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Abstract

Motivation: Drug–target interaction (DTI) prediction is a foundational task for in-silico drug discovery, which is costly
and time-consuming due to the need of experimental search over large drug compound space. Recent years have
witnessed promising progress for deep learning in DTI predictions. However, the following challenges are still open:
(i) existing molecular representation learning approaches ignore the sub-structural nature of DTI, thus produce
results that are less accurate and difficult to explain and (ii) existing methods focus on limited labeled data while
ignoring the value of massive unlabeled molecular data.

Results: We propose a Molecular Interaction Transformer (MolTrans) to address these limitations via: (i) know-
ledge inspired sub-structural pattern mining algorithm and interaction modeling module for more accurate
and interpretable DTI prediction and (ii) an augmented transformer encoder to better extract and capture the
semantic relations among sub-structures extracted from massive unlabeled biomedical data. We evaluate
MolTrans on real-world data and show it improved DTI prediction performance compared to state-of-the-art
baselines.

Availability and implementation: The model scripts are available at https://github.com/kexinhuang12345/moltrans.

Contact: jimeng@illinois.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Drug discovery is notoriously costly and time-consuming due to the
need of experimental search over large drug compound space.
Drug–target protein interaction (DTI) prediction serves as the foun-
dation for finding new drugs (i.e. virtual screening) and new indica-
tions of existing drugs (i.e. drug repositioning), since the
therapeutic effects of drug compounds are detected by examining
DTIs (Hughes et al., 2011). During the compound identification
process, researchers often need to conduct assay experiments and
search over 97 M possible compounds in a candidate database
(Broach et al., 1996).

Luckily, with massive biomedical data and knowledge being col-
lected and available, along with the advances of deep learning tech-
nologies which demonstrated huge success in many application areas,
the drug discovery process particularly DTI prediction has been sig-
nificantly enhanced. Recently, various deep models have shown
encouraging performance in DTI predictions. They often take drug
and protein data as inputs, cast DTI as a classification problem, and
make prediction by feeding the inputs through deep learning models

such as deep neural network (DNN) (Unterthiner et al., 2014), deep
belief network (DBN) (Wen et al., 2017) and convolutional neural
network (CNN) (Mayr et al., 2018; Öztürk et al., 2018, 2019).
Despite these efforts, the following challenges are still open.

1. Inadequate modeling of interaction mechanism. Existing works

(Gao et al., 2018; Öztürk et al., 2018, 2019) learn molecular

representation and make prediction based on whole molecular

structure of drugs and proteins, ignoring that the interactions

are sub-structural—only involving relevant sub-structures of

drugs and proteins (Jia et al., 2009; Schenone et al., 2013). The

full-structural molecular representations introduce noises and af-

fect the prediction performance. Also, the learned representa-

tions are hard to interpret since they do not provide a tractable

path to indicate which sub-structures of drugs and proteins con-

tribute to the interactions.

2. Restricted to limited labeled data. Previous works

(Gao et al., 2018; Lee et al., 2019; Öztürk et al., 2018, 2019;
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Wen et al., 2017) focus on data in hand and limit the scope with-

in several thousands of drugs and proteins while ignoring the

vast (e.g. order of millions) unlabeled biomedical data available.

The model architectures in previous works are also not designed

to enable the integration of massive dataset.

Present Work. To solve these challenges, we propose a trans-
former (Vaswani et al., 2017)-based bio-inspired molecular data
representation method [coined as Molecular Interaction
Transformer (MolTrans)] to leverage vast unlabeled data for in-sil-
ico DTI prediction. MolTrans is enabled by the following technical
contributions:

1. Knowledge inspired representation and interaction modeling for

more accurate and explainable prediction. Inspired by the know-

ledge that DTI is sub-structural, MolTrans derives a data-driven

method called Frequent Consecutive Sub-sequence (FCS) mining

that is adaptable to extract high-quality fit-sized sub-structures

for both protein and drug. In addition, MolTrans includes a bio-

inspired interaction module imitating the real biological DTI

process. The new sub-structure fingerprints enable a tractable

path for understanding which sub-structure combination has

more relevance to the outcome through an explicit map in the

interaction module.

2. Leverage massive unlabeled biomedical data. MolTrans mines

through millions of drugs and proteins sequences from multiple

unlabeled data sources to extract high-quality sub-structures of

drugs and proteins. The vast data result in a much higher quality

sub-structures than using small training dataset alone. We also

augment the representation using transformers (Vaswani et al.,

2017), which captures the complex signals among the large

sequential sub-structures outputs generated from the unlabeled

data.

We provide a comprehensive performance comparison of state-
of-the-art methods on various realistic drug discovery settings in-
clude unseen drug/target problems and in scarce training dataset
setup. We show empirically that MolTrans has robust improved pre-
dictive performance over state-of-the-art baselines by up to 25%
over the best performing baseline.

Related work. Numerous computational methods have been
developed for DTI prediction problem. Similarity-based methods
such as kernel regression (Pahikkala et al., 2015) and matrix fac-
torization (Zheng et al., 2013) methods exploit known DTI’s
drug–target similarity information and infer new ones. However,
these methods are shown to be not generalizable to different pro-
tein classes (Wen et al., 2017). Feature-based methods feed nu-
merical descriptors of drug and proteins into downstream
prediction models. Popular numerical descriptors include ECFP
(Rogers and Hahn, 2010) and PubChem (Bolton et al., 2008) for
drugs, Composition–Transition–Distribution (CTD; Dubchak
et al., 1995) and protein sequence composition descriptor (PSC;
Cao et al., 2013) for proteins. Classic machine learning methods
such as gradient boosting (He et al., 2017) have shown promises
in predictive performance. Recently, deep learning-based methods
(Öztürk et al., 2019; Tsubaki et al., 2019; Unterthiner et al.,
2014; Wen et al., 2017) have shown further improvement of per-
formance due to its capability to capture complex non-linear sig-
nals of DTI. MolTrans differs from existing works with (i) its
knowledge-driven model architecture design rather than direct
application of existing deep learning models; (ii) emphasis on in-
terpretability instead of predictive performance alone to poten-
tially aid medical chemists for better decision making and (iii)
usage of external drug and target data to complement interaction
dataset.

2 Materials and methods

2.1 Problem definition
We formulate the DTI prediction as a classification task to deter-
mine whether a pair of drug and target protein will interact. In our
setting, drug is represented by the Simplified Molecular Input Line
Entry System (SMILES) Si, which consists of a sequence of chemical
atoms and bonds tokens (e.g. C, O, S), generated by depth-first tra-
versal over the molecule graph. We denote S for drug’s SMILES rep-
resentation. Target protein, denoted as A, is represented by a
sequence of protein tokens, where each token is one of the 23 amino
acids. The notation table is provided in Supplementary Material S1.
The DTI prediction task is defined as below.

Problem 1 (DTI Prediction). Given compound sequence S ¼
fS1; . . . ; Sng for n drugs and protein sequence A ¼ fA1; . . . ;Amg for
m proteins, the DTI prediction task can be casted as to learn a func-
tion mapping F : S � A ! ½0; 1� from drug–target pairs to an inter-
action probability score.

2.2 The MolTrans method
The MolTrans framework learns to predict DTI as follows. Given
the input drug and protein data, a FCS mining module first decom-
poses them into a set of explicit sequences of sub-structures using a
specialized decomposition algorithm. The outputs are then fed into
a augmented transformer embedding module to obtain an aug-
mented contextual embedding for each sub-structure through trans-
former encoders (Vaswani et al., 2017). Next, in the interaction
prediction module, drug sub-structures are paired with protein sub-
structures with pairwise interaction scores. A CNN layer is later
applied on the interaction map to capture higher-order interactions.
Finally, a decoder module outputs a score indicating the probability
of pairwise interactions. Method illustration is provided in Fig. 1.

2.2.1 FCS mining module

Driven by the domain knowledge that DTI happens in a sub-
structural level, MolTrans first decomposes molecular sequence for
proteins and drugs into sub-structures. In particular, we propose a
data-driven sequential pattern mining algorithm called FCS algorithm
to find recurring sub-sequences across drug and protein databases.
Inspired by the invention of sub-word units in the natural language
processing field (Gage, 1994; Sennrich et al., 2015), FCS aims to gen-
erate a set of hierarchy of frequent sub-sequences for sequences.

The algorithm is summarized in Algorithm 1. FCS decomposes
each sequence of protein/drug hierarchically into sub-sequences,
smaller sub-sequences and individual atoms/amino acids symbols.
FCS first initializes a vocabulary set V of distinctive amino acid
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tokens or SMILES strings characters and given the tokens, tokenizes
the entire drug/protein corpus. We call the tokenized set W. Then, it
scans through W and identifies the most frequent consecutive tokens
(A, B). FCS then updates every (A, B) in the tokenized set W with
the new token (AB) and also adds this new token to the vocabulary
set V. Then this process of scan, identify, update is repeated until no
frequent token is above the threshold h or the size of V reaches a
pre-defined maximum value ‘. Through this operation, frequent
sub-sequences are merged into one token and sub-sequences that are
not frequent enough are decomposed into a set of shorter tokens. In
the end, for a drug/protein, FCS results in a sequence C ¼
fC1; . . . ;Ckg of sub-structural drug/target proteins with size of k,
where each Ci is from the set V.

