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The role of chromosome Y in chronic kidney disease (CKD) remains unknown, as 
chromosome Y is typically excluded from genetic analysis in CKD. The complex, sex-
specific presentation of CKD could be influenced by chromosome Y genetic variation, but 
there is limited published research available to confirm or reject this hypothesis. Although 
traditionally thought to be associated with male-specific disease, evidence linking 
chromosome Y genetic variation to common complex disorders highlights a potential 
gap in CKD research. Chromosome Y variation has been associated with cardiovascular 
disease, a condition closely linked to CKD and one with a very similar sexual dimorphism. 
Relatively few sources of genetic variation in chromosome Y have been examined in 
CKD. The association between chromosome Y aneuploidy and CKD has never been 
explored comprehensively, while analyses of microdeletions, copy number variation, and 
single-nucleotide polymorphisms in CKD have been largely limited to the autosomes 
or chromosome X. In many studies, it is unclear whether the analyses excluded 
chromosome Y or simply did not report negative results. Lack of imputation, poor cross-
study comparability, and requirement for separate or additional analyses in comparison 
with autosomal chromosomes means that chromosome Y is under-investigated in 
the context of CKD. Limitations in genotyping arrays could be overcome through use 
of whole-chromosome sequencing of chromosome Y that may allow analysis of many 
different types of genetic variation across the chromosome to determine if chromosome 
Y genetic variation is associated with CKD.

Keywords: chromosome Y, chronic kidney disease, genome-wide association, genotyping arrays, haplogroup, 
imputation, LOY, microdeletion

INTRODUCTION

To date, the contribution of chromosome Y to the development and progression of chronic kidney 
disease (CKD) has remained largely unexplored. Over 50 genome-wide association studies (GWASs) 
have been conducted in renal diseases during the last 10 years (MacArthur et al., 2017), yet only one 
has reported details of chromosome Y analysis (Nanayakkara et al., 2014). For example, one of the most 
comprehensive meta-analysis GWASs conducted in renal disease included over 2.5 million single-
nucleotide polymorphisms (SNPs), genotyped in 110,517 individuals; however, no chromosome 
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Y SNPs were included (Gorski et al., 2017). The exclusion of 
chromosome Y from genomic analyses may previously have been 
justifiable, based on the assumption that chromosome Y was a 
“genetic wasteland” (Maan et al., 2017); but as more research is 
published, it is becoming clear that chromosome Y variation may 
be useful for identifying individuals with increased susceptibility 
to the disease. It was traditionally thought that chromosome Y 
only carried genes important for male-specific traits. However, 
pseudoautosomal regions (PARs) of sequence homology with 
chromosome X are found on the tips of chromosome Y. Gene 
expression levels between chromosome X and chromosome Y 
PAR homologs can be subject to male expression bias, whereby 
chromosome Y PAR genes are more highly expressed than 
their chromosome X counterparts, which could account for sex 
differences in disease (Snell and Turner, 2018). Additionally, upon 
the complete sequencing and characterization of the chromosome 
by Skaletsky et al. (2003), it was revealed that approximately 50% 
of protein-coding genes present on the male-specific region 
(MSY) expressed in non-gonadal tissues (Skaletsky et al., 2003), 
and it is, therefore, likely that they could play a role in common 
complex disease. For example, Charchar et al. (2012) performed 
such analysis on chromosome Y and identified an increased 
risk of coronary artery disease (CAD) in men from haplogroup 
I, but it is unclear whether this finding is relevant to CKD. The 
major rationale for including chromosome Y in studies of disease 
risk stems from the goal of identifying genetic features that may 
contribute to sex-specific presentations of disease. For example, 
cardiovascular disease (CVD) incidence is similar between men 
and women, but progression of the disease differs, with age of 
onset approximately 10 years later for women (De Smedt et al., 
2016). Chromosome Y analysis to detect variation contributing 
to disease risk is a logical step. A very similar sexual dimorphism 
exists in CKD; prevalence is greater in women, but kidney disease 
in men progresses more rapidly to end-stage renal disease (ESRD), 
the most severe form of CKD (Hill et al., 2016). In this case, a 
male-specific marker of accelerated CKD progression could prove 
useful in identifying which patients are at greater risk of rapid loss 
of renal function. The issue of having better markers for CKD 
progression is relevant when examining current biomarkers for 
the diagnosis of CKD. Renal function is assessed by measuring 
either serum creatinine, or less commonly cystatin C, and an 
equation is used to determine an estimated glomerular filtration 
rate (eGFR). However, these eGFR equations are less accurate 
for certain individuals, such as those with low muscle mass, 
extreme body mass indexes, and early-stage CKD, a group whose 
identification is key to allow implementation of preventative 

