the pre-specified range, and also to prevent runaway excita-
tion (Neymotin et al., 2011a, 2013; Rowan and Neymotin, 2013).
Neurophysiological evidence for synaptic weight normalization is
provided by Royer and Paré (2003).

Neuron model
Model neurons utilized the standard parallel conductance model
with Hodgkin–Huxley dynamics for generating action poten-
tials. Neurons consisted of a single compartment (diameter
of 30 μm, length of 10 μm, axial resistivity of 100 �cm). The
rate of change of a neuron’s voltage (V) was represented as
−Cm

dV
dt = gpas(v − eleak) + isyn + iNa + iK , where Cm is the

capacitive density (10μF/cm2), isyn is the summed synaptic cur-
rent, and iNa and iK represent the Na+ and K+ currents from the
Hodgkin–Huxley channels. gpas represents the leak conductance
(0.001 nS), which was associated with a reversal potential, eleak,
of 0 mV.

Synapses were modeled using an instantaneous rise of
conductance, followed by exponential decay with specified
time-constant, τ. For excitatory synapses, we utilized AMPA
synapses (τ = 5 ms, erev = 0 mV), while for inhibitory GABA
synapses (τ = 10 and erev = −80). Synaptic currents followed
isyn = g(v − erev), where v is the membrane potential, and erev is
the reversal potential associated with the synapse.

Software
Simulations were run using the NEURON simulation envi-
ronment with the Python interpreter, multithreaded over
16–32 threads (Hines and Carnevale, 2001; Carnevale and
Hines, 2009; Hines et al., 2009). Simulation is posted on
ModelDB (https://senselab.med.yale.edu/ModelDB/ShowModel.

−150 −100 −50 0 50 100 150
−1

−0.5

0

0.5

1

Spike timing [msec]
−150 −100 −50 0 50 100 150
−1

−0.5

0

0.5

1

S
yn

ap
tic

 c
ha

ng
es

Spike timing [msec]

A B

S
yn

ap
tic

 c
ha

ng
es

FIGURE 3 | Synaptic modification functions with/without

Spike-Timing Dependent Plasticity (STDP). (A) Function with STDP:
temporal windows for depression (dtau = 34 ms) and potentiation
(ptau = 17 ms) used for spike-timing dependent plasticity where the
equation is given in Equation (1) (B) Function without STDP: the synaptic
weights are potentiated whenever both pre and post synaptic neurons
become activated during the training time for 300 ms.

asp?model=152197) (Hines et al., 2004). Simulations were run
on Linux on a 2.93 GHz 16-core Intel Xeon CPU X5670. A 300 ms
simulation ran in approximately 30 s.

DATA ANALYSIS METHODS
Clustering
In order to quantify the degree of clustering of the activations in
the network, a clustering coefficient C is calculated based on the
responses among different color inputs at every training iteration
as follows (modified from Kato et al., 2007):

C = 1

nCells × nStims

nStims∑
s = 1

nCells∑
i = 1

Cs,i (2)

Cs,i =

ks,i∑
l = 1

ks,i∑
m = l + 1

(FRs,l × FRs,m)

kiC2
(3)

where nCells is the number of neurons in a network; nStims is the
number of stimuli during the testing; FRs,i is the firing rates of
the cell i when exposed to a stimulus s; ki sets the nearby neurons
from the i-th neuron for the analysis. We use 9 (3 × 3) for the k
value.

Single-cell information
A single cell information measure was applied to individual
cells to measure how much information is available from the
responses of a single cell about which color input is present. The
amount of color specific information that a certain cell transmits
is calculated from the following formula:

I(s, �R) =
∑

r ∈ �R
P(r|s)log2

P(r|s)
P(r)

(4)

Here s is a particular color and �R is the set of responses of a cell
to the set of color stimuli, which are composed of eight colors
slightly varied the RGB values of original color by ±1%. This is
based on the assumption that the same set of tuned cells will still
respond to slightly variant colors and is to well differentiate the
tuned cells from randomly responding cells. The maximum infor-
mation that an ideally developed cell could carry is given by the
formula:

Maximum cell information = log2(n × p) bits (5)

As eight different sets of colors (combination of 0 and 1 for each
RGB value) are used in this analysis, the maximum information
could be carried in this analysis is 3.

Multiple-cell information
A multiple-cell information measure was used to quantify the net-
work’s ability to tell which stimulus is currently exposed to the
network based on the set of responses, R, of a sub-population
of cells, �C, as following formula with details given by Rolls and
Milward (2000).
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I�C
(
S, S′) =

∑
s,s′

P
(
s, s′

)
log2

P
(
s, s′

)
P(s)P (s′)

(6)

P
(
s′
) =

∑
s ∈ S

P
(
s′|R�C(s)

) × P
(
R�C(s)

)
(7)

P
(
s, s′

) = P
(
s′|R�C(s)

) × P
(
R�C(s)

)
(8)

Here, S represents the set of the stimuli presented to the net-
works, and �C defines the set of cells used in the analysis, which
had as single cells the most information about which color
input was present. From the set of cells �C, the firing responses
R�C (R = r(c)|c ∈ �C) to each color in S are used as the basis for the
Bayesian decoding procedure as follows:

P
(
s′|R�C

) = P
(
s′
) ∏

c ∈ �C P
(
Rc(s′)|s′)∑

s′′ ∈ S P (s′′)
∏

c ∈ �C P (Rc(s′′)|s′′) (9)

P (Rc(s)) |s′) =
∑nTrans

t = 1 pdf
(
Rc(s, t), R̄c

(
s′
)
, SDc

(
s′
))

nTrans
(10)

where n Trans defines the number of possible transforms; in this
case, similar but slightly different colors, and pdf computes the
probability density function at firing response of a subset of cells
when exposed to a stimulus s at tth transforms using the normal
distribution with their mean and standard deviation.

RESULTS
The results described in this study used a network model trained
with various small color image patches extracted from original
natural images of indoor scenes used in Quattoni and Torralba
(2009). The size of the photoreceptor layer in our model is
10 × 10 pixels while the size of original images was an average of
504.1 × 658.4 pixels (112 images). The training sessionconsisted

of 2000 iterations, where 2000 different 10 × 10 image patches
were extracted from the set of images. This was designed as an
abstraction of natural viewing, where eyes saccade, and the acti-
vation of photoreceptors corresponds to visual inputs bounded
by their range of view.

LEARNING PRODUCES SPATIAL CLUSTERING
During the training, synaptic efficacy between each of two layers
progressed from a uniform distribution at the initial state toward
a binary distribution where only a limited number of synaptic
connections were highly strengthened or weakened (Figure 4).
This convergence toward an bimodal equilibrium state is consis-
tent with other self-organizing modeling work with STDP (Song
et al., 2000; Kato et al., 2009; Basalyga et al., 2011). Contrary,
physiological studies have shown that synaptic weights tend to
have unimodal distributions with a positive skew (Barbour et al.,
2007). Barbour et al. (2007) raised a possible reconciliation with
the bimodal distributions of modeling with such experimental
data, given that the dendritic distribution of synaptic weights may
have a wide range of values, due to electrotonic filtering effects.
However, in order to explore this possibility, further investigation
will be required.

Investigation into the firing count of each neuron to differ-
ent color inputs shows that the weight convergence resulted in
development of clustered responses in the networks (Figure 5).
A comparison between the results with the weight distribution
plots in Figure 4 shows that even though the average weight
was kept constant, neuronal firing activity became more promi-
nent and deviated after the training; it was sparse (average rate
of 2.165 Hz with standard deviation of 0.874) prior to learning,
but after 2000 iterations of 300 ms exposure to image patches
extracted from natural indoor images, the network developed
different clustered firing patterns of neurons (average rate of
3.966 Hz with standard deviation of 1.169) for eight different

Untrained Network Trained Network (2000 iterations)

0 1 0 1
synaptic weights distribution

from V1 L23 to V1 L5

from C2 to V1 L23

from V1 L4 to V1 L23

from C1 to V1 L4

from L to V1 L4

from V1 L23 to V1 L5

from C2 to V1 L23

from V1 L4 to V1 L23

from C1 to V1 L4

from L to V1 L4

synaptic weights distribution

A B

FIGURE 4 | Synaptic weight distribution at synapses before (0

iteration) and after (2000 iterations) the learning. Weights are
initialized randomly. After every iteration, connection weights between
the two layers are normalized so that the mean of all the values are

kept in the middle of the pre-specified range, and to prevent runaway
excitation. The graphs show that the weights converged over the
course of the training sessions. (A) Untrained network. (B) Trained
network.
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FIGURE 5 | Boundaries of peaks of firing counts for seven colors (red, orange, yellow, green, aqua, blue, and purple) (A) before, (B) after training, and

(C) normalized firing activity of seven neurons in V1 L5 in response to the seven color inputs were plotted.

color inputs (red, orange, yellow, green, aqua, blue, purple,
and pink).

In Figures 5A,B, the boundaries of peaks of firing counts
for seven different colors (red, orange, yellow, green, aqua,
blue, and purple) before and after training are plotted. The
result shows that the training resulted in developing color selec-
tive clustered responses. Normalized firing activity of seven
neurons in V1 L5 were recorded and plotted in Figure 5C.
These results failed to show a clear spatial shift of the
activation with gradual change of color inputs as reported
in Xiao et al. (2003); however, the results revealed gradual
changes of firing patterns according to changes of input col-
ors, which is partially consistent with the physiological find-
ings. This also shows that some cells show higher selec-
tivity than others at responding to similar colors. This is
likely due to the fact that the color representation takes
a specific combination of three continuous values of RGB.

Depending on the trained weights, activations of some neu-
rons may only be influenced by one or two of the three values,
and the activation patterns also vary due to different com-
binations of those values and influences from other nearby
neurons.

We calculated a clustering coefficient [C; Equations (3, 3)] to
assess the effectiveness of training in producing spatial clustering
within the network. Figure 6 shows C of V1 L4, V1 L2/3, V1 L5,
as well as of V1 L5 trained with Hebb-like learning rule, plotted
as a function of training iteration. The result demonstrates that
the networks trained with STDP rule gradually increases cluster-
ing coefficients as training proceeds while the network trained
with Hebb-like learning rule remains relatively low clustering
coefficient.

The emergence of clustering may be explained by the lat-
eral excitatory connections described in section 2.1.2. When a
specific neuron becomes activated, the signal is propagated to
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FIGURE 6 | Clustering coefficient dynamics during the training. The
clustering coefficients C of V1 L4, L2/3, and L5, where the networks were
trained with STDP, were calculated by the equation given in Equations (3, 3)
and plotted by dotted line, dashed line, and solid line with circle markers,
respectively. Additionally, the clustering coefficients of V1 L5 when the
network was implemented with Hebb-like rule is plotted by the line with
asterisk markers. The result demonstrates that the networks trained with
STDP rule gradually increases clustering coefficients as training proceeds
while the network trained with Hebb-like learning rule remains relatively
low clustering coefficient.

the neighboring neurons making them more likely to become
activated as well. Once the neighboring cell reaches a threshold
and becomes activated, synaptic connections convergent onto the
cell from recently activated cells in the preceding layer become
strengthened via STDP. Repetitions of this process are likely to
be the cause of the development of the clustered responses of
cells. This phenomenon should be prominent only among nearby
cells because of lateral propagation delays and long-range lateral
inhibition.

The precise temporal dependence of STDP is crucial for the
clustering learning process. Activation of neurons are laterally
propagated within layers but with a specified delay. Therefore,
temporal differences of the activations between the source in the
preceding layer and the targets in the following layers become
large as the signal is propagated. As a result, the degree of LTP
decays as the differences become large, and LTD is turned on if the
post-synaptic activation timing becomes closer to the next pre-
synaptic activation, thus forming the distinct clustering responses
in the networks.

In order to confirm the importance of spike-timing in forming
color receptive field clustering, we ran a control simulation, using
a Hebbian plasticity synaptic learning rule, which does not take
into account the timing of pre- and post-synaptic neuronal spik-
ing (Figure 3B). After learning with this Hebbian plasticity rule,
the clustering coefficient value remained low (Figure 6 lines with
asterisks) relative to the results in the network trained with STDP.
This underlines the importance of STDP in developing clustering
in our model.

In addition, our model shows that the clustering coefficient
in higher layers tended to be larger. This observation makes us

expect information to gradually change in the different layers, and
this assumption has been confirmed in the next section.

SELECTIVITY OF THE RESPONSES
In order to identify how the learned connectivity shaped output
neuron sensitivity to stimuli, the techniques of Shannon’s infor-
mation theory were employed (Rolls and Treves, 1998). If the
responses r of a neuron carry a high level of information about
the presence of a particular color stimulus s, this implies that the
neuron will respond selectively to the presence of that color. Two
information measures were used to assess the ability of the net-
work to develop neurons that are selective to the presence of a
particular color by measuring single cell and population informa-
tion (see sections 2.2.2, 2.2.3). Since eight different sets of colors
(red, orange, yellow, green, aqua, blue, purple, and pink) are used
in this analysis, the maximum information carried in this analysis
is 3 bits.

