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Psoriasis is a chronic inflammatory skin disease where the altered regulation in angiogenesis, inflammation, and proliferation of
keratinocytes are the possible causes of the disease, and the transcription factor “hypoxia-inducible factor 1-alpha” (HIF-1𝛼) is
involved in the homeostasis of these three biological phenomena. In this review, the role of HIF-1𝛼 in the cross talk between the
cytokines and cells of the immunological system involved in the pathogenesis of psoriasis is discussed.

1. The Psoriasis

Psoriasis is a chronic inflammatory disease of the skin
with unknown etiology but associated with angiogenesis
and with proliferative and immunological dysfunction, all
manifested in the skin. Global epidemiology has suggested
that the incidence of psoriasis varies according to age
and geographic region; it is estimated that 2-3% of the
world population have psoriasis being more frequent in the
Caucasian population with an incidence of about 100,000
people per year [1, 2]. There are several types of psoriasis,
but all are characterized by skin thickening, erythema, and
pustular or squamous plaque formation, but they can also
be associated with comorbidities such as arthritis, diabetes
type II, obesity, and metabolic syndrome [3, 4]. This wide
range of psoriasis types indicates that psoriasis is a mul-
tifactorial disease where the hereditary factor is determi-
nant. In fact, the first psoriasis related locus (PSORS1) was
located in the chromosome 6p21.23 where genes related
to HLA-Cw6 are found. In a meta-analysis done with
10,588 psoriatic patients and 22,806 healthy subjects ana-
lyzed from three genome-wide association studies (GWAS),

thirty-six susceptibility loci were found. The new identified
loci included genes whose products are associated with
the innate-immune response as interferon-mediated antivi-
ral responses (DDX58), macrophage activation (ZC3H12C),
nuclear factor NF𝜅B signaling (CARD14 and CARM1) and
genes whose products are involved in the regulation of T-cell
function (RUNX3, TAGAP, STAT3, STAT5A, and STAT5B)
[5].

The skin is an organ that accumulates a high number
of cells of the immunological system; for example, a con-
siderable number of T cells reside in normal human skin
(approximately twice the number of circulating T cells) and
in the epidermis Langerhans cells and CD8+ T cells are the
most predominant immunological cell types. In the dermis
of both mouse and human, dermal dendritic cells (dDCs),
macrophages, mast cells, conventional 𝛼𝛽T cells, and a small
population of type-3 innate lymphoid cells (ILCs) producing
IL-17 have been reported. In mice, a particular population of
cells called dendritic epidermal T cells (DETCs) are located
in the epidermis, and in the dermis the 𝛾𝛿T cells (ROR𝛾t+)
are found (Figure 1, n) [6].
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Figure 1: Hypotetical interaction between the keratinocyte and cells from immunologycal system and role of HIF-1𝛼, in the generation
of a psoriatic lesions. The following mechanism of epidermal response proposed occurs in healthy individuals. But, in psoriatic patients,
this mechanism could generate psoriatic lession, because they might have impaired genes involved in the immune homeostasis (pink zone
corresponds to psoriatic skin). When virus, bacteria or a fisical factor interacts with epithelial cells, (a) NF𝜅B is activated via TLR (b) and
translocated to nucleus to induce LL-37 and HIF-1𝛼 expression. The released LL-37, together with DNA or RNA (c), activates plasmacytoid
dendritic cells to produce IFN𝛼 and induce the activation ofTh17 via IFN𝛾 (d). On the other hand, intracellular LL-37 favors proliferation of
keratinocytes inducing IAP-2 expression (e); besides, intracellular LL-37 also facilitates angiogenesis inhibiting the proteosomal degradation
of HIF-1𝛼 (f) driven by E3/VHL (g) which is downregulated by HDAC-1 (h). After HIF-1𝛼 is stabilized by LL-37, HIF-1𝛼 is translocated to the
nucleous to induce VEGF expression, that is, a potent angiogenic factor (i). The concentrations of VEGF also augment in a feedback manner
with IL-13/IL-13R system in keratinocytes (j and k).The released LL-37 is also considered as an alarmin that is able to induce IL-36 production
(l) which in turn activates dendritic cells and induce IL-23 production (m). The dendritic cells activate 𝛾𝛿-T cells and ILC (both ROR𝛾t+)
located in the healthy dermal epithelium to trigger the production of IL-17 through PI3/mTOR-HIF-1𝛼-ROR𝛾t (n, o, and p). The reclusion
of Th17 cells is facilitated by the angiogenesis and chemiotatactic molecules in the psoriatic lession (q) and also Th17 could derive from Treg
with nonfuntional CD18 (r and s) to produce even more IL-17 (p) via IL-6-Stat3-HIF-1𝛼-ROR𝛾t (t, u, and p) in an activated glycolisys (v).
IL-17 induces keratinocytes proliferation (w). Some targets proposed for the treatment for psoriasis are shown. The use of miR-210 (x), the
use of STAT3 inhibitors: SOCS3 and Sta-21, (y) the downexpression of VHL (g), and the high expression of IL-13R𝛼 (z).

So far, the trigger for psoriasis remains unknown, but
it has been suggested that microbial agents or DNA/RNA-
LL37 complex delivered by physical factors (UV or dermal
damage) activates plasmacytoid dendritic cells (pDC) for the
production of IFN𝛼 that in turn activates dermal dendritic
cells (dDCs), migrates to lymph nodes, and produces IFN-
𝛾. In the presence of IFN-𝛾, the immune response can be

polarized to Th1 and Th17 and activate 𝛾𝛿T cells to produce
IL-17 who has an important role in the pathology of psoriasis,
as this inflammatory cytokine is considered a potent inductor
of the keratinocytes proliferation (Figure 1, c and d) [7].

In this review, we will discuss the interaction of HIF-
1𝛼 with cytokines and cells of the immunological system
involved in the pathogenesis of psoriasis.
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2. Psoriatic Animal Models

Several animalmodels have been developed to scrutinize pso-
riasis. In a good psoriasis animal model, the following should
happen: keratinocytes hyperproliferation, cellular infiltra-
tion, altered vascularity, thickening of epidermis, altered cell
differentiation of epidermis, and responsiveness to current
antipsoriasis therapies. Within these animal models, there
are those involved with genes related to hyperproliferation
of keratinocytes: for instance, the transgenic mouse for the
“human keratinocytes autocrine growth factor,” amphireg-
ulin [8, 9], and the transgenic mouse for the “peroxisome
proliferator-activated receptor,” PPAR 𝛽/𝛿, both resemble
psoriasis because there is an interference in the proliferation
and differentiation of keratinocytes [10]. PPAR 𝛽/𝛿 receptor
is induced by TNF𝛼 [11, 12], blocks apoptosis in keratinocytes,
contributes to STAT3 phosphorylation, induces angiogen-
esis, and is upregulated in human psoriatic skin [13, 14].
Besides PPAR 𝛽/𝛿 directly induces the differentiation of
keratinocytes, and in the transgenic mouse model a light
augment of Th17 is also observed [15].

Several murine psoriasis models have been generated
with a dysfunction in a transcription factor that regulates
the expression of innate immunity molecules. For instance,
deletion of IKK𝛽, which mediates canonical NF𝜅B activa-
tion, and transgenic expression of mutated I𝜅B𝛼 produce a
fulminant psoriasis-like disease inmicewith TNF-dependent
action [16, 17].

Recently, Grinberg-Bleyer et al. described a new murine
psoriasis model that lacks the expression of p65 or c-Rel
in cells of the epidermis. Those mice lacking both subunits
developed severe dermatitis after birth which is resolved 30
days after birth by the effect of Treg cells, but when Treg cells
were eliminated using anti-CD25 antibodies the deficient
mice exhibited worsened pathology, and the symptoms were
reversed with anti-TNF𝛼 treatment (Figure 1, b) [18].

The dysfunction in the activity of other transcription
factors, for instance, AP-1 and STAT3, also contributes to
the initiation of skin inflammation. Mice with deficient
expression of JunB and its functional coworker c-Jun, as
well as mice with overexpression of FOS (all components of
AP-1), generate a phenotype resembling the histological and
molecular hallmarks of psoriasis, including arthritic lesions.
Furthermore, epidermal keratinocytes of psoriatic patients
have the JunB expression reduced, in comparison with cells
from healthy subjects [19]. Besides, STAT3 transgenic mice
and SOCS3 knockout mice (the negative regulator of STAT3)
have constitutive activation of STAT3 and both develop
murine IL-6-driven psoriasis [20, 21]. (Figure 1, t and y).

Other sorts of psoriatic animal models include those
where cytokines and cells of immune systemare involved.The
role of type I interferons in the psoriasis was demonstrated
in mice deficient to “IFN regulatory factor-2” (IFNR-2),
a transcriptional repressor for IFN-𝛼𝛽 signaling (Figure 1,
c). These mice developed a skin disease similar to human
psoriasis [22]; in fact, now, we know that type I interferons
promotes the activation of dDCs [23].

Another cytokine involved in the pathological mech-
anism of psoriasis is IL-36, a submember of IL-1 family.

The overexpression of IL-36𝛼 in transgenic murine ker-
atinocytes promotes acanthosis, hyperkeratosis, cells infiltra-
tion, and increased expression of cytokines and chemokines.
The deficiency of IL-36Ra, the natural antagonist of this
cytokine, increases the severity of the lesions in the epider-
mis. Additionally, mice deficient in IL-36 or in its receptor
IL36R are protected from psoriasiform dermatitis induced
by imiquimod [24]. Also it is known that IL-1𝛽, TNF𝛼,
and IL-36 activate dDCs and induce the production of IL-
23 that is necessary for naive T cells to polarize to Th17,
suggesting that IL-23 could be the link between the innate
and adaptive immune response that occurred in the psoriatic
lesions (Figure 1, l and m) [25].

In 2009, a transient model of psoriasis-like disease was
reported, induced in healthy mice (nongenetically modified)
with the use of a TLR7 and TLR8 ligand (imiquimod). This
model showed the described skin lesions of psoriasis patho-
genesis, including activation of pDC and the dependence on
Th17 cells producing IL-17A, IL-17F, and IL-22 (Figure 1, c and
d) [26].

The deficient regulation in the cellular response is also
involved in the development of psoriasis. In normal con-
ditions, T regulatory (Treg) cells regulate the activity of
autoreactive Th1 and Th17 cells but in psoriasis it has been
suggested that Treg cells might not be functional, and this
was evident in the CD18hypo mouse model. Homozygous
mice PL/J CD18 hypomorphic (CD18hypo) developed spon-
taneously a psoriasis-like skin disease after 12–14 weeks of
age [27]. CD18 is a molecule that together with CD11a forms
an adhesion molecule of the 𝛽2 integrin family, important
for the complete function of Treg cells. It has been suggested
that CD18hypo mice induce psoriasis because Treg cells with
low expression of CD18, or with a not fully active molecule,
cannot regulate the activity of autoreactiveTh1 andTh17 cells
(Figure 1, s) [28].

The altered function of angiogenic molecules also
produces psoriasis. “Vascular endothelial growth factor”
(VEGF-) transgenic mice [29], “endothelial specific recep-
tor tyrosine kinase” (K5-Tie2-) transgenic mice [30], and
“transforming growth factor beta 1” (K5-TGFb1-) transgenic
mice [31] are psoriasis animal models that highlight the
importance of angiogenesis in this pathology. Tie2 is the
receptor of angiopoietin that together with VEGF is essential
for proliferation, maturation, and maintenance of blood
vessels (Figure 1, i). In both models, the hyperproliferation
of keratinocytes and the abundance of immunological cells
infiltrate, including Th17 cells, are detected in the psoriasi-
form lesions. The overexpression of VEGF not only can be
promoted by TGF𝛽 but also can be regulated by HIF-1𝛼
(Figure 1, j), as it is overexpressed in the psoriatic skin.

3. HIF-1𝛼 Regulation and Function

“Hypoxia inducible factor” (HIF) transcription factor family
is integrated by 3 alpha molecules and one beta molecule,
called HIF-1𝛼, HIF-2𝛼, HIF-3𝛼, and HIF-1𝛽. HIF-1𝛼 has
been the most studied one because in altered biological
processes where the cells are in hypoxic conditions, such as
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cancer, HIF-1𝛼 is overexpressed and translocated to nucleus
where it interacts with HIF-1𝛽 and p300 cofactors to induce
transcription of hypoxia-related target genes [32].

In cells of normal tissues and in normoxic conditions,
HIF-1𝛼 is constitutively expressed in the cytosol and its
activity is regulated by degradation in the proteasomal system
(Figure 1, g) [33]. In myeloid cells and T cells, the expression
of HIF-1𝛼 can also be induced via TLR-IKK-NF𝜅B and PI3K-
mTOR-TCR, or dectin1-Akt-mTOR (Figure 1, n) [34, 35]. In
the cytosol, HIF-1𝛼 is hydroxylated by “prolyl hydrolases”
(PHD2) in its Pro402 and Pro564 residues for its regulation
[36, 37]. The hydroxylated residues are recognized by the
“von Hippel-Lindau” (VHL) E3 ubiquitin ligase complex
(containing elongin B and elongin C, Cul2, and Rbx1), and
HIF-1𝛼 is ubiquitinated and hydrolyzed by the proteasome
(Figure 1, g) [38, 39].

Protein SSAT2 stabilizes the union between VHL-E3
ubiquitin ligase complex and HIF-1𝛼 promoting HIF-1𝛼
degradation [40]. HIF-1𝛼 can be acetylated in the Lys532
by ARD1 for its subsequent degradation via VHL [41], but
the “metastasis-associated protein 1” (MTA1) can counteract
the activity of ARD1 [42]. “VHL-interacting deubiquitinating
enzyme 2” (VDU2) is another protein that stabilizes HIF-1𝛼,
because it deubiquitinates HIF-1𝛼 avoiding its degradation
[43, 44]. It is important to note that HIF-1𝛼 degradation
is not only carried out by VHL-E3 ligase; the “receptor of
activated protein kinase C” (RACK1) [45, 46], SSAT1, HSP70,
and COMMD1, as well as the “hypoxia-associated factor”
(HAF), interact with HIF-1𝛼 and elongin C mediating the
degradation ofHIF-1𝛼. However, HSP90 [46], SEPT9 v1 [47],
and Jun activation domain-binding protein-1 (Jab1) compete
for the interaction with HIF-1𝛼 to prevent its proteasomal
degradation [48].

On the other hand, in hypoxia conditions, the degra-
dation of HIF-1𝛼 is interrupted because the PHDs are
inactivated by the mitochondrial reactive oxygen species
(ROS) leading to the accumulation HIF-1𝛼 in the cytosol
[49, 50]. Under hypoxia, HDAC-1 and HDAC-7 are induced;
meanwhile HDAC-1 downregulates the expression of VHL
favouring the stabilization of HIF-1𝛼 (Figure 1, h) [51, 52]
and HDAC-7 binds to HIF-1𝛼 to cotranslocate to the nucleus
[53].

In the nucleus, HIF-1𝛼 binds to HIF-𝛽 for its transcrip-
tional activity, being improved when they are associated with
the coactivators p300/CBP, SRC-1, and TIF2 [54], regula-
tor associated protein of mTOR, “orphan nuclear receptor
estrogen-related receptor” (ERRs), and Thiol-redox regu-
lator [55]. Nevertheless, if HIF-1𝛼 is translocated when is
hydroxylated at the asparagine 803 residue by the asparaginyl
hydroxylase FIH-1, it cannot bind with the cofactors, and the
transactivation of HIF-1𝛼 is abolished [56].

The function of HIF-1𝛼 can also be regulated in the
nucleus; the proteinsNecdin [57], “testis specific gene antigen
10” (TSGA10) [58], COMMD1 [59], p14ARF tumor suppressor
protein [60], and SIRT1 [61] can interact with HIF-1𝛼 inhibit-
ing its transcriptional activity.

The list of target genes of HIF-1𝛼 is very large; sev-
eral evidences have implicated HIF-1𝛼 in the metastasis of

tumoral cells. The reports show that the expression of inter-
cellular adhesion molecules (𝛼
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5
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5
, 𝛽1 integrins, and E-

cadherin) [62–65] “matrix metalloproteinases” (MMP2 and
MP9) [66, 67] and chemokines (CXCR4, c-Met, and CCR7)
is regulated by HIF-1𝛼 [68–70]. In angiogenesis, HIF-1𝛼
has been implicated in the regulation of VEGF, calcitonin
receptor-like receptor, Sema4D, “stem cell factor” (SCF), and
angiopoietin between others that will be discussed below
[71, 72]. In apoptosis, HIF-1𝛼 also plays important roles; it
regulates the expression of BNIP3 (which is a member of Bcl-
2 family), interacts with p53, and regulates the expression
of Puma, Bax, and p21 [73]. Besides, HIF-1𝛼 promotes the
cellular undifferentiation of various stem cell populations;
for example, not only HIF-1𝛼 interacts with Notch blocking
the differentiation of neuronal and myogenic progenitors,
but also HIF-1𝛼 induces the expression of erythropoietin
(EPO), which is necessary for the differentiation of red blood
cells [74]. In the energy metabolism, HIF-1𝛼 regulates the
expression of glucose transporters GLUT1 [75] and GLUT3
[76], 6-phosphofructo-2-kinase, phosphoglycerate kinase 1
(PGK1), and pyruvate kinase M2 that regulate the glycolytic
flux [77].

Recently, it was reported that HIF-1𝛼 is also involved in
the differentiation of Treg andTh17 cells [78, 79].

4. HIF-1𝛼 and the Angiogenesis of Psoriasis

As previously described, HIF-1𝛼 is a transcription factor
that acts over several target genes, but HIF-1𝛼 plays an
important role in the expression of proangiogenic genes
implicated in psoriasis, such as “vascular endothelial growth
factor” (VEGF) [80–83], VEGF receptors FLT-1 [83] and
FLK-1 [84], “plasminogen activator inhibitor-1” (PAI-1) [85],
angiopoietins [86], TIE-2 [86], “matrix metalloproteinases”
MMP-2 and -9 [87] calcitonin receptor-like receptor, Sema4D
[71, 72], and “cytokine stem cell factor” (SCF) [88].

In normal skin HIF-1𝛼 is expressed in the epidermis cells,
as the skin has been suggested to be a hypoxic tissue [89], but
in psoriatic lesions such expression is increased [90], and as
a consequence proangiogenic mediators, such as VEGF, IL-
8 and angiopoietins, are augmented in the psoriatic skin [91,
92].

The importance of VEGF in psoriasis is clearly seen in
VEGF transgenicmice that develop skin lesions that resemble
psoriasis [29]. As the presence of Staphylococcus aureus in
the skin of psoriatic individuals has been described [93], our
group studied the effect of peptidoglycan (PGN) from these
bacteria in keratinocytes. We found that keratinocytes stim-
ulated with PGN from S. aureus induce the overexpression
of LL37 and VEGF (Figure 1, f, c and j), but downexpressed
VHL (Figure 1, g) [94]; furthermore, when we transfected
keratinocytes with ll-37 VEGF and IAP-2 they were highly
expressed (Figure 1, j and e) suggesting that this antiapoptotic
molecule could favor keratinocytes proliferation in psoriasis
and could participate in the VEGF expression to promote
angiogenesis [95]. Li et al. reported that the angiogenic
activity of porcine PR39 (homologous to human LL-37)
occurs because PR39 inhibits the proteasomal degradation



Mediators of Inflammation 5

of HIF-1𝛼, and, in turn, it increases the expression of VEGF
(Figure 1, f).

Similar to Chamorro et al. [96], who shows that LL-
37 had antiapoptotic effect over keratinocytes, we reported
recently that PGN has an antiapoptotic effect over HaCaT
cells treated with TNF𝛼 through the production of LL-37 and
IAP-2 (Figure 1, e) [97].

Studying the regulation mechanisms for the VEGF
production in keratinocytes, we found that HaCaT cells
transfected with hdac-1 highly expressed VEGF via HIF-
1𝛼 (Figure 1, h), and HaCaT cells transfected with vhl
scarcely producedVEGF (Figure 1, g), but the low production
of VEGF could be counteracted by hdac-1 cotransfection.
(Figure 1, g and h) [52]. These assays showed the direct and
opposed effect of HDAC-1 and VHL over VEGF production
via HIF-1𝛼 (Figure 1, g and h). When we analyzed the
expression of thosemolecules in psoriatic skin, we found that
HDAC-1,HIF-1𝛼, andVEGF are overexpressed, but notVHL,
suggesting that the absence ofVHL favorsHIF-1𝛼 activity and
thus angiogenesis in psoriatic skin [90].

On the other hand, the dermis of psoriatic skin is
infiltrated predominantly by IFN𝛾-producing Th1 cells and
IL-17-producing Th17 cells [98]. It has been reported that IL-
17A has proangiogenic effects but in a HIF-1𝛼-independent
pathway; however, at the same time, IL-17A can stimulate
the expression of proangiogenic factors in fibroblast and
keratinocytes, includingVEGF, feeding back the angiogenesis
in psoriasis (Figure 1, p) [99–101].

Angiopoietins Ang-1 and Ang-2, and their receptor Tie-
2, are involved in the angiogenic process of psoriasis and all
are induced by HIF-1𝛼 [102]. Ang/Tie-2 is essential for the
growth, maturation and stabilization of blood vessels and, in
the papillary dermis of psoriatic skin, Ang-1, Ang-2, and Tie-
2 are overexpressed [103].

The prominent reduction of Ang-2 expression after suc-
cessful therapy suggests an important role of Ang-2 in pso-
riasis [102]. In a transgenic mouse model, the overexpression
of Tie-2 causes a psoriasis-like disease, and interestingly the
repression of Tie-2 in transgenic mice reversed the disease
completely [104].

5. Role of HIF-1𝛼 in the Th17 Polarization and
in the Psoriasis

Since 1986, whenMosmann et al. demonstrated the existence
of two different kinds of helper T cells clones (Th), named T
helper cell 1 (Th1) and T helper cell 2 (Th2) [105], different
groups have described the effect of these subsets in several
pathologies. Initially, the psoriasis was considered as a disease
with Th1 phenotype [106, 107]; however, this did not fully
explain how Th1 cells mediated the tissue damage in the
chronic inflammation [108]. A new hypothesis arose to
explain the psoriasis’ phenotype with the description of a
new subpopulation of T helper cells called Th17 cells, IL-17
producers [109]. The main physiological role of Th17 cells
has been shown in mucosal and epithelial host defence,
especially against fungal infections and extracellular bacteria
[110], but Th17 cells have also been related to the develop-
ment of autoimmune and inflammatory diseases [111]. IL-17

induces the production of IL-6, IL-8, “granulocyte-colony-
stimulating factor” (G-CSF), prostaglandin E2 (PGE), and
“leukemia inhibitory factor” (LIF) in epithelial, endothelial,
and fibroblastic cells [112]. In particular, in the pathophys-
iology of psoriasis, Th17 cells induce the production of IL-
6 and IL-8 in keratinocytes [113]. Systemically, serum levels
of IL-17 and of other proinflammatory cytokines correlate
with psoriasis severity [114]. Similarly, Th17, Th1, and Th22
cells (another subpopulation of Th cells characterized by
IL-22 production) are increased in psoriatic lesions and in
blood circulation [115, 116]. According to this, IL-17 acts as a
proinflammatory cytokine that amplifies the development of
cutaneous inflammation, keeping keratinocytes in constant
stimulation for the production of more proinflammatory
cytokines, in a feedback loop mode that keeps the chronic
inflammation as an important characteristic of psoriasis.

CD4+CD25highFoxp3+ Tregs or natural Treg cells are
typically considered inhibitors of autoimmune responses,
suppressing Th1 and Th17 activities. Similar to Th17 subpop-
ulation, Treg cells are increased in the peripheral circulation
and in skin tissue lesions of psoriatic patients [117]. To
explain why inflammation is not resolved in the psoriatic
skin even if Treg are also increased, two situations has
been suggested; the function of Treg cells is impaired in
psoriasis, or Treg cells can differentiate into inflammation-
associated Th17 cells under inflammatory conditions. In
the CD18hypo PL/J murine psoriasis model, the reduced
expression of CD18/𝛽2 integrin is associated with pro-
gressive Treg dysfunction. Recently, in vivo studies has
reported that Treg cells derived from CD18hypo PL/J mice
have high propensity to differentiate to Th17 cells, and in
vitro studies showed that the addition of CD18 neutraliz-
ing antibodies to Treg-dendritic cells cocultures promoted
the switch of CD18(wt) PL/J Treg cells to Th17 cells in
a dose-dependent manner, similar to the conversion rates
observed in vivo in the CD18hypo PL/J Treg cells (Figure 1, r)
[28].

Shi et al. were the first to report that, for the Th17
differentiation, the induction of glycolytic enzymes (Figure 1,
v) is required for the production of HIF-1𝛼 via mTOR
(Figure 1, n); they observed that when glycolysis and mTOR
were blocked, the Th17 differentiation was inhibited, and
Treg cells generation was promoted [78]. Today, it is known
that, for Th17 differentiation, cytokines IL-6 and TGF-𝛽
are necessary to induce näıve T cells to proliferate to Th17
phenotype, while cytokines IL-21 and IL-23 are important for
the maintenance and survival of the lineage [118–120].

The characteristic transcription factors that act for the
production of IL17 cells are “retinoic acid receptor-related
orphan receptor” alpha and gamma (ROR𝛼 and ROR𝛾t)
[121, 122] and STAT3 [123, 124]; they interact with HIF-1𝛼
for IL-17 expression. Dang et al. showed that in a hypoxic
and inflammatory environment (IL-6), HIF-1𝛼 leads theTh17
cell differentiation together with STAT3 (Figure 1, t). This
was suggested because, in the presence of IL-6 and TGF-𝛽,
Stat3−/− T cells did not producedHIF-1𝛼, nor IL-17, andwhen
näıve T cells were transfectedwith hif-1𝛼, they producedmore
IL-17 compared with nontransfected cells; furthermore they
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showed thatHIF-1𝛼−/− T cell did not differentiate toTh17 cells
in hypoxic conditions, but instead they differentiated to Treg
cells. Dang et al. suggested that in näıve T cells STAT3 induces
the production of HIF-1𝛼 in the presence of IL-6, and HIF-
1𝛼-STAT3 induces the production of ROR𝛾t. ROR𝛾t recruited
with STAT3,HIF-1𝛼, and p300 binds to the IL-17 promoter for
IL-17 transcription. In the same work, Dang et al. showed the
importance of HIF-1𝛼/STAT3 in autoimmunities; HIF-1𝛼−/−
mice deficient for IL-17 were more resistant to experimental
autoimmune encephalomyelitis induced with “myelin oligo-
dendrocyte glycoprotein peptide” (MOG35–55) [79]. In this
point, it is important to remember that transgenic mice to
STAT3 and the knockout mice to the “suppressor of STAT3”
(SOCS3) developed squamous skin that resembles human
psoriasis, and possibly the high expression of STAT3 favored
the Th17 differentiation but at the time the assays were not
performed [20, 21]. Now, it is known that STAT3 and STAT5
bind to the same DNA sites in the IL-17 promoter, but they
have opposing regulations [125]; meanwhile STAT3 promotes
Th17 cells and STAT5 promotes Treg cells. In the absence of
IL-6, IL-2 induces the expression of Stat5 in Th17 cells that
is a key transcription factor for the development of CD4+
FOXP3 regulatory T cells [126]. Subjects with deficiency
in the production of IL-2 are susceptible to autoimmune
diseases [79, 125]. The presence of cytokine IL-6 or IL-2
defines which STAT is going to be acting, as IL-2 is a high
inductor of STAT5 and IL-6 promotes the production of
STAT3.

The activity ofTh17 is also regulated by IL-13 (Figure 1, z).
In contrast with Th0, Th1, or Th2 cells, polarized Th17 cells
have high expression of IL-13R (integrated by the dimer IL-
13R𝛼/IL-4R) [127]. IL-13 and IL-4 attenuate IL-17 production
in Th17 cells from wild type but not from IL-4R knockout
mice [128]. