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Universidade do Porto, Campus Agrário de Vairão, 4485-661, Vairão, Portugal, 4 Department of Fisheries

and Oceans, Science Branch, Gulf Fisheries Centre, P.O. Box 5030, Moncton, NB, E1C 9B6, Canada,

5 Department of Biotechnology and Aquaculture, Instituto de Investigaciones Marinas CSIC, Eduardo

Cabello 6, 36208, Vigo, Spain

☯ These authors contributed equally to this work.

* colabarria@uvigo.es

Abstract
Different combinations of behavioural and physiological responses may play a crucial role

in the ecological success of species, notably in the context of biological invasions. The inva-

sive mussel Xenostrobus securis has successfully colonised the inner part of the Galician

Rias Baixas (NW Spain), where it co-occurs with the commercially-important mussel Myti-

lus galloprovincialis. This study investigated the effect of a heatwave on the physiological

and behavioural responses in monospecific or mixed aggregations of these species. In a

mesocosm experiment, mussels were exposed to simulated tidal cycles and similar tem-

perature conditions to those experienced in the field during a heat-wave that occurred in

the summer of 2013, when field robo-mussels registered temperatures up to 44.5˚C at low

tide. The overall responses to stress differed markedly between the two species. In mono-

specific aggregations M. galloprovincialis was more vulnerable than X. securis to heat

exposure during emersion. However, in mixed aggregations, the presence of the invader

was associated with lower mortality in M. galloprovincialis. The greater sensitivity of M. gal-

loprovincialis to heat exposure was reflected in a higher mortality level, greater induction of

Hsp70 protein and higher rates of respiration and gaping activity, which were accompanied

by a lower heart rate (bradycardia). The findings show that the invader enhanced the physi-

ological performance of M. galloprovincialis, highlighting the importance of species interac-

tions in regulating responses to environmental stress. Understanding the complex

interactions between ecological factors and physiological and behavioural responses of

closely-related species is essential for predicting the impacts of invasions in the context of

future climate change.
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Introduction

Climate change is likely to alter community composition in many terrestrial and marine sys-
tems through range shifts, differential responses to thermal stress, and changes in interactions
between species [1,2]. Organisms inhabiting the rocky intertidal zone are especially vulnerable
to climate change because they are exposed to both marine and terrestrial conditions, and
some species are sometimes exposed to conditions close to their physiological limits for stress
[3]. In this zone, abiotic conditions may also shift evenmore dramatically over scales of just a
fewmetres.

Temperature is one of the most important abiotic factors affecting the distribution and
physiological performance of organisms in the intertidal zone (e.g. [4–10]). Extreme events,
such as heatwaves, are predicted to increase in severity and frequency as a consequence of cli-
mate change [11] and will probably affect intertidal systems [12]. Until recently, many studies
of the thermal physiology of intertidal organisms and the mechanism involved in temperature
sensitivity have focused on temperature stress during immersion, even though intertidal organ-
isms typically experience thermal stress during emersion. During emersion, organisms such as
mussels and limpets are exposed to rapidly fluctuating and often extreme temperatures; their
body temperatures regularly exceed the water temperature by more than 15°C [4,13,14] and
also frequently exceed the temperature of the surrounding air, approaching sub-lethal limits
[10,15,16]. Thermal stress can have significant physiological consequences with profound
implications for ecological interactions [9]. For example, competitive interactions between bar-
nacle species can change under heat and/or desiccation stress conditions [6], and high temper-
atures may exert stronger effects on top predators than on their prey [17]. Life in the intertidal
zone is therefore often associated with adaptive responses such as gregarious behaviour,
increased thermal resistance, thermal stability of key metabolic enzymes, reduced evaporation,
and stress-induced expression of heat shock proteins [18–21]. Although various studies have
documented the consequences of the intertidal stress gradient on invertebrates (e.g. [14,19,22–
24]), the sub-lethal effects of stress on the ecology and physiology of these organisms have been
less well studied.

Mussels are dominant competitors for space on many temperate rocky shores throughout
the world [17]. They exhibit gregarious behaviour, which is considered an advantageous evolu-
tionary strategy that provides protection from predators or harsh environmental conditions,
and favours reproductive success [25,26]. For life in the high or mid intertidal zone, thermal
buffering is one advantage provided by living in aggregations with con-specifics or heterospeci-
fics [26]. However, as well as benefits there are also some costs (such as increased competition
for resources) associated with living in aggregations. In some cases, the outcome of the interac-
tion will depend on the spatial position of individuals within the aggregation [8,27]. For exam-
ple, although specimens of the blue mussel Mytilus edulis (Linnaeus 1758) living at the edge of
a dense aggregation face higher predation rates than individuals located near the centre of the
aggregation, their growth rate is 50% higher because of greater access to food resources [27].
Moreover, mussels at the centre of an aggregation are often exposed to higher temperatures
[28]. Morphological features, i.e. body size, shell thickness/size, and behaviour of individuals,
may affect the outcome of such interactions [24,29]. Nicastro and collaborators [24] found that
under conditions of heat stress, aggregations of the gaping mussel Perna perna (Linnaeus
1758) exhibited lower mortality rates than aggregations of the non-gaping mussel Mytilus gal-
loprovincialis (Lamarck 1819) because gaping behaviour of P. perna ameliorated stressful envi-
ronmental conditions of mussels through evaporative cooling.