Figure 7A shows the single cell information analysis as plotted
in rank order according to maximum information each cell car-
ries for a specific stimulus. The results compare the information
distribution of each layer in the trained network and of the final
layer (V1 L5) in the untrained and trained network. The results
demonstrate that neurons in the trained network generally carry
more single-cell information.

While useful in assessing the tuning properties of a particu-
lar neuron, the single-cell information measure cannot provide
mutuality of the responses; if all cells learned to respond to the
same color input (according to the single-cell measure) then there
would be relatively little information available about the whole set
of color stimuli S. To address this issue, we used a multiple-cell
information measure, which assesses the amount of informa-
tion that is available about the whole set of color inputs from a
population of neurons (see section 2.2.3).

In Figure 7B, the multiple cell information measures are plot-
ted according to the number of cells used in the analysis. The
result shows that the trained network conveys more color spe-
cific information than the untrained network. More interestingly,
we found that the amount of color specific mutual information
reaches a maximum with fewer neurons in the higher layers: 13
neurons in L4, 10 neurons in L2/3, and 8 neurons in L5. This
analysis indicates that estimations of the input colors can be
done using the output of fewer cells in the later stages of cortical
processing.

More precisely, the total amount of mutual information
(across a layer) can not increase through further processing as
the Data Processing Inequality (DPI) states—it can only be pre-
served or lost. In other words, if all the information from all
cells in each of the two layers was added up, it will decrease
in the higher layer. However, our specific information measure
explained in section 2.2.3 can increase for particular cells, as they
become more selective throughout the layers. In this case, some of
that information has shifted into different cells, and so all stimuli
can now be represented with fewer neurons, allowing for fewer
required cells to convey maximum information. Our information
measure therefore improves, showing that the cells are becoming
more tuned, even though the total information in the layer has
decreased.
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ON- AND OFF-CELLS
The firing pattern of each cell in response to turning a stimulus
ON and OFF was also investigated. During this testing proce-
dure, eight different colors (red, orange, yellow, green, aqua, blue,
purple, and pink) are presented for 240 ms, followed by 60 ms
of no visual input presentation, and the voltage level of each
neuron is recorded. In order to find if any neuron developed
ON/OFF sensitivities during training with similar properties to
those found in V1/V2 in vivo (Michael, 1978; Friedman et al.,
2003), from each recorded voltage dynamics, the 30 neurons

which responded the most during the first 60 ms and the last
60 ms were selected to be plotted in Figure 8. Similar to the phys-
iological findings, we found both ON- and OFF-cells for each
different color input, where populations of neurons showed a
burst of firing just after a presentation or removal of a color
input.

Also, further analysis revealed that some of those cells dis-
played the temporal color opponent property as reported in
Friedman et al. (2003). Figure 9A shows two types of such
cells: Red-ON/Green-OFF cells and Yellow-ON/Blue-OFF cells.
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(A) The single cell information measure are plotted in rank order according to
how much information they carry. The result show that the maximum
information each cell carry drops rapidly in the naive network while most of
the cells in the trained network carry relatively higher amount of information.
(B) The multiple cell information measures are plotted according to the

number of cells used in the analysis to visualize the mutuality of the
responses. The information that the trained network carries reaches
maximum mutual discriminability with 3 bits of information with around 8
neurons while the information that the naive network carries does not reach
this point with 15 neurons. This result also shows that fewer neurons are
required to represent all stimuli in the higher layers, as the information
measure improves from L4 → L2/3 → L5.
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FIGURE 8 | Firing activity of 30 neurons in V1 L5, which responded

vigorously when color input is presented or removed, from each

experiment. The color bars under each raster plot represent times at which

colors are presented to the neurons (each color is presented for 240 ms and
removed). From these results, we found that many neurons exhibit the
characteristics of ON/OFF-cells in the trained network.
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FIGURE 9 | Firing responses of neurons in the V1 L5, which shows

temporal color opponent ON/OFF responses. Figure on the top shows 30
neurons that responds highly when color red is presented and when color
green is removed. Figure on the bottom shows 30 neurons that responds

highly when color yellow is presented and when color blue is removed. This
result shows that in the trained network, we found Yellow-ON/Blue-OFF cells
and Red-ON/Green-OFF cells as reported in physiological experiments. (A)

Random delay. (B) No delay

In order to find such cells, we first identify 100 cells that show
Red-ON (or Yellow-ON) property, and then chose 30 cells from
the subset that show Green-OFF (or Blue-OFF) property.