Using FCS algorithm, MolTrans converts input drug and target
to a sequence of explicit sub-structures Cd and Cp, respectively. The
significance of FCS is threefolds:

1. It distinguishes from previous sub-structure fingerprinting meth-

ods as it is more explainable. Explicit sub-structure fingerprint

such as PubChem encoding has on average 100 granular sub-

structures for a small molecule where many sub-structures are a

subset of other ones, making it intractable to know which sub-

structure leads to the outcome. In contrast, FCS drug encoding is

capable of giving explicit hints as it decomposes each drug mol-

ecule into discrete and moderate size partitions of sub-structures

as shown in Section 3.7. It allows for leveraging the massive un-

labeled data for improved sub-structure mining. For example,

we use the Uniprot dataset (Boutet et al., 2007) consists of

560 823 unique protein sequences and the ChEMBL database

(Gaulton et al., 2012) which includes 1 870 461 drug SMILES

strings. We observe that the quality of the mined sub-structures

originates from the massive unlabeled data we used. In small

datasets, the occurrences of many useful sub-structures are

below the reasonable minimum frequency whereas a large aggre-

gation dataset can successfully identify them with a larger

sequences pool. We also show that the encoding has better pre-

dictive power when using massive unlabeled data compared to

using small datasets, in Section 3.8.

2. FCS can capture fundamental and meaningful biomedical seman-

tics. The generated sub-structures are associated with fundamen-

tal unit of drugs and proteins that recur frequently. We find that

the FCS algorithm identify similar set of fundamental biochemical

sub-structures given different dataset characteristics such as differ-

ent types of organisms of the protein dataset and the drug-

likeliness of drug dataset, suggesting the robustness of FCS algo-

rithm (Supplementary Material S1). In general, we apply a more

general dataset (e.g. ChEMBL) instead of a focused dataset (e.g.

approved drugs in DrugBank) because larger dataset can improve

downstream predictive performance (Section 3.8).

2.2.2 Augmented transformer embedding module

To capture the chemical semantics of sub-structures, MolTrans
includes an augmented embedding module where it first initializes a
learnable sub-structure lookup dictionary and then augment the
embedding with the contextual sub-structural information via trans-
former encoders (Vaswani et al., 2017). The transformer is a state-
of-the-art deep learning architecture that leverages self-attention
mechanism to generate contextual embedding. It was originally
developed to natural language processing tasks. Here, we adapted it
for molecule representation learning. In our setting, the self-
attention mechanism in the transformer encoder modifies each input
sub-structure embedding by learning from all the sub-structures
from the same molecule. The resulting sub-structural embedding is
better because it is contextual by taking account into the complex
chemical relationships among the neighboring sub-structures.

Concretely, for each input drug–target pair, we transform the
corresponding sequence of sub-structures Cp and Cd into two

matrices Mp 2 Rk�Hp and Md 2 Rl�Hd , where k/l is the total size of
sub-structures for drug/protein or the cardinality of the vocabulary
set V from FCS algorithm, Hp and Hd are the maximum lengths of
sub-structure sequences for protein and drug, and each column M

p
i

and Md
j is a one-hot vector corresponding to the sub-structure index

for the ith sub-structure of protein sequence and jth sub-structure of
drug sequence. The content embedding Ep

conti
;Ed

contj
for each protein

and drug is generated via a learnable dictionary lookup matrix
Wp

cont 2 R#�k and Wd
cont 2 R#�l such that

Ep
conti
¼Wp

contM
p
i ; Ed

contj
¼Wd

contM
d
j ;

where # is the size of latent embedding for each sub-structure.
Since MolTrans uses sequential sub-structures, we also include a

positional embedding Ep
posi

;Ed
posj

via a lookup dictionary (Vaswani
et al., 2017) Wp

pos 2 R#�Hp and Wd
pos 2 R#�Hd :

Ep
posi
¼Wp

posI
p
i ; Ed

posj
¼Wd

posI
d
j ;

where I
p
i 2 RHp=Id

j 2 RHd is a single hot vector where i/jth position
is 1.

The final embedding E
p
i ;E

d
j are generated via the sum of content

and positional embedding:

E
p
i ¼ Ep

conti
þ Ep

posi
;Ed

j ¼ Ed
contj
þ Ed

posj
: (1)

The models above outputs a set of independent sub-structure
embedding. However, these sub-structures have chemical relation-
ships (e.g. Octet rules) among themselves to capture these contextual
information, we further augment the embedding using a transformer
encoder layers (Vaswani et al., 2017):

~E
p ¼ TransformerProteinðEpÞ; ~E

d ¼ TransformerDrugðEdÞ: (2)

2.2.3 Interaction prediction module

MolTrans includes an interaction module that consists of two layers:
(i) an interaction tensor to model pairwise sub-structural interaction
and (ii) a CNN layer over interaction map to extract neighborhood
interaction.