The black pygmy mussel Xenostrobus securis (Lamarck 1819), an invasive species endemic
to the brackish waters of New Zealand and Australia, potentially has negative impacts on
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other ecosystems [30]. It has been recorded as an invasive species along the coast of the Medi-
terranean Sea and in Japanese waters [31–33]. It has also spread to the inner part of the Gali-
cian Rias Baixas (NW Spain) [34], where it co-occurswith the commercially-important
mussel M. galloprovincialis, forming monospecific and mixed patchy aggregations of differing
densities on diverse substrates [35]. In this environment, facilitative rather than competitive
interactions between juveniles of the two species occur, although the interactions vary
depending on the environmental context [36]. The species differ in morphological aspects
[36,37], but also in physiological and behavioural traits. For example, X. securis shows greater
morphological plasticity of byssal threads than M. galloprovincialis when exposed to stressful
environmental conditions [38]. In mixed beds, the species tend to distribute in two layers with
M. galloprovincialis migrating to the top [39]. In contrast to M. galloprovincialis [24], X.
securis is a gaping species, i.e. it opens and closes its shell during emersion [40]. Non-gaping
behaviour reduces water loss at the cost of less efficient use of stored energy because animals
must rely on anaerobic metabolism [41]. This important difference in behaviour thus poten-
tially determines the relative performance of the two species when exposed to extreme tem-
peratures during low tide, e.g. during heatwaves. Indeed, the relative performance of the
species under a range of environmental conditions determines the outcome of interactions
and ultimately the invasion success of X. securis [36].

We conducted a short-termmesocosmexperiment to evaluate the effect of a simulated heat-
wave on the physiological performance of the two species during both emersion and immer-
sion cycles.We measured lethal and sub-lethal responses of mussels in monospecific and
mixed species aggregations. The response variables used to quantify the accumulated effects of
lethal and sub-lethal stress were mortality, water loss, heat shock protein level (Hsp70), respira-
tion rate, gaping behaviour and heart rate. Specifically, we tested the hypothesis that the inva-
sive species X. securis is more resistant and resilient to heatwave stress than M.
galloprovincialis. We also tested whether the response of each species to heatwave-induced
stress is influenced by species interactions, i.e. the type of aggregation.We discuss how varia-
tions in the responses of closely related mussel species may have important implications for
ecological processes in intertidal communities under both current and future environmental
scenarios.

Materials and Methods

Ethics Statement

Permission and ethical approval were not required as the study did not involve endangered or
protected species.Mesocosms were designed as closed systems to prevent escape of non-indige-
nous species. Sampling of organisms was arranged jointly by the University of Vigo and Xunta
de Galicia and complied with all relevant regulations.

Heatwave conditions

To record temperatures in the field, we used robo-mussels that mimic the thermal characteris-
tics of living mussels [9]. These were made by placing a temperature logger (DS1922L iBut-
ton1) inside two empty mussel valves (size ~ 30 mm), which were then filledwith silicone
sealant and left to dry at air temperature for 48 h. The robo-mussels were attached to the sub-
stratum with marine grade epoxy resin (Splash zone, A788), in an approximate growth position
in the middle of small beds and were left in the field between 1 July to 28 August 2013. Two
exposedwires protruding from the shell served as contacts for logger programming and subse-
quent data retrieval (see [42]). Loggers were programmed to record data at 30-min intervals
with a resolution of 0.5°C. Robo-mussels were tested in pairs by placing them next to live
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mussels fitted with thermocouple probes. Test temperatures ranged from 16°C (during sub-
mersion by high tide) to 45°C (during daytime emersion). Readings from robo-mussels and
live animals were strongly correlated (Pearson’s correlation coefficient of 0.983, p< 0.05), with
a low average bias (-0.36°C) and a small root mean square error (1.81°C), especially consider-
ing the range of temperatures used in the main experiment. Readings were also consistent
among robo-mussels (standard deviation of 0.54°C), which is lower than the standard devia-
tion for live animals (1.22°C).

The temperature treatments used in the mesocosm experiment were designed to mimic a
heatwave that occurred between 5 and 10 July 2013, when field robo-mussels registered tem-
peratures up to 44.5°C during low tide (S1 Fig).

Collection and acclimation of mussels

Individual specimens of M. galloprovincialis and X. securis were collected from the inner part
of the Ria de Vigo (NW Spain), at Cesantes (42°19'20.86"N; 8°36'57.99"W). Similar-sized indi-
viduals (28–30 mm long) were collected from the mid-shore and taken to the laboratory. After
biofouling was stripped from the shells and the byssus was removed from the ventral margin,
individuals were assembled in aggregations and allowed to establish primary attachment to
experimental units, i.e. a biodegradablemesh on PVC plates. Two types of aggregation were
prepared for each species: monospecific aggregations (30 individuals) and mixed aggregations
(15 individuals of each species). Prior to the experiment, plates with aggregations were held in
the experimentalmesocosms for 4 d under stable high tide conditions (20 ± 0.2°C, 35 ± 0.5 psu
and 12 h: 12 h light: dark photoperiod), consistent with the collection site. The seawater was
changed twice a day during this period, and ammonium levels were checked daily. Mussels
were then acclimated for 5 d to laboratory-simulated tidal cycles (2 low and 2 high tides), corre-
sponding to the typical semidiurnal tidal regime in the study area (see [36]). Environmental
conditions were similar to those experienced in the earlier 4-d period, except that mussels were
exposed to an air temperature of 30 ± 0.4°C during emersion. During the acclimation and the
experimental period,mussels were fed a mixed diet, specifically a ration of 3% of total tissue
dry weight supplied in a single dose every 2 d.

Experimental set-up

After acclimation of the mussels for 9 d, the experiment was conducted, between 26 and 29 Sep-
tember 2013, in an isothermal walk-in chamber held at a temperature of 20 ± 0.2°C. The seawa-
ter temperature during high tides was consistent with the temperature in the isothermal
chamber. To produce temperature profiles similar to those experiencedby mussels at low tide in
the field, the air temperature during low tide was increased by using heating infrared lamps (150
W, Exo Terra) positioned over the experimentalmesocosms (350-L PVC tanks). The air tem-
perature was regulated by digital temperature controllers (Aqua Medic1 AT Control System
controllers, GmbH, Bissendorf, Germany) and recorded via the individual temperature probes
inserted in the robo-mussels. This system enabled continuous control and recording of air tem-
perature with an error of 0.2°C. Control and heatwave treatments were assigned at random to
each experimental tank (i.e. two tanks for each experimental temperature), and the heatwave
treatment was applied during morning low tide. Use of digital controllers allowed us to ramp
the temperature smoothly from the initial temperature at high tide (20°C) to the desired experi-
mental temperatures (29 and 42°C) in the control and heatwave treatments at morning low tide
and to 29°C in both treatments during afternoon low tide. The ramp-up durations was 6 h, i.e.
with a constant increase of 1.5°C h-1, or 5°C h-1 with an increase of 2°C in the last 2 h, for the
control and heatwave treatments respectively (Fig 1). Four experimental units of each
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Fig 1. Temperature profiles in the mesocosms. Temperature profiles in the four experimental tanks (A-D): a) Control conditions (tank