Neurons in the layers are exposed to different colors in natural
images during the training, so the development of ON-cells which
exhibit specific responses to specific inputs can be explained with
standard feed-forward competitive learning principles (Rolls and
Treves, 1998). In contrast, the development of OFF-cells are due
to the lateral inhibitory connections emitted by ON-cells: sup-
pose there are ON-cells that were tuned to the color red. If red
is presented to the network, these ON cells become activated
making surrounding cells that receive inhibitory synaptic con-
nections from the ON cells less likely to become activated. When
the color input is removed, ON-cells stop activating. As a result,
the surrounding cells are no longer suppressed by the ON-cells,
demonstrating their being OFF-cells.

However, the question is where the OFF-cells receive excita-
tory input to enable them to remain activated after the removal
of the color input. In other words, there should be some mecha-
nism where ON-cells immediately stop receiving excitatory input
while OFF-cells keep receiving excitatory input, even after the
removal of the color input. This may be caused by the differ-
ences in firing timing of different input cells as explained in
Figure 10.

In our model, the maximum activation frequency of input cells
was set to 40 Hz (25 ms interspike interval), which is gamma oscil-
lations which are widespread in the visual cortex. Also, different
input cells have different randomly determined delays from the
input cell receiving color input to its firing, which is reflected in
their firing timings. As shown in Figure 10, suppose the spike tim-
ing of an input cell A is 24 ms earlier than another input cell B.
This means that there is at most 24 ms difference between the final
spike timing of cell A and the timing of cell B before the removal
of the color input. This 24 ms difference will result in giving a
chance for the OFF-cell that receives most of the inputs from the
input cells such as B to become activated after an ON-cell that
happens to receive most of the inputs from the input cells such as
A stops activating inhibitory signals.

In order to confirm the importance of the delay for the devel-
opment of such ON/OFF cells, we have also trained the same
network without randomly determined delays from the input cell
receiving color input to its firing timings. Figure 9B shows the
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FIGURE 10 | Diagrams to explain the speculated cause of the

differences in durations of firing activities of different neurons after

removal of color inputs. In this experiment, the maximum activation
frequency of input cells was set to 40 Hz, and different input cells have
different delays in the firing timings. Firing activation timing of input cell A is
1 ms later than another input cell B. This means there are 24 ms differences
in the last activation before the removal of the color input. This difference
will result in giving a chance for the OFF-cell that receives most of the
inputs from the input cells such as B to become activated after an ON-cell
that happens to receive most of the inputs from the input cells such as A
stops releasing inhibitory signals.

firing activities of each 30 neurons selected by the same procedure
used to find Red-ON/Green-OFF cells and Yellow-ON/Blue-OFF
cells earlier. The results show that in the network that employed
inputs without randomized delays, we failed to find Green-OFF
and Blue-OFF cells within each subset of 100 Red-ON cells and
Yellow-ON cells. This result indicates that the randomized delay
plays an important role for the development of the OFF cells.

In animal V1, much of the ON and OFF component of the
responses are thought to be inherited from similar properties of
LGN and RGC cells. Therefore, we are not expecting that onset
and offset transients arise in V1 alone. However, our results sug-
gested the possibility of multiple mechanisms that impact the
firing times of these cells.
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DISCUSSION
In this study, we have developed a model of early visual process-
ing of colors including the pathway beginning at photoreceptors
and terminating in the fifth layer of V1. We have incorpo-
rated anatomically accurate projections of signals between lay-
ers and the biologically plausible learning of synaptic weights
based on STDP using Hodgkin–Huxley models of neuronal
dynamics.

We have successfully shown that the networks gradually
develop clustered firing activity of neurons during training (sec-
tion 3.1). Information analysis based on averaged firing rates of
each neuron also confirmed development of neuronal color selec-
tivity after the training (section 3.2). Our results also indicated
that populations of neurons can provide reliable predictions of
the input color presented to the retina. Interestingly, the color
information measure by multiple-cell information analysis rises
more rapidly with fewer cells from L4 → L2/3 → L5, suggesting
that layered neocortical architecture may enable it to boost impor-
tant information. We also found that if the synaptic weights in
the network were learned via a Hebbian plasticity rule, the level
of clustering coefficient remained low relative to the results in the
network trained with STDP.