Pairwise interaction. To model the pairwise interaction, for each
sub-sequence i in protein and sub-sequence j in drug, we have

Ii;j ¼ Fð~Ep

i ;
~E

d

j Þ; (3)

where F is a function that measures the interaction between the
pairs. It can be any function such as sum, average and dot product.
Therefore, after this layer, we have a tensor I 2 RHd�Hp�U, where
Hd=Hp is the length of sub-sequences for drug/protein, respectively,
and U is the size of the output of function F, where each column in
this tensor takes account into the interaction of individual sub-
structure of proteins and drugs. To provide explainability, we favor
dot product as the aggregation function because it generates a single
scalar that explicitly measures the intensity of interaction between
individual target-drug sub-structural pair. As dot product output is
one-dimensional for every pair, I becomes a two-dimensional inter-
action map. If a value in the map is high, it will be activated in the
downstream layer and have a higher likelihood of DTI interaction.
Through end-to-end learning, if a pair of sub-structures indeed inter-
act, they will have high interaction score in the corresponding sub-
structure pair position in the interaction map. Thus, by examining
this map, we directly see which sub-structure pairs contribute to the
final outcome.

Neighborhood interaction. Nearby sub-structure of proteins and
drugs influence each other in triggering the interactions. Hence, be-
sides modeling the individual pairwise interaction, it is also neces-
sary to model the interaction to the nearby regions. We achieve this
through a CNN (Krizhevsky et al., 2012) layer on top of the inter-
action map I. The intuition is that by applying several order-
invariant local convolution filters, interaction to nearby regions can
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be captured and aggregated. We obtain the output representation O
of the input drug–target pair:

O ¼ CNNðIÞ: (4)

This interaction module is inspired from the Deep Interactive
Inference Network (Gong et al., 2018). Thanks to this explicit inter-
action modeling, we can later visualize the strength of individual
sub-structural interaction pair from the interaction map. To output
a probability indicating the likelihood of interaction, we first flatten
the O into a vector and use a linear layer parameterized by weight
matrix Wo and bias vector bo:

P ¼ rðWoFLATTENðOÞ þ boÞ; (5)

where rðaÞ ¼ 1
1þexp ð�aÞ.

The entire network with parameters Wp
cont; Wd

cont; Wp
pos; Wd

pos

Wo; bo, the transformer encoders weights and CNN weights can be
jointly optimized through the binary classification loss:

L ¼ Y log ðPÞ þ ð1� YÞ log ð1� PÞ; (6)

where Y is the ground truth label.

2.3 Implementation
MolTrans is implemented in PyTorch (Paszke et al., 2019). For the
FCS algorithm, we set the minimum number of occurrences of sub-
structures in the dataset to be 500 for drugs and proteins, which
results in 23 532 drug sub-structures and 16 693 protein sub-
structures. For transformer encoders, we use two layers of trans-
former encoders for both drug and proteins. The input embedding is
of size 384 and we set 12 attention heads for each transformer en-
coder with intermediate dimension 1536. We set the maximum
length of sequence for drug to be 50 and protein to be 545 to cover
95% of them in the dataset. We cut/pad for the parts that are above/
below the maximum length. We show that the model performance is
not biased against sequence length in Supplementary Material S2.
For the CNN, we use three filters with kernel size three. For opti-
mization hyper-parameters, we use Adam optimizer with learning
rate of 1e�5. We set the batch size to be 64 and we allow it to run
for 30 epochs. It converges between 8 and 15 epochs. The dropout
rate is 0.1.

3 Result

We design experiments to answer the following questions.
Q1: Does MolTrans improve DTI predictive performance?
Q2: How well does MolTrans tackle the unseen drug/target

cases?
Q3: How does MolTrans respond to large number of missing

data?
Q4: How does performance vary given different protein

families?
Q5: Does MolTrans provide useful knowledge about DTI?
Q6: How does each component of MolTrans contribute to the

predictive performance gain?

