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Targeting GPCRs to treat cardiac
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Cardiac fibrosis occurs ubiquitously in ischemic heart failure, genetic

cardiomyopathies, diabetes mellitus, and aging. It triggers myocardial sti�ness,

which impairs cardiac function, ultimately progressing to end-stage heart

failure and increased mortality. Although several targets for anti-fibrotic

therapies have been identified, including TGF-β and receptor tyrosine

kinase, there is currently no FDA-approved drug specifically targeting

cardiac fibrosis. G protein-coupled receptors (GPCRs) are integral, multipass

membrane-bound receptors that exhibit diverse and cell-specific expression,

o�ering novel and unrealized therapeutic targets for cardiac fibrosis. This

review highlights the emerging roles of several GPCRs and briefly explores

their downstream pathways that are crucial in cardiac fibrosis. We will not only

provide an overview of the GPCRs expressed on cardiac fibroblasts that are

directly involved in myofibroblast activation but also describe those GPCRs

which contribute to cardiac fibrosis via indirect crosstalk mechanisms. We

also discuss the challenges of identifying novel e�ective therapies for cardiac

fibrosis and o�er strategies to circumvent these challenges.
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Pathophysiology of cardiac fibrosis

Cardiovascular diseases (CVD), which affect the heart or vasculature, remain the

leading cause of mortality, responsible for ∼31% of all deaths worldwide (1). Fibrotic

diseases lead to nearly 1 million deaths annually, most of which are due to lung and

cardiac fibrosis (2). Different types and consequences of cardiac fibrosis exist, and their

pathology depends on the underlying cause. For example, aging, hypertension, and

diabetes induce myocardial interstitial fibrosis and decrease ventricular compliance,

leading to the pathogenesis of heart failure with diastolic dysfunction (3, 4). However,

fibrosis is not invariably detrimental. In myocardial infarction (MI), the loss of a

substantial number of cardiomyocytes triggers myofibroblasts activation, representing

reparative fibrosis and contributing to scar formation (5). Although the scar lacks

contractile ability, it serves an important protective role in keeping cardiac structural

integrity and preventing catastrophic mechanical complications, such as cardiac

rupture (6).

Cardiac fibroblast is an abundant cell type in the heart (7). In fibrosis diseases, cardiac

fibroblasts are activated to myofibroblasts (MyoFB), which become highly proliferative

and specialized in the generation of extracellular matrix proteins and contractile genes,

such as ACTA2, encoding for smooth muscle α-actin (8, 9). Histologically, cardiac
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fibrosis is identified as the enlargement of the cardiac

interstitium resulting from the deposition of extracellular

proteins such as collagen, fibronectin, and elastin (3). This

accumulation accompanies most cardiac pathologic conditions,

such as myocardial stiffness and diastolic dysfunction, and the

extent of cardiac fibrosis is a predictor of adverse outcomes (3).

Although there is no FDA-approved drug specifically

targeting cardiac myofibroblast activation, pirfenidone and

nintedanib have been approved to treat idiopathic lung fibrosis

(10). In addition, pirfenidone has been tested in Phase II clinical

trial “PIROUETTE” among patients with heart failure with

preserved ejection fraction (HFpEF) and myocardial fibrosis

(11). The results show that the administration of pirfenidone

for 52 weeks reducedmyocardial fibrosis (12), indicating fibrosis

shares similar pathways, and antifibrotic therapy can be utilized

universally among different organs.

GPCRs signaling in heart tissue

G protein-coupled receptors (GPCRs), located at the cell

membrane, possess diverse expression profiles throughout the

body and are known to exhibit tissue and cell-specificmembrane

expressions (13). The basic function of GPCRs is to transduce

extracellular stimulus into intracellular signals (14). The “G-

proteins” that coupled to GPCRs are composed of a heterotrimer

of α, β, and γ subunits—Gα, Gβ, and Gγ, respectively—

that is kept in an inactive basal state where αβγ are tightly

bound and activated when α dissociates from βγ (14). Since

GPCRs consist of more than 800 receptors and account for

the most diverse family of proteins in the human genome,

the combination of GPCRs at a particular cell type may be

substantially heterogeneous and diverse (15). In this review, we

will focus on the roles of GPCR and the downstream signaling in

cardiac fibrosis regulation and illustrate their utility as promising

targets for cardiac fibrosis (Table 1).

GPCR signaling may also significantly vary within the cell.