A: black line; tank B: grey line); b) Heatwave conditions (tank C: black line; tank D: grey line). Missing values between 1600h on 26

September and 1000h on 27 September are due to a failure in the recording system.

doi:10.1371/journal.pone.0164330.g001
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aggregation were placed at a random position in each experimental tank and covered with an
extensive mat of Fucus vesiculosus (Linnaeus 1753), which formed a natural cover during low
tide. The relative humidity in the tanks was monitored with a humidity logger (DS1923 iBut-
ton1) placed underneath the macroalgal canopy during low tide on two consecutive days. Dur-
ing emersion, the relative humidity always exceeded 79% in all experimental tanks.

Response variables

Mortality. We assessedmortality immediately after the 4 days of the experimental expo-
sure period by recording the number of dead mussels in each plate (i.e. experimental unit) on
the last day of the experiment.
Water loss. On the last day of the experiment, ten mussels of each species frommonospe-

cific aggregations were exposed to control and heatwave treatments for 6 h. Individuals were
weighed (± 0.01 g) at the beginning of the experiment and every 20 min thereafter to monitor
water loss. At the end of the experiment, each individual was dried to constant weight at 60°C
to determine the dry weight (tissue and shell). The values thus obtained were used to calculate
the percentage of water loss.
Heat shock proteins (Hsp70). At the end of the experiment, mussel mantle tissue was col-

lected from 4 individuals of each species and aggregation exposed to the two temperature treat-
ments and to two different types of tidal exposure: (i) after 6-h emersion (hereafter referred to
as emersion), and (ii) after immersion for 1.5-h following exposure to either heatwave or con-
trol emersion conditions (hereafter referred to as re-immersion). Re-immersionmeasurements
allowed us to evaluate the recovery of mussels after emersion conditions.

Samples were immediately frozen in liquid nitrogen on collection and were maintained at
-80°C until further processing. Approximately 20 mg of tissue was placed in a Tris-sodium
dodecyl sulphate (SDS) buffer [0.4% Tris-HCl pH 6.8, 2% sodium dodecyl sulphate (SDS), 1%
ethylenediaminetetraaceticacid (EDTA), 1% Protease inhibitor cocktail (Thermo Scentific#
78444, IL, USA)]. Samples were heated at 100°C for 5 min and homogeneized twice at 30 Hz
for 5 min and then centrifuged at 15800 g for 15 min. The supernatant was decanted, stored at
-80°C and used for subsequent analyses. The protein concentrations in the samples were deter-
mined using the BCA protein assay reagent (Pierce, IL, USA). Similar amounts (mass-wise) of
sample were subsequently loaded onto the gels.

The samples were boiled at 100°C for 5 min and then mixed 1:1 (v/v) with Laemmli sample
buffer (Sigma-Aldrich #S3401, MO, USA) plus 5% 2-mercaptoethanol). Proteins were sepa-
rated by electrophoresis on small format SDS-polyacrylamide gels in Mini-PROTEANTetra
Cell cast systems, BioRad, CA, USA (4% for stacking gels and 7.5% for the resolving gels, for
optimal protein resolution). For quantitative comparison of different gels, a “common sample”
was prepared by mixing aliquots of several homogenates (total 1 ml). In each gel, two lanes
were loaded with 15 μg of “common sample”, two “standard” lanes were loaded with 80 ng of
purified recombinant human HSP70B’ protein (#ADI-SPP-762, Enzo Life Sciences,NY, USA),
one lane was loaded with 5 μl of pre-stained markers (#161–0374, BioRad, CA, USA), and the
remaining eight lanes were loaded with the samples to be quantified (15 μg each). Gels were
run at 100 V for 20 min followed by 120 V for 65 min in running buffer (1.4% glycine, 0.3%
Tris-base, 0.1% SDS, pH 8.3).

Proteins were transferred to 0.45-μm polyvinylidene difluoride (PVDF) membranes (Milli-
pore Immobilon #IPVH00010, Fisher Scientific,MA, USA) in transfer buffer (0.06% Tris-base,
0.03% glycine, 20%methanol), at 100 V for 35 min in a Mini Trans-Blot Electrophoretic Trans-
fer Cell (#170–3930, BioRad, CA, USA).Western blotting was performed on the PVDFmem-
branes according to Tomanek and Sanford [19]. Membranes were incubated with monoclonal
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rat antibody (IgG) against Hsp70 (MA3-001; Affinity Bioreagent, Golden, CO). The mem-
branes were washed before being incubated for 30 min with a rabbit anti- rat bridging antibody
(IgG) solution (1:2000 dilution in BA; Vector, AI-4000) and then washed again several times.
Finally, the membranes were incubated with a horseradish-peroxidase protein A solution
(1:5000 dilution in BA; Bio-Rad) for 30 min. Bands were visualized using a chemiluminescence
detectionmethod and the blots were then exposed to X-ray film. Film images were scanned on
a densitometer and the digitized images were analysed with Image J v1.4 image analysis soft-
ware. Here, we report the combined quantity of both the constitutive and inducible forms of
Hsp70 because they could not be reliably distinguished.However, quantification of total Hsp70
levels is considered even more informative from an ecological point of view because it summa-
rizes the ability of organism to cope with thermal stress [43,44]. All samples were run three
times, i.e. we performed three technical replicates. The data analysed comprised the mean val-
ues from the three runs.