3.1 Experimental setup
Dataset. We use the MINER DTI dataset from BIOSNAP collection
(Zitnik et al., 2018a) as our main dataset of experiments. It consists
of 4510 drug nodes and 2181 protein targets, and 13 741 DTI pairs
from DrugBank (Wishart et al., 2008). BIOSNAP dataset only con-
tains positive DTI pairs. For negative pairs, we sample from the un-
seen pairs, following common practice (Zhang and Chen, 2018;
Zitnik et al., 2018b). We obtain a balanced dataset with equal posi-
tive and negative samples. In addition to BIOSNAP, we also include
two benchmark datasets in the main predictive performance com-
parison experiment. DAVIS consists of wet lab assay Kd values
among 68 drugs and 379 proteins (Davis et al., 2011) and
BindingDB consists of Kd values among 10 665 drugs and 1413 pro-
teins (Liu et al., 2007). DTI pairs that have Kd values <30 units are

considered positive. For balanced training, we sub-sample the same
number of negative DTI pairs as the positive samples for training
set. We keep the dataset negative ratios in the validation and testing
set. Dataset statistics are provided in Table 1.

Metrics. We use ROC-AUC (area under the receiver operating
characteristic curve) and PR-AUC (area under the precision–recall
curve) as metrics to measure the binary classification performance.
In addition, we use sensitivity and specificity metrics where the
threshold is the one that has the best F1 score in the validation set.

Evaluation strategies. We divided the dataset into training, valid-
ation and testing sets in a 7:1:2 ratio. For every experiment, we con-
duct five independent runs with different random splits of dataset.
We then select the best performing model based on ROC-AUC per-
formance from the validation set. The selected model via validation
is then evaluated on the test set with the result reported below.

Technologies. We use a server with 2 Intel Xeon E5-2670v2
2.5 GHz CPUs, 128 GB RAM and 2 NVIDIA Tesla P40 GPUs.

3.2 Baselines
We compared MolTrans with the following baselines. We focus on
state-of-the-art deep learning models as they have demonstrated su-
perior performance over shallow models.

1. LR (Cao et al., 2013; Rogers and Hahn, 2010) applies a logistic

regression model on the concatenated drug and protein feature

vectors. We experiment on all the combinations for ECFP4

(Rogers and Hahn, 2010) and PubChem (Wang et al., 2009) for

drugs and PSC (Cao et al., 2013) and CTD (Dubchak et al.,

1995) for proteins. We find ECFP4 for drugs and PSC for protein

has the highest performance.

2. DNN uses a three layer DNN with hidden size 1024 on top of

the ECFP4 and PSC concatenated vector.

3. GNN-CPI (Tsubaki et al., 2019) uses graph neural network to

encode drugs and use CNN to encode proteins. The latent vec-

tors are then concatenated into a neural network for compound–

protein interaction prediction. We follow the same hyper-

parameter setting described in the paper.

4. DeepDTI (Wen et al., 2017) models DTI using DBN (Hinton,

2009), which is a stack of Restricted Boltzmann Machines

(Hinton, 2012). It uses the concatenation of ECFP2, ECFP4,

ECFP6 as the drug feature and uses PSC for protein features. We

optimize the hyper-parameters described from the paper based

on validation set performance.

5. DeepDTA (Öztürk et al., 2018) applies CNN on both raw

SMILES string and protein sequence to extract local residue pat-

terns. The task is to predict binding affinity values. We add a

Sigmoid activation function in the end to change it to a binary

classification problem and we conduct hyper-parameter search

to ensure fairness.

6. DeepConv-DTI (Lee et al., 2019) uses CNN and global max

pooling layer to extract various length local patterns in protein

sequence and applies fully connected layer on drug fingerprint

ECFP4. It conducts extensive experiment on different datasets

and is the state-of-the-art model in DTI binary prediction task.

We follow the same hyper-parameter setting described in the

paper.

3.3 Q1: MolTrans achieves superior predictive

performance
To answer Q1, we randomly select 20% drug protein pairs as test
set. Table 2 shows MolTrans has consistently better predictive base-
lines in the DTI prediction setting in ROC-AUC and PR-AUC across
all datasets. MolTrans has up to 25% increase over best performing
baseline (DAVIS PR-AUC). Note that due to different thresholds
across different methods, the sensitivity and specificity may vary.
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3.4 Q2: MolTrans has competitive performance in

unseen drug and target setting
To imitate the unseen drug/target task, we randomly select 20%
drug/target proteins and all DTI pairs associated with these drugs
and targets as the test set. The results are in Table 3. We observe
that KronRLS’s performance vary across settings. This is because
KronRLS is a similarity-based method; hence, it is susceptible to the
data properties in hand. In the unseen drug setting, we find the one-
layer LR is better than multi-layers DNN, and is worse than the
SOTA methods with more complicated deep model design. This
shows the necessity for carefully designed model architecture. We
also see that MolTrans has competitive performance against the
SOTA deep learning baselines in both settings.