To date, 21 Gα, 6 Gβ, and 12 Gγ have been discovered

(14). Heterotrimeric G proteins are generally identified by

their Gα subunits and classified into four major groups: Gα

stimulatory (Gαs), Gα inhibitory (Gαi), Gαq, and Gα12/13

(14). Different G-protein subfamilies execute distinct signaling

cascades. Gαs stimulates adenylyl cyclase to increase the

second messenger cyclic adenosine monophosphate (cAMP),

which results in protein kinase A (PKA) activation and

subsequent phosphorylation of intracellular proteins (32).

Conversely, Gαi exhibits a suppressive effect on adenylyl

cyclase, decreasing intracellular cAMP (32). Gαq activates

phospholipase C (PLC), resulting in phosphatidylinositol 4,5–

bisphosphate (PIP2) cleavage and producing the second

messengers inositol 1,4,5–triphosphate (IP3) and diacylglycerol

(DAG). IP3 triggers Ca2+ release from the endoplasmic

reticulum, along with DAG to activate protein kinase C (PKC)

(33). Gα12/13 can activate the small GTPase Rho, which

serves as a regulator of a number of intracellular processes,

including actin stress fibers formation and cell growth controller

(34). GPCRs exist widely and heterogeneously in a cell-

specific distribution among the three major cell types found

within the heart (i.e., cardiomyocytes, endothelial cells, cardiac

fibroblasts) (35, 36).

Besides the G protein signaling cascades, β-arrestins

have the capacity to regulate GPCR activity independently

(37). Previously, β-arrestins were discovered to mediate

receptor internalization and desensitization, exemplified by

the role of β-arrestin in β1 adrenergic receptors (β1AR)

desensitization in cardiomyocytes (38). Later, other functions

of β-arrestins were identified as signal transducers to regulate

a variety of intracellular signaling pathways (39), including

transforming growth factor-β (TGF-β), as well as downstream

kinases such as mitogen-activated protein kinase (MAPK)

and phosphoinositide 3-kinase (PI3K) (40), which are highly

involved in the regulation of fibrosis.

The GPCR expression level depends on a steady-state

transport of receptors between the cell membrane and

endosomes (41). Agonists of GPCRs induce internalization

that alters the membrane expression level in the short term.

Prolonged over-stimulation leads to a downregulation of these

receptors at the transcriptional level (41). For example, β1AR

and β2AR are the predominant GPCR subtypes expressed in

cardiomyocytes and the primary regulators of cardiovascular

function (42). Epinephrine stimulates β2AR and initially

activates Gs, which increases the beating rate. However, after

10–15min of stimulation, β2AR signals predominantly through

Gi, which decreases the contraction rate (43). Therefore,

pathophysiological states may alter not only the expression of

these receptors, but also the coupling specificity between the

receptors and G proteins (41).

The diverse and cell-specific membrane expression

of GPCRs, combined with their important roles in

pathophysiology, make them frequent therapeutic targets,

leading to ∼35% of all FDA-approved drugs (13). A variety of

GPCRs have been implicated in the pathogenesis of fibrosis

(44, 45). Although several earlier drug discovery campaigns

have targeted GPCRs to treat fibrosis, effective treatment is still

lacking (44). As fibroblasts among different organs share similar

features (46), we will discuss the common and distinct features

of those GPCRs involved in cardiac fibrosis compared to fibrosis

in other organs.

GPCRs expressed on cardiac
fibroblasts

PAR receptors

Protease-activated receptors (PAR) become activated

from specific cleavage of the amino-terminal sequence that

consequently exposes a new N-terminal sequence functioned
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TABLE 1 Representative GPCRs and downstream pathways involved in fibrosis regulation.

Receptor

family

Target Transduction

mechanism

Drug Preclinical and clinical studies

Part 1: GPCRs expressed on fibroblasts

Protease-activated

receptor

PAR1 Gαi/o, Gαq/11, and

Gα12/13

PAR1 antagonist:

SCH79797

Inhibit cardiac fibrosis in renin-overexpressing

hypertensive mice model (16).

Protease-activated

receptor

PAR2 Gαi/o, Gαq/11, and

Gα12/13

PAR2 antagonist:

PZ-235

Inhibit liver fibrosis in non-alcoholic fatty liver

disease mice model (17);

In contrast, PAR2 knockout increases cardiac

fibrosis due to compensatory augmented

PAR1 (18).