However, the question is why other models without STDP,
including the model by Rao and Xiao (2012), show similar types
of clustering merely due to Mexican-hat connectivity. One pos-
sibility would be that in many hierarchical unsupervised neural
network models, each layer is trained separately in turn. This
is important for synaptic connectivities in higher layers to be
appropriately tuned. However, in our model, all the synaptic
connectivities are learned simultaneously, which may be more
realistic. The implication would be that STDP may allow a net-
work to learn connectivities more flexibly without the traditional
greedy method of teaching one layer at a time. We propose this
hypothesis because adding another dimension of timing via STDP
allows the synaptic weights to be dynamically updated in real-
time whereas rate coded neurons depend on averaged firing rates
within pre-specified time windows.

Furthermore, investigating neuronal voltage dynamics
revealed the presence of both ON-cells and OFF-cells, which
respond maximally immediately after presentation or removal of
a particular color input. These results led us to hypothesize that
the emergence of OFF-cells was caused by different spike timing
delays from input cells (section 3.3).

The role of neuronal synchrony in color processing is still an
open question particularly since our model demonstrates that
information analysis based on firing rates can successfully pre-
dict the color input. However, while the network was trained with
various color input in natural images, in this analysis, the network
was tested only with eight clearly distinct colors, and in order to
accurately decode the subtle differences between similar colors,
synchrony and its timing may play an important role for the rep-
resentations at least in our proposing mechanism. In addition,
the importance of timing delays in the creation of ON/OFF cells
suggests rate codes alone may not be sufficient in visual system
development.

ROLE OF SPIKE-TIMING DELAYS IN CREATING ON/OFF CELLS
The mechanism of the emergence of OFF-cells due to spike timing
delays allows us to propose a possible in vivo mechanism of the
development of the ON/OFF-cell that is also combined with the
R/G opponency shown in Figure 9. As shown in Figure 11, we
suppose there is a simplified network that consists of three cells
in the LGN layers and two cells in output layer (RON/GOFF cell
and its neighboring cell N). In this schematic, LGN cells consist
of a C1 (R/G opponent) cell and two L (monochrome) cells. In
addition, one of the L cells, L1, has a delayed Green input (see
details in Figure 10).

When the color red is presented to the network (Figure 11A),
all three cells in the LGN become activated, and the RON/GOFF

output cell that receives excitatory inputs from the C1 cell and
one L cell (L1) becomes highly activated. When the red input is
removed (Figure 11B), only L cells become slightly activated due
to the delayed connection, which does not have a large influence
on the RON/GOFF cell.

R G B R G B

C1 L2

R G B

C1

R G B

L1 L2L1

excitatory connection

inhibitory connection

*

*delayed connection

A Red is presented B Red is removed C Green is presented D Green is removed

C1 L2L1 C1 L2L1

N N N N

* **

Ron/

Goff

Ron/

Goff

Ron/

Goff

Ron/
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FIGURE 11 | Diagrams of a simplified network to explain emergence of

ON/OFF-cells that is also combined with R/G opponency shown in

Figure 9. Each box represents a neuron. Inputs leading to the
activation/inactivation of a RON/GOFF output cell is shown ((A) red is
presented; (B) red is removed; (C) green is presented; (D) green is removed).
Here, N represents the neighboring cell of the RON/GOFF output cell. In the

intermediate layer, C1 is a cell in the Red/Green color opponent channel (R −
G) and L is a cell in the luminance channel (R + G). In the input layer on the
bottom, each R, G, B represent a photoreceptor. Neurons are filled in
proportion to their activation level. Solid (broken) arrows represent excitatory
(inhibitory) connections. A star placed next to an arrow means that the
connection has delayed synaptic timing as discussed in Figure 10.
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When Green color input is presented to the same network
(Figure 11C), the L cells become activated. Subsequently, the N
cell in the output layer that sends an inhibitory signal to the
RON/GOFF cell becomes activated as well. Because of the inhibi-
tion, the RON/GOFF cell does not become highly activated even
though it receives excitatory input from the preceding L1 cell.
When the color input is removed (Figure 11D), the L1 cell that
has the delayed connection from the Green cell is kept activated,
which causes the RON/GOFF cell to become activated.