Quantitative western blotting across gels is particularly affected by variations in the effi-
ciency of protein transfer and binding to the blotting membrane, and by irregularities in the
preparation and pipetting of samples [45]. We therefore followed the standardization proce-
dure described in Lima et al. [21]. In each gel, we first quantified the optical density of the
“common sample” bands relative to the average optical density of the bands in the two “stan-
dard” lanes (those with a known amount of purifiedHSP70B’). We then normalized the optical
density of the Hsp70 by the optical density of a housekeeping protein band (ɑ-tubulin). Finally,
we quantified these normalized values relative to the optical density of the “common sample”
bands that had previously been assessed for each gel.
Respiration. Respiration rates of mussels were estimated by measuring oxygen fluxes over

20 min in 30-ml closed respirometry chambers. Oxygen consumption by 4 mussels of each spe-
cies and aggregation and by two controls (i.e. seawater with two empty valves) was measured
simultaneously for each different temperature treatment and tidal exposure (see above, section
Hsp70): (i) emersion and (ii) re-immersion. All measurements were conducted at constant
temperature (20°C), and movement of seawater in the respirometry chambers was maintained
by placing the chambers on a magnetic stirrer. The water inside the chambers was renewed
before each new incubation. The oxygen-saturation level in the chambers never fell below 50%.

Dissolved oxygen concentration and temperature inside the incubation chambers were mea-
sured every 60 sec via a luminescent dissolved oxygen (LDO) probe connected to a portable
oxygen meter (Hach1 HQ40). Samples were incubated during daylight hours and all measure-
ments were made within a period of 6 h. Respiration rate was estimated by regressing oxygen
concentration (mg L-1) in the chamber over time, and it was expressed as μmol O2 g-1 h-1 (i.e.
oxygen consumption). Estimates were normalized by the volume of seawater inside the cham-
ber and mussel biomass (tissue dry weight). Additionally, controls served as blanks to correct
for respiration rates of bacteria and zooplankton.
Gaping behaviour. Valve opening was monitored continuously during the experimental

periodwith a valvometry system (see [46] for a detailed description). A coated Hall element
sensor (HW-300a, Asahi Kasei, Japan) was glued to one valve at the maximum distance from
the hinge. A small magnet was then glued to the other valve, directly below the Hall sensor.
The magnetic field between the sensor and magnet depended on the gap between the two
valves. The magnetic field in the form of output voltage (lV) was acquired by strain recording
devices (DC 104R, Tokyo Sokki Kenkyujo Co., Japan). Output voltage was recorded every 5
min and was subsequently converted into valve opening by applying conversion algorithms
specific to each sensor assembly.

At the end of the experiment, the adductor muscle was severed, and small calibration
wedges were placed between the two valves at the point farthest from the hinge. Wedge height

Response of Mussels to a Heat Wave Depends on Neighbours

PLOS ONE | DOI:10.1371/journal.pone.0164330 October 13, 2016 7 / 23



was 1–6 mm. The voltage and wedge height (i.e. valve opening) were strongly correlated (r2>
0.90). Valve-opening (mm) data were converted into gape angles (θ in degrees) by using the
following equation [47]:

y ¼ 2 arcsin
0:5W
L

� �

� 100

whereW is the distance that the valve opens (mm) and L is the length of the mussel shell (mm).
Although temperature is known to influenceHall measurements, laboratory trials revealed

that changes in gaping due to temperature were small (<0.13°) within the context of the study.
Five mussels of each species (2 and 3 mussels from different monospecific and mixed aggre-

gations, respectively) were logged in each experimental tank, i.e. ten mussels per tank.
Heart rate. Heart rate was determined using a non-invasive IR-sensor technique, which

has been successfully used with diverse intertidal organisms (see [48] for a detailed descrip-
tion). Basically, the technique combines an IR emitter and an IR detector in a small package.
Gluing the sensor to the shell of a mussel, above its heart, allows IR light to pass through the
shell and illuminate the heart and nearby circulatory vessels. Changes in shape or volume of
the circulatory structures during a heartbeat, cause a change in the amount of IR light reflected
from the mussel back to the IR detector. These changes in reflected IR light, transduced to
changes in electrical current, are then electronically amplified and filtered, and the signal is
logged into a memory card by a microprocessor (see [49] for a detailed description of the
equipment). Data were recorded continuously for 1 min every 15 min throughout the experi-
mental period. In each experimental tank, 4 mussels of each species were monitored (2 mussels
for each type of aggregation), i.e. eight mussels per tank. The heart rate was computed automat-
ically using a custom-made R (R citation) script.

Data analysis

We fitted GeneralizedLinearMixedModels for all the response variables, with Tank as a ran-
dom factor nested within Temperature treatment. Analysis of gaping behaviour (i.e. shell gape
angle and occurrence of valve opening) and heart rate included an additional random effect for
individuals to account for the repeated measures within individuals. For all response variables
except mortality rate, these models showed no variance associated with Tank (estimates of 0).
Thus only changes in mortality were evaluated using a GeneralizedLinearMixedModel
(GLMM), and simpler GLMMs were used for the remaining variables. Unfortunately, the data
did not allow use of a full model for mortality because the three-way interaction yielded unsta-
ble estimates and this term had to be removed. Changes in water loss, Hsp70 and respiration
were tested using GeneralizedLinearModels (GLMs) and changes in gaping behaviour and
heart rate were analysed using GeneralizedEstimating Equations (GEEs), an extension of
GLMs for correlated data [50]. GEEs were useful in this study for two reasons. First, our
hypothesis applied to the entire duration of the experiment and not to specific experimental
days. Second, as each loggedmussel was monitored continuously, correlations between obser-
vations over time for the same individual had to be taken into consideration.