measures (Gentile and Remuzzi, 2016). Extensive reviews of the 
literature have highlighted that there are relatively few alternative 
kidney function biomarkers, and none have improved upon the 
limitations of serum creatinine or cystatin C (Cañadas-Garre 
et  al., 2018; Cañadas-Garre et al., 2019b). Therefore, while 
exclusion of chromosome Y in genomic analysis of renal disease 
may previously have been justifiable, it does highlight a distinct 
gap in our knowledge of how chromosome Y genetic variation 
may play a role in renal disease pathogenesis.

CHROMOSOME Y IN DISEASE

While chromosome Y variation has been linked to a number of 
male-specific conditions such as prostate cancer (PCa), it has 
also been shown to influence the risk profile of men for common 
complex disease such as CAD and influence the progression 
of HIV (Sezgin et al., 2009). The clearest link thus far between 
chromosome Y and disease is related to infertility.

Infertility
While up to 7% of men are infertile, only 15–30% of these cases 
have a known genetic cause (Neto et al., 2016). Numerical and 
structural defects in chromosome Y have been linked to male 
infertility. An extra copy of chromosome Y (47, XYY) is the 
second most-frequent aneuploidy of the sex chromosomes, 
present in 1/1,000 men (Bardsley et al., 2013) and can result 
in a complete lack of spermatozoa production (azoospermia) 
or a severely low sperm count (oligospermia) (McLachlan and 
O’Bryan, 2010). Chromosome Y microdeletions (deletions 
less than 5 megabases in size) (Halder et al., 2013) have long 
been associated with infertility (Stuppia et al., 1997), and three 
azoospermia factor regions, AZFa, AZFb, and AZFc, have been 
identified on the long arm of chromosome Y (Vogt et al., 1996). 
The most clinically significant recurrent microdeletions see 
the complete loss of each AZF region, or the combined loss of 
AZFb and AZFc, with approximately 80% of all microdeletions 
being a complete loss of AZFc (Krausz et al., 2014). The AZFc 
region, which contains the deleted in azoospermia (DAZ) gene 
family, is completely deleted in 5–10% of azoospermia/severe 
oligospermia cases, making it the most frequent genetic cause 
of infertility in men (Ferlin et al., 2005). Partial AZF deletions 
(Lu et  al., 2009) and gr/gr deletions (Bansal et al., 2016) are 
associated with spermatogenic failure and have also been 
associated with different chromosome Y haplogroups (Lu et al., 
2009; Ran et al., 2013; Xue et al., 2013). Copy number variation 
(CNV) in certain chromosome Y genes, such as GOLGA2P3Y 
and RBMY1, has been associated with reduced sperm count 
(Sen et al., 2016) and motility (Yan et al., 2017). However, while 
certain genes and deletions have been associated with male 
infertility, further research is required to establish a complete 
pathogenic mechanism.