3.5 Q3: MolTrans performs best with scarce data
Although the availability of DTI data is exploding, in some real-
world drug discovery pipelines, there are new target proteins or
drugs that have only a handful of labels due to budget restriction.
Hence, a robust performance under low resource constraint is ideal
in DTI setting. We trained each method on 5%, 10%, 20% and
30% of dataset and predict on the rest of them (we use 10% of the
test edges as validation set for early stopping). The result is reported
in Table 4. We see that MolTrans is the most robust method. In the
contrast, SOTA baselines such as DeepDTI and DeepConv-DTI
drop as missing fractions increase. One reason why MolTrans is
good on scarce setting is that MolTrans leverages on embeddings
from sub-structures which are relatively abundant hence

transferable compared to other methods which utilize the entire
drugs and proteins.

3.6 Q4: MolTrans is robust in various protein families
Target proteins come from different proteins families. It is important
that the prediction algorithm is not biased toward one particular
protein family. In this experiment, we test on the predictive perform-
ance on four of the largest druggable targets: enzymes, ion channels,
G-protein-coupled receptors (GPCRs) and nuclear receptors. We re-
trieve one test set of BIOSNAP and map the target proteins to the
four protein families using GtoPdb database (https://www.guideto
pharmacology.org/targets.jsp). We find 1908 enzymes interactions,
533 GPCRs interactions, 496 ion channels interactions and 104 nu-
clear receptors interactions. We find MolTrans is robust in all of the
above individual protein family (Fig. 2). Particularly, enzymes,
GPCRs and ion channels have higher performance than the overall
protein classes.

3.7 Q5: MolTrans allows model understanding
To answer Q5, we show through examples how the interaction map
I can provide hints on which sub-structure leads to the interaction.
A high value cell in the interaction map stands for a potentially acti-
vated interaction between drug and target sub-structure that is im-
portant to the final interaction outcome. Thus, to visualize, we
generate a heat map for I to see which cells have high values. We
then select a threshold to mask out the majority of cells that have
low values. We then examine literature to see if the remaining cells
contain clues to the interaction outcome.

We first feed drug 2-nonyl n-oxide, and the protein cytochrome
b-c1 complex unit 1 into MolTrans, and we visualize the interaction
map by filtering scalars that are larger than a threshold in Figure 3.
We saw the nitrogen oxide group [Nþ]([O�]) and KNWV has the
highest interaction coefficient, matching with the previous study
(Lightbown and Jackson, 1956) who showed that nitrogen oxide
group is essential for cytochrome inhibition activity. This example
supports that MolTrans is capable of providing reasonable cues for
understanding the model prediction and possibly shed light on the
inner workings of DTI. To add more credibility, we feed Ephrin

Table 2. Performance comparison (five random runs)

Method ROC-AUC PR-AUC Sensitivity Specificity Threshold

Dataset 1: BIOSNAP

LR 0:84660:004 0:85060:011 0:75560:039 0:80060:018 0.434

DNN 0:84960:003 0:85560:010 0:77660:040 0:83860:024 0.499

GNN-CPI 0:87960:007 0:89060:004 0:78060:014 0:81960:012 0.349

DeepDTI 0:87660:005 0:87660:006 0.78960.027 0:84560:017 0.347

DeepDTA 0:87660:005 0:88360:006 0:78160:015 0:82460:012 0.466

DeepConv-DTI 0:88360:002 0:88960:005 0:77060:023 0:83260:016 0.441

MolTrans 0:89560:002 0:90160:004 0:77560:032 0:85160:014 0.431

Dataset 2: DAVIS

LR 0:83560:010 0:23260:023 0:69960:051 0:84260:033 0.399

DNN 0:86460:009 0:25860:024 0:76460:045 0:86060:038 0.489

GNN-CPI 0:84060:012 0:26960:020 0:69660:047 0:84260:039 0.487

DeepDTI 0:86160:002 0:23160:006 0:75160:015 0:85360:012 0.387

DeepDTA 0:88060:007 0:30260:044 0:76460:045 0:86560:020 0.482

DeepConv-DTI 0:88460:008 0:29960:039 0:75460:040 0:88060:024 0.438

MolTrans 0:90760:002 0:40460:016 0:80060:022 0:87660:013 0.447

Dataset 3: BindingDB

LR 0:88760:002 0:55760:015 0:74160:013 0:89660:011 0.394

DNN 0:90860:003 0:61360:015 0:76960:028 0:91460:021 0.371

GNN-CPI 0:90060:004 0:57860:015 0:75460:015 0:90360:011 0.406

DeepDTI 0:84460:002 0:42960:005 0:65160:024 0:89560:023 0.060

DeepDTA 0:91360:003 0:62260:012 0:78060:035 0:91560:016 0.305

DeepConv-DTI 0:90860:004 0:61160:015 0:78160:015 0:90560:013 0.318

MolTrans 0:91460:001 0:62260:007 0:79760:005 0:89660:007 0.355

Note: MolTrans achieves the best predictive performance across all datasets. The bold value corresponds to the best performance method for each metric.

Table 1. Dataset statistics

Dataset # Drugs # Proteins # Pos Interactions # Neg Interactions

BIOSNAP 4510 2181 9619/1374/2748 9619/1374/2748

DAVIS 68 379 1043/160/303 1043/2846/5708

BindingDB 10 665 1413 6334/927/1905 6334/5717/11 384

Note: For the number of interactions columns, we include training/valid-

ation/testing interactions statistics in onefold of data.
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type-A receptor 4 (Epha4) target and Dasatinib drug into MolTrans,
the map shows amino-thiazole group [S(¼O)(¼O) and N sub-
structures] is highlighted with protein motif KF and DVG, which has

an overlap with the Epha4–Dasatinib complex described in previous
study (Farenc et al., 2011). We also feed the input target protein

HDAC2 and the input drug hydroxamic acid. The interaction map
assigns the NC(¼O) group and the carbon chain with protein sub-
structure KK, YG, DIG, DD with high intensity. The suggested ligand

sub-structure matches with the observed interaction in HDAC2-
SAHA co-complex (Lauffer et al., 2013). The interaction maps for

the additional examples are provided in Supplementary Material S3.

3.8 Q6: Ablation study
We conduct an ablation study on the full data setting with the fol-

lowing setup:

1. -CNN: we remove the CNN from interaction module, and flat-

ten the interaction map I output and feed into the decoder.

2. -AugEmbed: we remove the transformer in the augmented

embedding module and feed the interaction module with the

positional and content embedding.

3. -Interaction: we further remove the interaction module from -

AugEmbed. It degenerates to a decoder on top of the FCS finger-

print. Note that removing the interaction module alone is not a

valid model design.

4. Small: we use smaller dataset to train FCS: DrugBank for drug

and BindingDB for protein. We adjust the minimal frequency to

output a similar number of sub-structured as FCS-large.

5. -FCS: we replace FCS embedding with ECFP4 fingerprint for

drug and PSC descriptor for protein. The rest of the models

remains the same, i.e. they are then fed into transformers, inter-

action module and decoder.

From Table 5, we see CNN, transformers and interaction mod-
ule contribute to the model final performance. The FCS fingerprint
alone has strong predictive performance from -Interaction. In add-
ition, from Small, we see the massive unlabeled data are useful as it
enriches the input and boosts the performance. From -FCS, we see
our model is adaptable to other popular fingerprints with similar
strong performance.

Table 3. MolTrans has competitive result in both unseen drug and

protein settings (shown avg. ROC-AUC of five random runs) on

BIOSNAP dataset

Settings DeepDTI DeepDTA DeepConv-DTI MolTrans

Unseen

drugs

0.843 6 0.003 0.849 6 0.007 0.847 6 0.009 0:85360:011

Unseen

proteins

0.759 6 0.029 0.767 6 0.022 0.766 6 0.022 0:77060:029

Note: The best performing three baselines are used for comparison.

Table 4. MolTrans provides best result in high fraction of missing

data (shown avg. ROC-AUC of five random runs)

Settings (%) DeepDTI DeepDTA DeepConv-DTI MolTrans

70 0.853 6 0.004 0.838 6 0.004 0.845 6 0.003 0:85360:004

80 0.828 6 0.007 0.821 6 0.008 0.825 6 0.003 0:83260:003

90 0.767 6 0.010 0.787 6 0.011 0.792 6 0.004 0:80260:004

95 0.659 6 0.011 0.762 6 0.004 0.726 6 0.008 0:76860:005

Note: The best performing three baselines are used for comparison.

Fig. 1. MolTrans workflow: (a) MolTrans utilizes vast unlabeled data. (b) Given the input pair of drug S and protein A, MolTrans extracts a sequence of sub-structures Cd and

Cp via Algorithm 1. (c) Each sub-structure is embedded into a latent feature vector Ed and Ep through a learnable embedding table via Equation (1). Then, drug/protein se-

quence of sub-structure embedding is fed into drug/target transformer encoders, respectively, to obtain an augmented contextual representation ~E
d

and ~E
p

via Equation (2).