The type of model and canonical link function used varied depending on the response vari-
able analysed. Mortality was modelled as the proportion of dead individuals per experimental
unit, using a log-linearmodel, with Temperature (HW: heatwave; nHW: control conditions)
and Aggregation (Myt-alone: M. galloprovincialis in a monospecic aggregation;Myt-mixed: M.
galloprovincialis in a mixed aggregation, Xen-alone: X. securis in a monospecific aggregation
and Xen-mixed: X. securis in a mixed aggregation) as fixed factors, and Tank as a random fac-
tor nested within Temperature. In this case, we assumed a binomial distribution of the error

Response of Mussels to a Heat Wave Depends on Neighbours

PLOS ONE | DOI:10.1371/journal.pone.0164330 October 13, 2016 8 / 23



term and used a logit link.Water loss data were analysed using a model with Temperature
(HW and nHW) and Aggregation (Myt-alone and Xen-alone) as fixed factors. A Gamma dis-
tribution of the error termwas assumed and a log link was used. In the case of Hsp70 and respi-
ration, i.e. absolute values, we usedmodels with Temperature (HW and nHW), Tidal exposure
(emersion and re-immersion) and Aggregation (Myt-alone, Myt-mixed, Xen-alone and Xen-
mixed) as fixed factors. In both cases, we assumed Gaussian distributions of the error terms
and used an identity link.

Shell gape angle, gaping occurrence and heart rate data were analysed by GEEmodels, with
Temperature (HW and nHW), Tidal exposure (emersion and immersion) and Aggregation
(Myt-alone, Myt-mixed, Xen-alone and Xen-mixed) as fixed factors. For shell gape angle and
heart rate, Gaussian distributions of error terms were assumed and an identity link was applied.
For gaping occurrence a binomial distribution of the error term was assumed and a logit link
applied. A first order autoregressive model, AR(1), was specified in all analyses by assuming a
time dependence for each mussel. Model residuals were plotted against fitted values for model
validation [51].

Shell gape angle, gaping occurrence and heart rate were analysed for each mussel and aver-
aged at 5- and 15-min intervals (gaping behaviour and hear rate, respectively) over the 6-h
tidal cycle under both immersed and emerged conditions on each day of the experimental
period. The heart rate data were normalized by dividing the average heart rate of each mussel
per tidal cycle and day of the experimental period by the basal heart rate of each individual.
The basal rate was calculated as the mean heart rate of each individual during both immersion
and emersion over 2 d prior to the start of the experiment. The number of replicates analysed
was smaller than the initial number because some of the mussels logged for gaping behaviour
died and the heart rates of individuals from one control tank were not recorded due to logger
failure.

The GLMMwas constructed using the glmer function of the lme4 package. GLMs were con-
structed using the glm function of the stats package and GEEs were constructed using geeglm
functions of the geepack package in the public-domain software, R 3.1.2 [52]. All data are
reported as means ± S.E.

Results

Mortality and water loss

Mortality differed significantly between temperature treatments (p = 0.05, Table 1) and aggre-
gations (p<0.001, Table 1). Mortality was higher in individuals exposed to heatwave conditions

Table 1. Summary of results of GLMM testing the effect of experimental treatments on mortality.

df F p Variance SD

Mortality

Random effect

Temperature: Tank 0.22 0.46

Fixed effects

Temperature 1, 2 18.42 0.050

Aggregation 3, 57 22.49 0.000

The fixed factors included in the model were Temperature (Te) and Aggregation (Agg), and the random factor was Tank nested within Temperature. The Te

factor included two levels (HW and nHW), the Agg factor included four levels (Myt-alone, Myt-mixed, Xen-alone and Xen-mixed), and the Tank factor

included two levels. Four replicates were considered in the analysis.

doi:10.1371/journal.pone.0164330.t001
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than in controls (Fig 2a). Mortality was highest in M. galloprovincialis, especially in monospe-
cific aggregations in which mortality was twice that of mixed aggregations, while only a few
individuals of X. securis died, irrespective of the aggregation (Fig 2a).

After emersion for 6 h, X. securis and M. galloprovincialis lost on average 19% and 15% of
total body water respectively, although the difference was not significant (Table 2). The

Fig 2. Mortality and water loss of mussels in different temperature treatments and aggregations. Mean

(+ SE) values of a) % mortality (n = 8) and b) % water loss (n = 6 to 10) in the two temperature treatments (HW:

heatwave in black; nHW: control in grey) and in the aggregations (Myt-alone: monospecific M.

galloprovincialis; Myt-mixed: M. galloprovincialis in mixed aggregation with X. securis, Xen-alone:

monospecific X. securis; Xen-mixed: X. securis in mixed aggregation with M. galloprovincialis). Mortality data

were pooled across tanks.

doi:10.1371/journal.pone.0164330.g002
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response of individuals within species was highly variable (Fig 2b). Temperature had a signifi-
cant effect on rates of water loss, and water loss was higher under heatwave than control condi-
tions (p< 0.05, Table 2). Mussels lost on average 20% and 12% of their total body water under
heatwave and control conditions, respectively (Fig 2b).

Heat shock proteins

Across all treatments, the Hsp70 levels were highest in the individuals exposed to heatwave
conditions (HW: 4.78 mg g-1 protein ± 0.29, nHW: 3.96 mg g-1 protein ± 0.25, p<0.05,
Table 2). Nevertheless, the effect of temperature on Hsp70 levels varied depending on the tidal
exposure and among aggregations (i.e. significant interaction Temperature x Tidal exposure x
Aggregation, p<0.01, Table 2). After emersion for 6 h under heatwave conditions, M. gallopro-
vincialis in monospecific aggregations showed the highest Hsp70 levels, which decreased by
~30% after re-immersion for 1.5 h (Fig 3). Moreover, Hsp70 levels of M. galloprovincialis and
X. securis in mixed aggregations exposed to emersion for 6 h under control conditions,
decreased by more than 50% after re-immersion for 1.5 h.

Table 2. Summary of results of GLMs testing the effects of experimental treatments on water loss, heat shock proteins and respiration.

df Deviance Resid. df Resid. Deviance p

Water loss

Null 32 22.79

Temperature (Te) 1 2.66 30 19.52 0.035

Aggregation (Agg) 1 0.61 31 22.18 0.313

Te x Agg 1 0.37 29 19.14 0.429

Hsp70

Null 62 157.28

Temperature (Te) 1 9.81 58 127.07 0.011

Tidal exposure (Ti) 1 9.44 57 117.63 0.012

Aggregation (Agg) 3 20.39 59 136.89 0.003

Te x Ti 1 4.65 50 90.74 0.079

Te x Agg 3 13.96 54 103.67 0.026

Ti x Agg 3 8.28 51 95.38 0.139

Te x Ti x Agg 3 19.78 47 70.96 0.004

Respiration

Null 63 6558.70

Temperature (Te) 1 761.19 59 4949.00 0.000

Tidal exposure (Ti) 1 185.66 58 4763.30 0.092

Aggregation (Agg) 3 848.54 60 5710.20 0.004

Te x Ti 1 196.42 51 3706.70 0.084

Te x Agg 3 132.52 55 4630.80 0.568

Ti x Agg 3 727.64 52 3903.20 0.011

Te x Ti x Agg 3 556.44 48 3150.30 0.030

The fixed factors included in the models, i.e. Temperature (Te), Tidal exposure (Ti) and Aggregation (Agg), varied depending on the response variable

analysed. The Te factor included two levels (HW and nHW), the Ti factor included two levels (emersion and re-immersion), and the Agg factor included

either 2 (Myt-alone and Xen-alone) or 4 levels (Myt-alone, Myt-mixed, Xen-alone and Xen-mixed). Absolute values of respiration were used. The number of

replicates varied depending on the response variable. For water loss, the number of replicates ranged from 6 to 10, and for Hsp70 and respiration, four

replicates were used.

doi:10.1371/journal.pone.0164330.t002
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Respiration

Across all treatments, the respiration rates of mussels were highest under heatwave conditions
(HW: 19.04 μmol O2 h−1 g−1 dry tissue wt ± 2.07, nHW: 12.14 μmol O2 h−1 g−1 dry tissue
wt ± 1.24, p<0.001, Table 2). Nevertheless, the effect of temperature on respiration rates varied
depending on the tidal exposure and among aggregations (i.e. significant interaction Tempera-
ture x Tidal exposure x Aggregation, p<0.05, Table 2, Fig 4). The highest rate of consumption
after 6 h of emersion was observed in M. galloprovincialis exposed to heatwave conditions,
especially in those individuals in monospecific aggregations (~ 23 μmol O2 h−1 g−1 dry tissue
wt). After re-immersion, consumption of O2 in the mussels subjected to the heatwave condi-
tions was still higher than after 6 h of emersion, except for M. galloprovincialis in mixed aggre-
gations (Fig 4). The respiration rates of X. securis in both monospecific and mixed aggregations
were up to 60% higher during re-immersion than after emersion (Fig 4). Under control condi-
tions, respiration rates of mussels after emersion were similar or higher than after re-immer-
sion, except for M. galloprovincialis in monospecific aggregations in which the opposite trend
was observed.

Gaping behaviour

The angle of shell gape (aperture) was wider during immersion than emersion for M. gallopro-
vincialis and X. securis in both monospecific and mixed aggregations (Fig 5a); however, there

Fig 3. Heat shock protein content of mussels in different treatments and aggregations. Mean (+SE, n = 4)

content of Hsp70 (mg g-1 protein) in the two temperature treatments (HW: heatwave; nHW: control), in the two types of

tidal exposure (emersion in grey; re-immersion in white) and in the four aggregations (Myt-alone: monospecific M.

galloprovincialis; Myt-mixed: M. galloprovincialis in mixed aggregation with X. securis, Xen-alone: monospecific X.

securis; Xen-mixed: X. securis in mixed aggregation with M. galloprovincialis).

doi:10.1371/journal.pone.0164330.g003
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was a significant, almost threefold increase in the aperture of the mussels exposed to heatwave
conditions during emersion (i.e. significant interaction Temperature x Tidal exposure, p<0.05,
Table 3). In addition, during both emersion and immersion, the mean aperture varied signifi-
cantly depending on the aggregation (Fig 5b), and the widest opening angle was observed in X.
securis, especially in monospecific aggregations (p<0.05, Table 3).

As expected,mussels were more likely to open their valves during immersion than emersion
(p<0.001, Table 3). Nevertheless, the time that mussels spent with their valves open varied
with the temperature treatment and depended on the tidal cycle and the aggregation (i.e. signif-
icant interaction Temperature x Tidal exposure x Aggregation, p<0.001, Table 3). During
emersion, M. galloprovincialis in monospecific aggregations and X. securis in mixed aggrega-
tions were more likely to open their valves under heatwave than under control conditions. This
behaviour was particularly striking in M. galloprovincialis, in which gaping occurrence
increased five-fold under heatwave conditions (Fig 5c, data shown as mean gaping occurrence).
However, during immersion, the gaping behaviour of both species was similar, independently
of aggregation or temperature exposure.

Heart rate

Heart rate varied significantly with tidal cycle (p<0.05, Table 3, Fig 6a), and increased during
emersion.Moreover, the heart rate was affected by temperature, but the magnitude and direc-
tion of response differed among aggregations (i.e. significant interaction Temperature x Aggre-
gation, p<0.05, Table 3). All mussels exhibited similar heart rates under both heatwave and

Fig 4. Respiration of mussels in different treatments and aggregations. Mean (+SE, n = 4) rates of respiration

(μmol O2 h−1 g−1 dry tissue wt) in the two temperature treatments (HW: heatwave; nHW: control), in the two types of

tidal exposure (emersion in grey; re-immersion in white) and in the four aggregations (Myt-alone: monospecific M.

galloprovincialis; Myt-mixed: M. galloprovincialis in mixed aggregation with X. securis, Xen-alone: monospecific X.

securis; Xen-mixed: X. securis in mixed aggregation with M. galloprovincialis).

doi:10.1371/journal.pone.0164330.g004

Response of Mussels to a Heat Wave Depends on Neighbours

PLOS ONE | DOI:10.1371/journal.pone.0164330 October 13, 2016 13 / 23



Fig 5. Gaping behaviour of mussels in different treatments and aggregations. Mean values (+SE) of a)

gape angle in the two temperature treatments (HW: heatwave; nHW: control) and in the two types of tidal

exposure (emersion in grey; immersion in white); b) gape angle in the four aggregations (Myt-alone:

monospecific M. galloprovincialis; Myt-mixed: M. galloprovincialis in mixed aggregation with X. securis, Xen-

alone: monospecific X. securis; Xen-mixed: X. securis in mixed aggregation with M. galloprovincialis; pooled
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control conditions, with a slight increase in heart rate under heat-wave conditions, except M.
galloprovincialis in monospecific aggregations, in which the heart rate was much higher under
control conditions and decreased by ~ 34% under heatwave conditions (Fig 6b).