Prostate Cancer
Another male-specific condition with which chromosome 
Y has been linked is PCa. Loss of chromosome Y (LOY) has 

Abbreviations: AZF, Azoospermia factor; CAD, Coronary artery disease; CAKUT, 
Congenital anomalies of the kidney and urinary tract; CKD, Chronic kidney 
disease; CNV, Copy number variation; CVD, Cardiovascular disease; DAZ, Deleted 
in azoospermia; eGFR, Estimated glomerular filtration rate; ESRD, End-stage renal 
disease; GWAS, Genome-wide association study; HDL, High-density lipoprotein; 
HIV, Human immunodeficiency virus; IgAN, Immunoglobulin A nephropathy; 
LDL, Low-density lipoprotein; LOY, Loss of chromosome Y; MI, Myocardial 
infarction; MSY, Male-specific region of chromosome Y; PAR, Pseudoautosomal 
region; PCa, Prostate cancer; SNP, Single-nucleotide polymorphism; WAGR, 
Wilms tumor, aniridia, genitourinary anomalies, and mental retardation; WES, 
Whole-exome sequencing; WGS, Whole-genome sequencing; YAP, Chromosome 
Y Alu insertion polymorphism.
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been observed in PCa (Noveski et al., 2016; Zhou et al., 2016). 
Specific deletions in chromosome Y genes have been associated 
with PCa, several of which, including the sex-determining 
factor SRY, were found to increase in frequency with increasing 
PCa stage (Perinchery et al., 2000). A similar study detected 
loss of the region containing SRY at a similar rate, and also 
observed this loss in surrounding benign prostate hyperplasia 
tissue, perhaps indicating that loss of SRY is a precursor for 
PCa (Jordan et al., 2001). Loss of SRY may prevent the negative 
regulation of the androgen receptor AR, leading to increased 
androgen receptor activity and thus PCa growth. An additional 
chromosome Y gene, KDM5D, is also thought to interact with 
the androgen receptor, altering the sensitivity of docetaxel, a 
drug commonly used in androgen deprivation therapy (Komura 
et al., 2016). Chromosome Y haplogroups (Paracchini et al., 
2003), short tandem repeats (Carvalho et al., 2010; Nargesi et 
al., 2011), and a number of different genes, many identified 
through co-expression networks, have been associated with 
PCa (Khosravi et al., 2014). As the exact mechanism of 
PCa pathogenesis has yet to be elucidated, a further role of 
chromosome Y in PCa may yet emerge.

Cardiovascular Disease
CVD and its associated conditions are an example of some of the 
strongest evidence linking chromosome Y to common complex 
disease. CVD is a prime example of a condition that exhibits a 
complex sexual dimorphism; incidence of CVD is higher in men 
than in age-matched women, but the relative risk of mortality 
is higher in women with CVD (Möller-Leimkühler, 2007). 
Chromosome Y genetic variation has previously been linked 
to CVD; carriers of haplogroup I-defining SNP rs2032597 
(also known as M170) had a ~50% higher age-adjusted risk 
of CAD than men with other chromosome Y lineages in two 
independent cohorts, and the joint analysis of both cohorts 
(Charchar et al., 2012). The presence of the A form of two SNPs, 
rs768983 (A/G) in TBL1Y and rs3212292 (A/T) in USP9Y, was 
associated with lower levels of triglycerides and higher levels of 
high-density lipoprotein (HDL)-cholesterol compared with the 
other haplotypes in Black individuals of African origin (Russo 
et al., 2008). These SNPs were almost entirely monomorphic in 
the other ethnic groups included in the analysis, highlighting 
the differences in risk profiles between different ethnic groups 
and may explain the lower risk of CVD in Black individuals. 
However, conflicting studies in this area make the connection 
between chromosome Y and CVD less clear. While the YAP 
polymorphism, caused by an Alu insertion, was associated 
with an increased risk of atherosclerotic plaque formation at a 
particular bifurcations (Voskarides et al., 2014), other studies 
failed to find any association between this polymorphism and 
low-density lipoprotein (LDL)-cholesterol (Shoji et al., 2002; 
Hiura et al., 2008), hypertension (Hiura et al., 2008; Kostrzewa 
et al., 2013), or myocardial infarction (MI) (Hiura et al., 2008). 
Other chromosome Y haplogroups have been investigated in 
CVD, and haplogroup K was found to be associated with a 2.5× 
increased risk of atherosclerotic plaque development (Hiura et 
al., 2008), but not with hypertension (Kostrzewa et al., 2013). 