Similarly, a possible mechanism of the ON/OFF-cell that is
combined with Y/B opponency is provided in Figure 12. In the
figure, we suppose a simplified network consists of three C2 (Y/B
opponent) cells in the LGN layer and three cells in the output layer
(YON/BOFF, N1, and N2). Each cell in the output layer receives
excitatory input from one C2 cell (C21, C22, and C23) cell). N2

cell establishes inhibitory connection to N1, and the N1 estab-
lishes an excitatory connection to the target cell, YON/BOFF. In
this network, C22 cell establishes the delayed connections dis-
cussed above (in Figure 10) from the R and G cells, and C23 cell
establishes delayed connections from all R, G, and B cells.

As shown in Figure 12A, when the color yellow is presented, all
C2 cells become activated. As a result, the target cell, YON/BOFF,
should become highly activated by receiving excitatory input from
the preceding C21 cell. In addition, the target cell YON/BOFF

receives some excitation from N1 cell. When the color input is
removed (Figure 12B), due to the delayed connections, C22 and
C23 cells are kept active for an interval, but not C21. As a result,
the target cell, YON/BOFF would not get highly activated.

When the color blue is presented (Figure 12C), none of the
C2 cells would become activated, leading to no activation of the
target cell. On the other hand, when the color input is removed
(Figure 12D), C22 cell becomes activated to some degree due to
the delayed connection from R and G with their weak activations
caused by the color blue. This leads to the activation of N1 that
establishes excitatory connection to the target cell, YON/BOFF. In

this way, it is possible to provide a possible dynamical mechanism
of ON/OFF-cells that involves color opponency.

In order to test the hypothesized architectures above, we have
modeled the simple networks using the same set of neurons used
in our computational model and recorded firing activity of each
neuron for 300 ms (240 ms of color input presentation followed
by 60 ms of no color input presentation) (Figure 13). The results
show that the same target neuron exhibits characteristics of both
RON/GOFF, and YON/BOFF firing activity. However, the result also
showed that those responses are not observed immediately after
the presentation or removal of the color input. In other words,
there is still activity in ON-cells after the stimulus is turned off.
Also, OFF-cells show responses when the stimulus is turned on.
These effects are due to the transitional delay of signals. However,
as shown in Figures 8, 9, the population activity shows a more
clear ON/OFF response.

POTENTIAL LIMITATIONS
Although our model predicts that spike timing is important for
the effective development of color selectivity, our model did not
investigate development of orientation selectivity, which is known
to coexist with color selectivity, as investigated in previous mod-
els (Barrow et al., 1996; Rao and Xiao, 2012). Therefore, in future
work it will be important to model co-development of both color
and orientation selectivity. A different limitation of our model
is that the representation of color input was based on simpli-
fied input cells that detect digital RGB values. To investigate more
realistic mechanisms of development, biologically-accurate archi-
tectures of the various types of retinal cells that are involved in the
process should be implemented.

CONVERGENCE OF APPROACHES
Our model of the early visual system displays convergence
between the fields of computational neuroscience and artifi-
cial neural networks (ANNs). Computational neuroscience has
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FIGURE 12 | Diagrams of simplified network to explain a possible

mechanism of ON/OFF-cell that is combined with the Y/B opponency

reported in Figure 9. In the figure, each box represents a cell in the network.
Inputs leading to the activation/inactivation of a YON/BOFF output cell are
shown: ((A) yellow is presented; (B) yellow is removed; (C) blue is presented;
(D) blue is removed). In the output layer on the top, the target cell shown as
YON/BOFF in each box represents the ON/OFF target cell, N1 is a neighboring
cell that sends excitatory connections to YON/BOFF, and N2 is a cell that

sends excitatory connections to N1. In the intermediate layer, C2 is a cell in
the Yellow/Blue color opponent channel [(R + G)−B]. In the input layer on the
bottom, each R, G, B represent each photoreceptor. Cells are filled with a
color to provide degrees of activations of different cells; partially filled box
means it is only activated a small amount. All solid arrows represent
excitatory connections while broken arrows represent inhibitory connections.
A star placed next to an arrow means that the connection has a delayed
synaptic timing as discussed in Figure 10.
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FIGURE 13 | (A) Firing activity of each neuron in the simple network
described in Figure 11. Left sub-panels show the activity when color
input of red, RGB(1, 0, 0), is presented while right sub-panels show the
activity when color input of green, RGB(0, 1, 0) is presented, both for
240 ms. In the figures on the top, the activity of C1, L1, and L2 are
plotted with blue, green, and red color, respectively. The figure on the
middle plots the activity of the neighboring cell, N, and the figure on the
bottom plots the activity of the RON/GOFF cell. (B) Firing activity of each

neuron in the simple network described in Figure 12. Left sub-panel
shows the activity when color input of yellow, RGB(1, 1, 0), is presented
while right-subpanel shows the activity when color input of blue, RGB(0,
0, 1), is presented, both for 240 ms. In the top panels, the activities of
C21, C22, and C23 are plotted with blue, green, and red color,
respectively, and in the middle panels, the activities of N1 and N2 are
plotted with blue and green color, respectively. The bottom panels display
the activity of the YON/BOFF cell.