Discussion

Thermal stress and desiccation are problematical for intertidal organisms and strongly affect
patterns of distribution and the dynamics of species coexistence [10,53]. This is particularly rel-
evant when investigating interactions between native and invasive species. Differential
responses of native and invasive species to stressful environmental conditions may determine
the survival success of the invader and how it interacts with native species [20,24,53, 54]. For
example, on the rocky shores of the Californian coast, the patterns of abundance of the native
Mytilus trossulus (Gould 1850) and the invasive M. galloprovincialis are determined by the

emersion and immersion data); c) gaping occurrence in the two temperature treatments, in the two types of

tidal exposure and in the four aggregations. The number of replicates varied across temperature treatments

and aggregations (HW: Myt-alone = 4, Myt-mixed = 3, Xen-alone = 3, Xen-mixed = 3; nHW: Myt-alone = 4,

Myt-mixed = 5; Xen-alone = 3; Xen-mixed = 6).

doi:10.1371/journal.pone.0164330.g005

Table 3. Summary of the results of GEEs testing the effects of experimental treatments on gaping

behaviour (i.e. shell gape angle and gaping occurrence) and heart rate.

df χ2 p

Gape angle

Temperature (Te) 1 3 0.106

Tidal exposure (Ti) 1 639 0.000

Aggregation (Agg) 3 10 0.017

Te x Ti 1 5 0.032

Te x Agg 3 1 0.805

Ti x Agg 3 6 0.123

Te x Ti x Agg 3 5 0.212

Gaping occurrence

Temperature (Te) 1 4.80 0.029

Tidal exposure (Ti) 1 105.80 0.000

Aggregation (Agg) 3 1.90 0.589

Te x Ti 1 1.10 0.292

Te x Agg 3 6.90 0.074

Ti x Agg 3 12.70 0.005

Te x Ti x Agg 3 20.60 0.000

Heart beat

Temperature (Te) 1 0.52 0.471

Tidal exposur (Ti) 1 5.15 0.023

Aggregation (Agg) 3 10.39 0.016

Te x Ti 1 0.10 0.752

Te x Agg 3 9.83 0.021

Ti x Agg 3 2.86 0.414

Te x Ti x Agg 3 3.26 0.353

The fixed factors included in the models were Temperature (Te), Tidal exposure (Ti) and Aggregation (Agg).

The Te factor included 2 levels (HW and nHW), the Ti factor included 2 levels (emersion and immersion),

and the Agg factor included 4 levels (Myt-alone, Myt-mixed, Xen-alone and Xen-mixed).

doi:10.1371/journal.pone.0164330.t003
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Fig 6. Heart rate of mussels in different treatments and aggregations. Mean (+SE) values of heart rate a) in

the two types of tidal exposure (emersion and immersion); b) in the two temperature treatments (HW: heatwave in

black; nHW: control in grey) and in the four aggregations (Myt-alone: monospecific M. galloprovincialis; Myt-mixed:

M. galloprovincialis in mixed aggregation with X. securis, Xen-alone: monospecific X. securis; Xen-mixed: X.

securis in mixed aggregation with M. galloprovincialis). The number of replicates varied across temperature

treatments and aggregations (HW: Myt-alone = 4, Myt-mixed = 4, Xen-alone = 4, Xen-mixed = 4; nHW: Myt-

alone = 2, Myt-mixed = 2; Xen-alone = 2; Xen-mixed = 2).

doi:10.1371/journal.pone.0164330.g006
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dynamic relationship between interspecific competition and species-specific tolerances to tem-
perature [55].

Mussels, like many other intertidal species, use complex behavioural, physiological and bio-
chemical mechanisms to withstand thermal stress during emersion (e.g.
[9,10,15,20,24,28,41,55–59]). We found that two co-occurring intertidal mussels show different
lethal and sub-lethal responses to acute thermal stress. We demonstrated gaping behavior in
M. galloprovincialis, despite the species having been reported as non-gaping [24]. Consistent
with the recent work of Dowd and Somero [58], we found that this species did not maintain its
valves in a closed position for long periods following episodes of heat stress, although the gape
angle was narrower than that of X. securis. This observation differed from that of Comeau and
Babarro [40], who indicated that the gape angle was wider in M. galloprovincialis than in X.
securis, although the study was conducted under different environmental conditions and mus-
sels were always immersed.We also documented for the first time (but see [24, 60]) how spe-
cies interactions modulate specific responses to environmental stress as the responses of each
species varied depending on the aggregation (monospecific versus heterospecific).

Althoughmortality data may have been underestimated in this study, as we did not monitor
mortality after the experimental heatwave stress period (see [58]), a clear pattern was observed.
Native mussels were not able to survive the same level of environmental stress as the invasive
mussels; however, the mortality of M. galloprovincialis was lower in the presence of the invader.
The fact that M. galloprovincialis lost more water under the heat wave than under the control
conditions (up to twice as much) may explain the higher mortality rate in monospecific aggre-
gations. As body water plays an important role in regulating pH, death resulting from exposure
to high temperatures during emersion can be attributed to an acid-base disturbance (e.g. [61]).
Occasional acute temperature and desiccation stress events have been reported to cause mor-
tality in intertidal species, including molluscs [20,22,24,62–65], although behaviour [20, 57, 58]
and species interactions may influencemortality rates [24,66]. For example, survival of M. gal-
loprovincialis was enhanced when individuals were surrounded by gaping Perna perna during
periods of severe heat stress [20,24].