(d) An interaction map I measuring interaction intensity among sub-structures is generated via Equation (3). The interaction is further optimized by a CNN layer that models

higher-order interaction, which results in a tensor O via Equation (4). (e) A decoder module then feed the tensor for a classifier to output the DTI probability P via Equation

(5). All modules are trained end-to-end with the binary classification loss via Equation (6)

Fig. 2. MolTrans is robust in different protein families
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4 Conclusion

In this work, we introduce MolTrans, an end-to-end biological

inspired deep learning-based framework that models DTI process.
We test under realistic drug discovery setting and evaluate with

state-of-the-art baselines. We demonstrate empirically that
MolTrans has competitive performance in accurately predicting DTI
under all settings with an improved explainability.
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provided in MolTrans GitHub code repository.

References

Bolton,E.E. et al. (2008) Pubchem: integrated platform of small molecules and

biological activities. In: Annual Reports in Computational Chemistry. Vol.

4, Elsevier, pp. 217–241.

Boutet,E. et al. (2007) UniProtkb/Swiss-Prot. In: Plant Bioinformatics.

Springer, pp. 89–112.

Broach,J.R. et al. (1996) High-throughput screening for drug discovery.

Nature, 384, 14–16.

Cao,D.-S. et al. (2013) propy: a tool to generate various modes of Chou’s

PseAAC. Bioinformatics, 29, 960–962.

Davis,M.I. et al. (2011) Comprehensive analysis of kinase inhibitor selectivity.

Nat. Biotechnol., 29, 1046–1051.

Dubchak,I. et al. (1995) Prediction of protein folding class using global

description of amino acid sequence. Proc. Natl. Acad. Sci. USA, 92,

8700–8704.

Farenc,C. et al. (2011) Crystal structure of the EphA4 protein tyrosine

kinase domain in the apo-and dasatinib-bound state. FEBS Lett., 585,

3593–3599.

Gage,P. (1994) A new algorithm for data compression. C Users J., 12, 23–38.

Gao,Y. et al. (2018) Interpretable drug target prediction using deep neural rep-

resentation. In: IJCAI, pp. 3371–3377, Stockholm, Sweden.

Gaulton,A. et al. (2012) ChEMBL: a large-scale bioactivity database for drug

discovery. Nucleic Acids Res., 40, D1100–D1107.

Gong,Y. et al. (2018) Natural language inference over interaction space. In:

ICLR, Vancouver, Canada.

He,T. et al. (2017) SimBoost: a read-across approach for predicting

drug–target binding affinities using gradient boosting machines.

J. Cheminform., 9, 24.

Hinton,G.E. (2009) Deep belief networks. Scholarpedia, 4, 5947.

Hinton,G.E. (2012) A practical guide to training restricted Boltzmann

machines. Neural Networks: Tricks of the Trade, 599–619.

Hughes,J.P. et al. (2011) Principles of early drug discovery. Br. J. Pharmacol.,

162, 1239–1249.

Jia,J. et al. (2009) Mechanisms of drug combinations: interaction and network

perspectives. Nat. Rev. Drug Disc., 8, 111–128.

Krizhevsky,A. et al. (2012) ImageNet classification with deep convolutional

neural networks. In: NeurIPS, pp. 1097–1105, Lake Tahoe, USA.

Lauffer,B.E. et al. (2013) Histone deacetylase (HDAC) inhibitor kinetic rate

constants correlate with cellular histone acetylation but not transcription

and cell viability. J. Biol. Chem., 288, 26926–26943.

Lee,I. et al. (2019) DeepConv-DTI: prediction of drug-target interactions via

deep learning with convolution on protein sequences. PLoS Comput. Biol.,

15, e1007129.

Lightbown,J. and Jackson,F. (1956) Inhibition of cytochrome systems of heart

muscle and certain bacteria by the antagonists of dihydrostreptomycin:

2-alkyl-4-hydroxyquinoline N-oxides. Biochem. J., 63, 130–137.

Liu,T. et al. (2007) BindingDB: a web-accessible database of experimentally

determined protein–ligand binding affinities. Nucleic Acids Res., 35,

D198–D201.

Mayr,A. et al. (2018) Large-scale comparison of machine learning methods

for drug target prediction on chEMBL. Chem. Sci., 9, 5441–5451.

Öztürk,H. et al. (2018) DeepDTA: deep drug–target binding affinity predic-

tion. Bioinformatics, 34, i821–i829.
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Fig. 3. The interaction map on the contributions of sub-structures in DTI, shown as

drug 2-nonyl n-oxide interacts with protein cytochrome b-c1 complex unit 10

Table 5. Ablation study (five random runs)

Setup ROC-AUC PR-AUC

MolTrans 0:89560:002 0:90160:004

�CNN 0.876 6 0.003 0.883 6 0.006

�AugEmbed 0.876 6 0.004 0.870 6 0.004

�Interaction 0.847 6 0.003 0:85960:005

Small 0.888 6 0.001 0.888 6 0.007

�FCS 0:88760:004 0.887 6 0.004
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