Additional haplogroup analyses failed to identify any association 
between haplogroups and either hypertension (Kostrzewa et al., 
2013) or venous thrombosis (de Haan et al., 2016). Conflicting 
evidence of association between the HindIII(±) polymorphism 
has also been presented, where HindIII(+) has been associated 
with increased systolic and diastolic blood pressure (Charchar 
et al., 2002) and MI in hypertensive patients (García et al., 
2003). However, HindIII(−) has also been reported as associated 
with increased blood pressure, although this study was 
conducted in pre-pubescent boys, which may account for the 
conflicting results (Shankar et al., 2007). In other studies, no 
significant association at all was found between the HindIII(±) 
polymorphism and blood pressure (Rodriguez et al., 2005; 
Russo et al., 2006; Kostrzewa et al., 2013).

CHROMOSOME Y IN CHRONIC  
KIDNEY DISEASE

The potential links between chromosome Y genetic variation 
and CKD have not been systematically explored. Several types 
of genetic variation in chromosome Y have been discussed 
above in relation to disease: loss of chromosome Y (LOY), 
an extra copy of chromosome Y (47, XYY), chromosome Y 
microdeletions, CNVs, SNPs, and haplogroups. While many 
of these genetic variations, particularly microdeletions, CNVs, 
and SNPs, have been explored in autosomes in individuals with 
CKD, studies of these variants in chromosome Y in CKD are 
limited. LOY has been detected in other renal conditions, such 
as in renal cell carcinoma tumors (Dagher et al., 2013) but 
not in any condition falling under the umbrella of CKD. As a 
minimally invasive biomarker, LOY in CKD could be detected 
through traditional karyotyping or by using SNP arrays 
(Forsberg, 2017). No study to date has tested for association 
between mosaic LOY in peripheral blood and CKD; and 
as mosaic LOY in blood is also associated with smoking 
(Dumanski et al., 2015), higher cancer risk (Forsberg et al., 
2014), aging (Forsberg et al., 2017), and age-related macular 
degeneration (Grassmann et al., 2019), any association study 
would require adjustment for these factors. An additional copy 
of chromosome Y results in a mild syndrome known as 47, 
XYY. CKD is not typically associated with 47, XYY, although 
a single participant with posterior urethral valves carrying 
an additional copy of chromosome Y was identified in a 
study of congenital anomalies of the kidney and urinary tract 
(CAKUT) (Caruana et al., 2014). Although 47, XYY does not 
appear to be associated with adult-onset CKD, its relevance in 
CKD has not really been explored, so the evidence is limited. 
As with LOY, XYY can be detected using karyotyping or SNP 
arrays. There are currently no known associations between 
chromosome Y microdeletions and CKD, as studies in CKD to 
date have generally focused only on the specific microdeletions 
described in autosomes. Microdeletions in the HNF1B gene 
on chromosome 17q12 have been identified in both children 
and adults with CKD (Musetti et al., 2014; Verbitsky et al., 
2015). A study of idiopathic CKD found a 1.3Mb deletion in 
HNF1B in 9% of participants tested (Clissold et al., 2018).  
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A microdeletion at 11p13, the region containing the PAX6 and 
WT1 genes, results in Wilms tumor, aniridia, genitourinary 
anomalies, and mental retardation (WAGR) syndrome, 
patients with which have, among other symptoms, significant 
ESRD (van Heyningen et al., 2007). Larger deletions and 
duplications, known as CNVs, have been studied in CKD but 
largely in pediatric cohorts of CAKUT. A study of two distinct 
cohorts of adult Han Chinese individuals found several CNVs 
in the DEFA1A3 locus associated with renal dysfunction in 
immunoglobulin A nephropathy (IgAN) patients (Ai et al., 
2016). NPHP1 gene deletions resulting in nephronophthisis, 
one of the most prevalent causes of ESRD in children, have 
also been detected in patients with adult-onset ESRD (Snoek 
et al., 2018). Among these studies, different CNV detection 
methods were used, including SNP arrays and whole-exome 
sequencing (Caruana et al., 2014; Bekheirnia et al., 2017). 
While some studies actively did not analyze any of the known 
chromosome Y CNVs (Verbitsky et al., 2015; Li et al., 2017), 
whether chromosome Y was included in the analysis in other 
studies was unclear. Therefore, due to either lack of reported 
analysis or indeed lack of association, there are currently no 
known associations between chromosome Y CNVs and CKD.

As outlined above, more than 50 studies have tried to unravel 
the genetic variation of CKD explained by SNPs (MacArthur 
et al., 2017). To date, 140 autosomal and X chromosome SNPs 
have been associated with CKD (Cañadas-Garre et al., 2019a). 
However, no studies have reported significant associations 
with chromosome Y SNPs, probably because they were 
methodologically excluded. Indeed, only one GWAS of renal 
dysfunction appears to have included chromosome Y SNPs 
in their analysis (Nanayakkara et al., 2014). No significant 
associations were detected between CKD and chromosome 
Y SNPs in this study, but due to differences in prevalence of 
chromosome Y haplogroups between different populations, this 
does not necessarily mean chromosome Y variation is not linked 
to CKD. For example, the most common haplogroup in European 
populations, R1b, is not present in the Sinhalese participants 
of the study by Nanayakkara and colleagues, whose dominant 
haplogroup is the R2 haplogroup (Kivisild et al., 2003), therefore 
demonstrating the need for analysis in a range of populations. 
Given that chromosome Y SNPs have demonstrated to play a 
role in other diseases, particularly CVD, a condition with strong 
links to CKD, are we missing associations between chromosome 
Y SNPs and CKD?

GWAS EXCLUSION

Chromosome Y SNPs make up approximately 0.07% 
(60,505/84,387,209) of all recorded biallelic SNPs within the 
genome (Gibbs et al., 2015). Therefore, a possible explanation 
for the lack of significant findings on chromosome Y in relation 
to CKD may be the underrepresentation of chromosome Y 
on commonly used genotyping arrays. Figure 1 shows that, 
although chromosome Y is completely excluded from some 
arrays, its representation on other platforms is actually greater 
than the percentage of chromosome Y SNPs in the genome. 

However, although chromosome Y may be represented almost 
proportionally on genotyping arrays, only 4% of chromosome 
Y SNPs in the genome (60,555) are analyzed on the largest 
array (2,445 on the Illumina Omni-5.4 Array). Therefore, while 
representation of chromosome Y on traditional genotyping arrays 
may be proportional, it is far from comprehensive. Insufficient 
gene coverage may also explain the lack of significant findings in 
chromosome Y. However, as shown in Figure 2, the SNPs offered 
on commonly used genotyping arrays provide sufficient coverage 
of chromosome Y genes (Zerbino et al., 2018).

Although only a fraction of chromosome Y SNPs are present 
on available genotyping platforms, an often greater-than-
proportional number of SNPs is dedicated to chromosome Y 
on common genotyping platforms. So why is chromosome 
Y excluded from analyses? Chromosome Y content between 
genotyping arrays is variable, which in turn greatly limits the 
number of SNPs available for cross-study meta-analysis. For 
example, for a meta-GWAS of cohorts genotyped using the 
arrays outlined in Figure 1, no chromosome Y SNPs would be 
eligible for inclusion, as zero chromosome Y SNPs are found on 
the Affymetrix 500K arrays. This may explain why chromosome 
Y is excluded from some larger meta-GWAS. Even if arrays do 
contain chromosome Y SNPs, there is a distinct lack of overlap 
between arrays, and as more arrays are considered, the number of 
SNPs that are common to all platforms is reduced. For example, 
Figure 1 shows that only 19 SNPs are in common between the 
other seven included arrays.