The study findings suggest that the invader ameliorated the environmental conditions expe-
rienced by M. galloprovincialis when co-occurring in aggregations. The gaping behaviour of the
invader under heatwave conditions may have modified the local environment, i.e. humidity and
temperature, effectively favouring M. galloprovincialis through the evaporation of water dis-
charged during valve movements (see [24, 58]). Besides providing cooling, valve opening during
episodes of elevated temperature helps to maintain oxygenation of tissues to support aerobic
metabolism and prevent accumulation of metabolites [58,61,67,68], although at the cost of a
greater risk of desiccation [20,24,58,59,69]. The invader gapedmore during heatwave conditions
than during control conditions, although the differencewas not statistically significant.We
hypothesize that the gaping behaviour in X. securis and particularlyM. galloprovincialis during
heatwave conditions was linked to higher oxygen consumption and prevention of metabolite
accumulation, which is consistent with the important role of gaping in aerobic respiration [70].
Moreover, higher rates of ventilation may explain the tendency of M. galloprovincialis to exhibit
greater water loss than X. securis. Further data are needed to verify this hypothesis.

The sustained valve gaping of M. galloprovincialis in monospecific aggregations when
exposed to heatwave conditions was associated with a considerable increase in respiration rates
during subsequent immersion. This behaviour has been observed in other gastropods such as
the limpet Patella caerulea and in diverse porcelanid crabs, which exhibited an increased rate
of O2 consumption following acute changes in temperature during emersion [7,71]. The
enhanced rates of oxygen consumption may be caused by hyperactivity associated with excre-
tion and the “flushing out” of ammonia and end-products of anaerobic metabolism from the
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body as the organism is re-immersed, i.e. oxygen debt [68]. As thermal stress has been related
to oxidative stress in diverse bivalve species [72], such behaviour may also reduce oxidative
stress in M. galloprovincialis, allowingmacromolecular repair (see [58]). This strategy corre-
sponds well with observations on heat shock protein expression; M. galloprovincialis in mono-
specific aggregations showed considerably higher production of Hsp70 during heat-wave
conditions than in other treatments. Heat shock proteins comprise a complex of molecular
chaperones that mitigate cellular damage and restore cellular homeostasis and are strongly
indicative of stress-induced protein damage [73]. Recent evidence also suggests that expression
of Hsps in M. galloprovincialis can be triggered by a reduction in the aerobic metabolic capacity
induced by hypoxia [74]. It is also possible that the observed induction of Hsp70 in M. gallo-
provincialis was related to hypoxia rather than to thermal stress. Indeed, thermal stress and
other factors such as hypoxia and desiccationmay influence the production of Hsps [72].
Despite the important intraspecific variations in the expression of Hsp70, especially in M. gal-
loprovincialis, subtle species-specificdifferences also occurred (but see [20]). The invader
tended to produce lower levels of Hsp70 than M. galloprovincialis. The invader X. securis origi-
nates from warmer environments and Hsp70 may be induced at a higher temperature than in
M. galloprovincialis. The temperature set-point for Hsp70 induction in mussels appears to vary
with their thermal history [15,17,19,20,75]. Alternatively, the gaping behaviour of X. securis
may diminish the risk of suffering hypoxia during emersion under heatwave conditions, and
thus levels of Hsp70 expression would be lower than in M. galloprovincialis.

Although some intertidal organisms showed no differences in heart rate between emersion
and immersion cycles (e.g. [76,77]), the pattern was not consistent [59,78]. In many cases,
organisms showed depressed heart rate in response to thermal stress [79,80]. For example, the
bay mussel M. trossulus showed a depressed heart rate in response to increasing temperature
[79]. The intertidal snail Echinolittorina malaccana (Philippi 1847) also showed a depressed
heart rate in response to warming between 30 and 45°C, which was interpreted as a strategy to
conserve energy at higher temperatures [80]. In the present study, the heart rate increased
overall during emersion of both species. In addition, the heart rate of M. galloprovincialis in
monospecific aggregations was significantly depressed under heatwave conditions. Indeed, this
species has been shown to have a remarkable capacity for metabolic depression, which is inter-
preted as a strategy aimed at lowering the metabolic rate, conserving energy and enhancing
survival during prolonged exposure to warm air [59,78]. Surprisingly, the decreased heart rate
in M. galloprovincialis was not accompanied by a reduction in gaping activity, but rather the
opposite. Bradycardia (abnormally slow heart rate) may indicate cessation of oxygen uptake
[61]. In our study, and specifically in the case of M. galloprovincialis in monospecific aggrega-
tions subjected to heatwave conditions, transient bradycardia during emersion may explain the
elevated respiration rates subsequently recorded during immersion. It could also explain
enhanced gaping activity during emersion, which is presumably an attempt to favour respira-
tion by maintaining an appropriate O2 gradient across the gills and the mantle [67], and/ or an
attempt to avoid oxidative stress [58]. Further experimental research aimed at directly correlat-
ing cardiac responses with other physiological variables is necessary.

In conclusion, the study findings show that the combination of direct measurements of
lethal and sub-lethal responses using realistic stress provides insight into the impact of thermal
disturbance on the local-scale distributions of intertidal sedentary organisms. We confirmed
our initial hypothesis and showed that the invader is more resistant and resilient than M. gallo-
provincialis to heatwaves. We also demonstrated that M. galloprovincialis benefittedmost,
namely through increased resistance to thermal stress in the presence of the invader X. securis.
This illustrates the complex interplay between ecological factors and physiological flexibility,
which ultimately determine an organism’s fitness. Our results also highlight the potential
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interaction between climate change and invasive species. Both environmental conditions and
the physiological response of each species to environmental stress may determine the outcome
of interactions between invasive and native species in invaded habitats. Future studies address-
ing the role of ecological interactions in physiological responses of species will help us to gain a
better understanding of invasions in the context of climate change.

Supporting Information

S1 Fig. Temperature data recorded by robo-mussels.Robo-mussels recorded temperatures in
mussel beds every 30 minutes during July and August 2013.
(TIF)
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