traditionally attempted to understand neuronal dynamics by
building models by using known biological detail without forcing
an explicit engineered goal. ANNs, which emerged from the field
of artificial intelligence, have stressed an approach that aims to
develop systems displaying intelligence by constraining the system
design to a specified goal, while taking inspiration from biological
systems (Hinton et al., 2006).

Recent developments in ANNs, including deep learning, a
technique drawing inspiration from neurobiology, have made sig-
nificant progress in recent years (Hinton et al., 2006) improving
performance on visual information processing (Lee et al., 2009).
Progress has also been made by training recurrent neural net-
works to perform extremely well on difficult, specialized classes
of problems, such as handwritten character recognition (Graves
and Schmidhuber, 2008). Related developments have also started
focusing on investigations into utilizing brain-inspired informat-
ics to improve the intelligence of current technologies (Eguchi
et al., 2013). However, currently, even the best machine learn-
ing algorithms have difficulty in matching human performance
in recognizing arbitrary classes of complex visual stimuli. Basic
research in neurobiology, combined with utilization of biological
detail in computer models, is therefore needed to enable further
improvements in machine learning. Improved understanding of
how the brain circuitry represents and processes visual informa-
tion may inspire new classes of visual processing algorithms. We
have used this approach to design our model, which allows cor-
relation of its neuronal dynamics with electrophysiological data,
takes into account known neuroanatomy, and uses a biologically

plausible learning rule (Markram et al., 1997), and therefore takes
a step toward improved understanding of in vivo brain dynamics.

NEOCORTICAL ARCHITECTURE
One of the basic goals of neuroscience is to elucidate the mech-
anisms by which the structure of the brain leads to its function
(Shepherd, 2004). This depends on a careful study of neu-
roanatomy as well as functional measures in vivo (Weiler et al.,
2008). The importance of changes in microcircuitry is under-
scored with experimental studies that have shown how alterations
in cortical connectivity can lead to diseases, such as autism (Qiu
et al., 2011). Since it is not possible to measure the state of all neu-
rons it is important to combine computer modeling with known
neurophysiological circuitry data (Lytton, 2008). Following this
approach in our model allows us to make predictions on the func-
tion and development of several features observed in visual cortex
in vivo.

Our model suggests that in vivo, the process of development of
color clustering is more likely to initiate in earlier layers (L4) of
V1. This may be testable via electrophysiological methods applied
during different stages of development. Our model is also con-
sistent with more general implications, suggesting that through
a process of development, each layer of neocortex may learn to
enhance important signals as they progress within the micro-
circuitry. Although initial synaptic weights in our model were
randomly distributed, visual information and STDP allowed the
feed-forward projections of the neocortex to learn the color infor-
mation as the signals flowed in successive layers. In our model, the
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color information progressed from L4 → L2/3 → L5. Although
L4 is the input layer into V1, the final output layer (L5) had
the highest information content about the color stimuli. Further
experiments will be needed to elucidate the role that individ-
ual layers play in shaping the information coding capacity of the
neocortex.

Prior modeling (Stringer and Rolls, 2002; Rolls and Stringer,
2006; Dura-Bernal et al., 2012) and experiments (Hung et al.,
2005) have shown the importance of the feed-forward architec-
ture of the visual cortex ventral stream for object recognition.
Although our work makes use of the feed-forward architecture
of cortical areas, it also takes into account additional details of
wiring, including recurrent connectivity. As more microcircuitry
data becomes available, it will be possible to refine our model
further (Alivisatos et al., 2013). Part of this process will involve
combined experimental/computational approaches. For example,
Hung et al. (2005) studied the ventral visual pathway with the aim
of understanding how object recognition takes place by building
pattern recognition algorithms that utilize inferotemporal cortex
neuronal spiking information to assess both object category and
identity. In the future it will be possible to extend our model to use
similar techniques to quantify performance in object recognition
that is based on accurate color processing.
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