Lysophospholipid

receptor

LPA1 Gαi/o, Gαq/11, and

Gα12/13

LPA1 antagonist:

BMS-986020

Inhibit cardiac fibrosis in a hypertrophic

cardiomyopathy mouse model (19);

Effective in Phase II clinical trial for idiopathic

pulmonary fibrosis (NCT01766817) (20).

Lysophospholipid

receptor

S1PR1 Gαq/11, and

Gα12/13

/ Overexpression induces cardiac fibrosis (21).

Adenosine receptor A2B Gαs and Gαq A2B antagonist:

GS6201

Inhibit cardiac fibrosis in myocardial infarction

mice model (22).

Adenosine receptor A1 Gαi A1 antagonist:

SLV320

Reduce myocardial fibrosis in rats with

nephrectomy (23).

Adenosine receptor A2A Gαs A2A agonist:

CGS21680

Reduce cardiac fibrosis in DOCA-salt treated mice

(24).

Prostaglandin

receptor

EP4 Gαs EP4 agonist:

ONO-0260164

Inhibit cardiac fibrosis in pressure

overload-induced mice model (25).

Part 2: GPCRs expressed on cardiomyocytes and endothelial cells

β adrenergic

receptor

β1AR Gαs β blocker Inhibit maladaptive remodeling and cardiac

fibrosis via cardiomyocyte-fibroblast crosstalk

(26).

Angiotensin

receptor

AT1R Gαq/11 AT1R inhibitors

and antagonist:

ACEI/ARB

Inhibit adverse cardiac remodeling and fibrosis in

heart failure patients via direct effects on

fibroblasts and indirect effects via crosstalk (27).

Endothelial

receptor

ETA Gαq / ET-1 knockout exerted antifibrotic effects in the

diabetes mice model by inhibiting

endothelial-to-mesenchymal transition (28).

Part 3: Targeted G protein and downstream pathways

- - Gβγ Gβγ inhibitor:

Gallein

Inhibit cardiac fibrosis in myocardial infarction

mice model (29).

- - cAMP adenylyl cyclase

activator: forskolin

Elevate cAMP inhibits myofibroblast activation in

cardiac fibroblasts (30).

- - YAP/TAZ YAP inhibitor:

verteporfin

Inhibit cardiac fibrosis in myocardial infarction

mice model (31).

as a tethered ligand (47) (Figure 1). Activation of protease-

activated receptor-1 (PAR1), which couples to Gq/11, Gi/o,

and G12/13, elevates the level of profibrotic gene expression

in rat cardiac fibroblasts, leading to myofibroblast activation

and increasing collagen synthesis by 60% (48). Conversely,

inhibiting PAR1 with SCH79797 attenuates cardiac fibrosis and

hypertrophy in the renin-overexpressing induced hypertensive

mice model (16). However, PAR1 is highly expressed in platelets,

and its antagonist is used for antiplatelet therapy (49). The

off-target effect restricts the application of this target for fibrosis

treatment. Protease-activated receptor-2 (PAR2), which also

couples to Gq/11, Gi/o, and G12/13, is expressed on liver stellate

cells that regulate the response to liver cirrhosis (17). PAR2

inhibitor PZ-235 has significantly suppressed liver fibrosis and
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FIGURE 1

GPCRs in fibrosis regulation. Some GPCRs mediate profibrotic signals, including protease-activated receptors (PAR1), lysophospholipid

receptors (LPA1, S1P), and adenosine receptors (AR), that activate receptors coupled to Gαi/o, Gαq/11, Gα12/13. Gβγ activation is also proved to

be profibrotic. In contrast, prostaglandin receptor (PGE2), which activates receptors Gαs and direct cAMP activator exert antifibrotic e�ects.

collagen deposition up to 50–100% (17). In contrast, 1-year-old

PAR2-knockout mice suffered from diastolic dysfunction,

associated with an increased α-SMA, collagen deposition,

lysyl oxidase activity, and collagen cross-linking. The absence

of PAR2 contributed to an augmented profibrotic PAR1 and

dependent signaling in heart (18), indicating that the same

GPCR may exert a distinct role in fibrosis regulation among

different organs.

Lysophospholipid receptors

The lysophospholipid receptor group is a member of the

GPCR family of integral membrane proteins essential for lipid

signaling (50). Lysophosphatidic acid (LPA) and its G protein-

coupled receptor (LPA1) contribute to fibrosis progression

(51). LPA1 is highly expressed on human primary fibroblasts,

which predominantly couples to Gαq/11, Gαi/o, and Gα12/13

proteins (52). Myocardial fibrosis is a key pathologic feature

of hypertrophic cardiomyopathy (HCM). In the HCM mouse

model, LPA1 ablation developed significantly less hypertrophy

and fibrosis (19). Since LPA1 antagonist BMS-986020 has been

tested in Phase II clinical trial for idiopathic pulmonary fibrosis

(20), it could potentially be used to treat cardiac fibrosis in

the future. Sphingosine 1 phosphate receptor-1 (S1PR1), which

also belongs to the lysophospholipid receptor family, couples to

Gαq/11, Gαi/o, and Gα12/13. Its overexpression was capable to

induces cardiac hypertrophy and fibrosis through angiotensin II

and interleukin-6 in S1PR1-transgenic mouse heart (21).

Adenosine receptors

In addition to adenosine and its receptor’s crucial role in

wound healing (53), they have also been found to promote

fibrosis by producing excess matrix in the heart, skin, lungs,

and liver (54). The adenosine receptor (AR) family comprises

four GPCRs: A1, A2A, A2B, and A3 (55). Previous studies have

suggested AR antagonists as an effective fibrosis treatment. For

example, caffeine, a non-selective adenosine receptor antagonist,

has been shown to alleviate liver fibrosis in animal models

and to reduce liver fibrosis in patients with chronic hepatitis

C (56, 57). However, the weak affinity of caffeine to ARs

requiresmicromolar concentration in plasma, which prevents its

potential for drug development.

A pro-fibrotic role for the A2B, which couples to Gαs and

Gαq, has been supported by a study using A2B knockout mice,

which exhibited improved diastolic dysfunction and attenuated

interstitial fibrosis 8 weeks after MI (22). Selective A2B

antagonist, GS-6201, significantly reduced cardiac enlargement
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and dysfunction compared to vehicle in the mouse MI model

(58). Similarly, in the rat model of myocardial ischemia-

reperfusion, GS-6201 improved ejection fraction and decreased

fibrosis in the non-infarct and border zones (59). In addition, the

adenosine A1 receptor (i.e., a Gαi coupled receptor) antagonist

SLV320 reduces myocardial fibrosis in rats with nephrectomy

(23). In contrast, the activation of A2A (i.e., a Gαs coupled

receptor) by CGS21680 reduced cardiomyocyte hypertrophy,

cardiac inflammation, and fibrosis in deoxycorticosterone

acetate (DOCA) treated mice (24). These interesting findings

suggest the effects of ARs on myocardial adaptation are subtype-

specific. The distinct role of AR subtypes in cardiac fibrosis

regulation needs further investigation.

Prostaglandin receptor

Prostaglandin E2 (PGE2) receptor, which couples to Gαs,

acts via cAMP and is abundantly expressed in fibroblasts (60).

Prostaglandin E2 receptor 4 (EP4) stimulation was reported

to be cardioprotective. Its agonist ONO-0260164 significantly

prevented systolic dysfunction and the progression of

myocardial fibrosis in the mouse model of cardiac hypertrophy

induced by transverse aortic constriction (25). Conversely,

EP4 knockout mice exhibited concentric hypertrophy and

myocardial fibrosis in mice fed with high-fat diet (61).

GPCRs involved in cardiac fibrosis
via crosstalk

Of particular relevance to cardiac fibrosis compared to

fibrosis in other organs are the distinct features of the heart tissue

environment (4). In the heart, the crosstalk between fibroblasts,

cardiomyocytes, and endothelial cells plays an important role in

fibrosis regulation (62). Different types of intercellular crosstalk

exist, including direct contact communication via gap junction

or nanotubes, indirect cell interaction via paracrine factors, and

cell-extracellular matrix (ECM) interaction (63). In particular,

several GPCRs and downstream pathways have been involved

in cardiac fibrosis regulation via the crosstalk mechanism

(Figure 2).

β adrenergic receptor

The stimulation of β1AR on cardiomyocytes increases

contractility through PKA-mediated phosphorylation of specific

regulatory proteins to increase intracellular Ca2+ level or

sensitivity, such as L-type Ca2+ channels, phospholamban,

ryanodine receptor, and troponin I (64). However, long-term

stimulation of β1AR leads to cardiac hypertrophy and fibrosis,

FIGURE 2

GPCRs involved in fibrosis via crosstalk mechanisms. Several

GPCRs contribute to cardiac fibrosis via interactions among

cardiomyocytes (CMs), endothelial cells (ECs), cardiac

fibroblasts (CFs), and extracellular matrix (ECM). Inhibiting those

and inhibiting those GPCRs or downstream pathways exert

antifibrotic e�ects in the heart. βAR, β adrenergic receptor. AT1R,

angiotensin receptor type 1. ETA, endothelin receptor A.

progressively developing into heart failure (26). Although β-

blockers cannot directly prevent MyoFB activation, those drugs

have been demonstrated to prevent cardiac fibrosis and improve

survival in mice models and clinics via cardiomyocyte-fibroblast

communications (26).

Angiotensin II receptor

Angiotensin receptors, particularly AT1R, play an important

role in heart pathophysiology (65). Cardiac AT1R, coupled to

Gαq, is upregulated with hypertrophic and ischemia, promoting

adverse maladaptive cardiac remodeling, including cardiac

fibrosis in chronic heart failure (66). Ang II, the endogenous

ligand, is a peptide hormone that regulates several critical

physiological processes, representing a principal component

of the renin-angiotensin-aldosterone system (66). AT1R is

expressed in cardiomyocytes, endothelial cells, and cardiac

fibroblasts. Its overexpression lead to cardiac fibrosis and

hypertrophy, whereas knockout of AT1R improved cardiac

function (67). The mechanisms of profibrotic AT1R are

multifold, including direct effects on fibroblasts and, more

importantly, via crosstalk between fibroblasts, cardiomyocytes,

or endothelial cells (62). Due to its central role in cardiovascular

pathophysiology, AT1R inhibitors and antagonists, ACEI and

ARB, are essential drugs for heart failure treatment and have
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been proven to protect against maladaptive remodeling and

cardiac fibrosis (27).

Endothelial receptor

Among the endothelial receptors, ETA is the major isoform

found in the cardiovascular system (68). Chronic stimulation

with ETA agonist ET-1 is associated with adverse effects,

including cardiac hypertrophy and fibrosis (4). High levels

of ET-1 in plasma have been found in heart failure patients

(68). ETA, which couples to Gαq, promotes IP formation

and activates MAPK signaling (69). ET1 knockout exerted

antifibrotic effects in the diabetes mice model via endothelial-

fibroblast interaction (70).

Fibroblast-ECM interaction

Increased ECM stiffness and tension are known to activate

fibroblasts through the yes-associated protein 1 (YAP) and

transcriptional coactivator with PDZ-binding motif (TAZ)

signaling pathway, which mediates the mechanical sensing

of cardiac fibroblasts in fibrotic diseases (71). The Hippo-

YAP-TAZ pathway is mediated by multiple G proteins, and

therefore involved in common GPCR downstream pathways

(72). Fibroblast conditional deletion of Yap1 attenuated injury-

induced cardiac fibrosis either after acute MI or chronic

angiotensin II–phenylephrine stimulation (73).

G protein and downstream pathways

Multiple profibrotic GPCRs are co-expressed in fibroblasts,

indicating the possibility of redundancy of G protein activity

in myofibroblast activation mechanisms. These results challenge

the effectiveness of antifibrotic therapy by antagonizing one

single GPCR. To address the redundancy issue, one strategy is to

target the G protein itself or convergent downstream pathways.

Gαs and cAMP

GPCRs coupled to Gαs activate adenylyl cyclase to elevate

the intracellular cAMP level (14). To examine the consequence

of Gαs signaling, forskolin is used as an activator of adenyl

cyclase (AC) to increase cAMP. Experiments using forskolin

to activate AC have identified that this pathway results in

the inhibition of TGF-β-induced fibroblast activation (74).

In rat cardiac fibroblasts, elevating cAMP formation by AC

overexpression or by forskolin attenuates myofibroblast marker

gene expression and collagen synthesis (30).

Gβγ

G protein βγ subunits were identified as G protein

components almost 30 years ago (75). Since then, Gβγ signaling

has been demonstrated as diverse, regulating a number of

downstream pathways depending on the interacting effectors.

For example, Gβγ has the capacity to activate G protein-coupled

inward rectifier K+ (GIRK) channels, phospholipase A and

C, plasma membrane Ca2+ pump, PI3K-AKT, GPCR kinase

2 (GRK2), and guanine exchange factors (GEFs) for small G

proteins (76). Moreover, a small molecule Gβγ inhibitor Gallein

has been shown to inhibit myofibroblast activation in vitro (77).