However, the same can be said for the rest of the SNPs on 
commonly used genotyping platforms. Whole-genome SNPs 
(including chromosome Y) that are common between the 
same eight genotyping arrays are outlined in Figure 1. Only 
7,851 SNPs feature on all eight arrays. Yet in larger renal meta-
GWAS, by using imputation, as many as 2.5 million autosomal 
and chromosome X SNPs can be included (Pattaro et al., 2016; 
Gorski et al., 2017). Imputation is a process that allows inference 
of ungenotyped SNPs in a sample, based on panels of haploid 
reference sequences (Marchini et al., 2007), meaning that 
the number of loci for which information is available can be 
dramatically increased from the number obtained from direct 
genotyping alone. For example, less than a million directly typed 
markers were imputed to approximately 96 million variants 
using the Human Reference Consortium and UK10K haplotype 
resources in UK Biobank samples genotyped using either the 
UK BiLEVE or UK Biobank Axiom array (Bycroft et al., 2018). 
In this case, imputation allowed more than a hundred times 
the number of directly genotyped SNPs to be available for 
analysis. Even after applying quality control thresholds, such 
as for minor allele frequency and imputation quality, as many 
as 12 million SNPs could be available for association analysis 
(Haas et al., 2018). The same imputed genotypes were used in a 
recent meta-GWAS, in which five million SNPs were common 
between the three studies and available for the meta-analysis 
(Xue et al., 2018).

However, as chromosome Y is haploid and a large portion 
of the chromosome does not undergo recombination, 
accurate and reliable chromosome Y imputation is, despite 
recent efforts (Zhang et al., 2013), not widely implemented.  
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Even chromosome X, whose imputation has been achieved 
(Marchini and Howie, 2010), may be excluded due to the need 
to impute it separately, so exclusion of both sex chromosomes 
in GWAS is common. While this lack of recombination in the 
majority of chromosome Y should actually aid imputation, 
chromosome Y reference panels for imputation are not widely 
available, and therefore, chromosome Y is often excluded from 
the analysis at this stage. For example, the Sanger Imputation 
service offers five different reference panels to impute data to, 

none of which include chromosome Y (McCarthy et al., 2016). 
However, the lack of recombination across this section of 
chromosome Y means that any genetic variations in the MSY 
pass directly from father to son and means that certain genetic 
variations are often inherited together. Patterns in these genetic 
variations are known as haplotypes and can be used to group 
individuals into haplogroups. These groups or “clades” are defined 
by single markers that differentiate one clade from another, and 
genotyping of these markers can be used to sort individuals into 

FIGURE 2 | Positions of chromosome Y SNPs on each array in relation to chromosome Y genes from the UCSC database (Kent et al., 2002). “Combined” track 
contains all SNPs from the six individual array tracks (n SNPs = 4344). Chromosome Y SNPs from the pseudoautosomal regions are not included here, explaining 
the lack of gene coverage at the start and the end of the chromosome.

FIGURE 1 | Comparison of whole-genome (top) and chromosome Y (bottom) SNPs between different commonly used genotyping platforms. Dark grey-shaded 
boxes indicate the total number of either whole-genome or chromosome Y SNPs present on each array. The percentages that chromosome Y SNPs make up 
of their respective arrays are shown in brackets in the dark grey-shaded boxes. The light grey-shaded box is the percentage chromosome Y SNPs in the entire 
genome, for comparison. Pink-shaded boxes show the number of SNPs common between all arrays for either whole genome (top) or chromosome Y SNPs 
(bottom). The Affymetrix 500K array has been excluded from the chromosome Y section (bottom), as it contains zero chromosome Y SNPs.
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different haplogroups. It has also been shown that some of these 
haplogroups are associated with certain phenotypes. For example, 
haplogroup I, one of the most frequently occurring haplogroup 
in the UK (Winney et al., 2012), is associated with an increased 
risk of CAD (Charchar et al., 2012). In many cases, haplotyping 
negates the need for large numbers of SNPs to be genotyped in 
genetic association analyses; for example, only 11 SNPs need to 
be genotyped to cover 95% of the haplogroups present within the 
UK (Charchar et al., 2012). Haplotyping can be performed using 
any SNPs genotyping method, including SNP arrays (Kim and 
Misra, 2007). All arrays included in Figure 1 provide coverage 
of major haplogroup-defining SNPs and would therefore be 
suitable for use in haplogroup association studies. However, 
to date, no such analysis has been carried out in CKD. This 
glaring lack of investigation offers the opportunity to perform a 
complete analysis of chromosome Y genetic variation in CKD. 
A full analysis of SNPs/haplogroups, CNVs, microdeletions, 
LOY, and XYY could be performed using SNP arrays, but the 
limitations of these arrays in chromosome Y have been outlined 
above. The decreasing cost of and increased coverage offered by 
whole-genome (WGS) and whole-exome sequencing (WES) may 
offer a solution for improving investigations in chromosome Y  
(Levy and Myers, 2016).

WHOLE GENOME/EXOME SEQUENCING 
AND CHROMOSOME Y

WGS has already been utilized in CKD. WES detected diagnostic 
variants (Lata et al., 2018; Groopman et al., 2019) and CNVs in 
individuals with CKD (Bekheirnia et al., 2017); chromosome Y 
was not included in either of these studies, as they only targeted 
variants with known links to CKD. WGS can also detect LOY/
XYY, microdeletions, SNPs and therefore, haplogroups (Muzzey 
et al., 2015). It offers the added benefit of multiple long reads, 
meaning there is a reduced risk of genotypes being lost to poor 
genotyping, as there is with arrays. WGS would generate a 
complete profile of chromosome Y to be analyzed, rather than 
needing multiple alternative methods (karyotyping, chromosomal 
arrays, and SNP arrays) to provide the same data. As knowledge 
of chromosome Y haplogroups grows, it is expected that more 
haplogroup markers will be added to the phylogeny (van Oven 
et al., 2014) and that WGS prevents re-genotyping of samples for 
certain markers as the whole sequence will be available. WGS also 
overcomes the issue of imputation; genotypes do not need to be 
inferred if the whole sequence is available. Lack of common SNPs 
between different studies is also improved by access to the entire 
sequence. However, due to sequence homology between the sex 
chromosomes and the large regions of repetitive sequences within 
chromosome  Y, sequencing presents some challenges in itself. 
Repetitive sequences make sequencing more difficult. However, 
tools are being developed to try and combat some of these issues 
(Webster et al., 2019), and as sequencing technologies develop 
and costs fall, longer reads of greater read depth may aid in 
mapping complex repeated sequences. For example, Oxford 
Nanopore technology has recently achieved read lengths of 
up to 2.2Mb (Payne et al., 2018), and this has since been used 

to sequence and assemble the first chromosome Y of African 
Origin, where sequence continuity increased by almost 800% 
than did previous methods and amounted to 21.5Mb of total 
sequence (Kuderna et al., 2019). In short, although presenting 
some challenges of its own, WGS/WES resolves many of the 
major issues of analyzing chromosome Y with SNP arrays and 
allows multiple types of variation to be considered using a single 
test, offering the most comprehensive analysis of chromosome 
Y possible.

CONCLUSIONS

Chromosome Y analysis remains challenging due to lack of 
common coverage by genotyping arrays, the need to process 
chromosome Y data separately from autosomal data, and the 
current inability to accurately impute chromosome Y to the same 
standards that have been achieved in autosomal imputation. 
The inclusion of chromosome Y in GWAS and other genetic 
analyses is inconsistent, and in many cases, it is not clear if the 
analysis was not performed, or if negative results have simply 
not been reported. For this reason, the known contribution of 
chromosome  Y genetic variation to disease remains limited, 
particularly in renal disease. The sexual dimorphism in 
CKD provides a rationale for further investigations of factors 
influencing sex-related progression to ESRD, perhaps using 
methods such as targeted next-generation sequencing to 
analyze chromosome Y specifically. While other factors, such 
as hormone profiles, may influence disease progression, the 
current lack of chromosome Y analysis in renal disease means 
that the contribution of genetic variation in chromosome Y to 
renal disease progression remains unknown.
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