Gallein treatment a week after ischemic/reperfusion is effective

in reducing cardiac fibrosis and preserving ejection fraction

in a mouse model of chronic heart failure (29). Since GPCRs

are comprised of α and βγ subunits, differentiating the effects

of Gas (i.e., antifibrotic) from that of Gβγ (i.e., fibrotic) is

challenging and may depend on factors such as cell type of

receptor expression.

Hippo-YAP pathway

As previously described, Hippo-YAP is the common

downstream pathway of multiple G proteins (72). Specially,

activation of lysophospholipid receptors, such as LPA and

S1P, coupled simultaneously with Gαi, Gas, and Gα12/13,

inhibit the Hippo signaling kinases 1/2 (Lats1/2) (72).

The inhibition of Lats1/2 then stimulates the transcription

coactivators YAP and TAZ, which are related to cell proliferation

and migration (72). YAP and TAZ have recently been

identified as promotors for myofibroblast activation in cardiac

fibrosis (31). Interestingly, a previous study indicated that the

suppression of YAP/TAZ signaling by lovastatin attenuates

angiotensin II-induced cardiac fibrosis, both in vitro and in

vivo (78).

Polypharmacology

Given that fibrosis may develop from multiple stimuli,

one approach is to explore polypharmacology, which has

the capacity to simultaneously target multiple receptors and

signaling cascades (79). Polypharmacology has the potential

to produce higher efficacy drugs and reduced drug resistance

(80). For example, one of the FDA-approved drugs for

idiopathic lung fibrosis, nintedanib, simultaneously targets

fibroblast growth factor receptors, platelet-derived growth

factor receptors, and vascular endothelial growth factor

receptors (81). With the advancements in GPCR structural

biology and in-silico modeling, compounds can be rationally

predicted, modified, and designed to target multiple receptors

(41, 82).
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Identify more specific GPCR to
minimize o�-target e�ects

Another potential challenge for developing GPCR regulators

for antifibrotic therapy is the widespread expression of these

receptors among different cell types. Targeting the receptor

may exert off-target effects. For example, PAR1 inhibition

may not only attenuate myofibroblast activation, but also

impair platelet function due to PAR1’s high expression on

platelets (49). Similarly, AR inhibition by caffeine inhibits

liver fibrosis, but may simultaneously alter neurological

states because of AR’s high expression in neurons (83).

Recent published single-cell RNA sequencing (sgRNA-seq)

and single-nucleus RNA sequencing (snRNA-seq) datasets

from human hearts demonstrated distinct fibrotic responses

in various types of cardiomyopathies (28, 84–86). Therefore,

multiple signaling pathways and crosstalk can be exploited,

as they offer a rich blueprint of receptor distribution across

different cell types and organs. By leveraging the single-

cell sequencing database, we can identify GPCRs more

specifically expressed on fibroblasts at a given tissue and

upregulated during fibrosis to reduce potential off-target effects

(28, 87).

Conclusion

GPCR targeting approaches have yet to produce FDA-

approved drugs for fibrotic diseases. Nevertheless, targeting

GPCRs offers a tantalizing and promising therapy for treating

cardiac fibrosis, as more GPCR-targeted antifibrotic therapies

continue to enter clinical trials. Several challenges remain,

and major questions need to be addressed before GPCR-

mediated therapies for cardiac fibrosis are realized. The

redundancy of profibrotic G protein signals and widespread

GPCR expressions must be comprehensively considered to

determine and refine our approach for antifibrotic therapy. A

few solutions have been proposed to circumvent the challenges.

Candidate drugs with polypharmacology or targeting common

downstream signaling pathways have the potential to overcome

the redundancy challenge.

On the other hand, more specific targets should be identified

to minimize off-target effects by single-cell seq datasets of

cardiomyopathy. The unique cardiac environment provides

opportunities to target GPCRs highly specific expressed in

the heart via crosstalk between fibroblasts, cardiomyocytes,

endothelial cells, and ECM. Furthermore, the human induced

pluripotent stem cell platform can be utilized as a high

throughput and more complex human cellular model platform

to complement animal models for drug development (88, 89).

Collectively, these advances in our knowledge of GPCRs in

cardiac fibrosis provide a unique perspective on the challenges

and opportunities in exploring GPCRs to treat cardiac fibrosis.
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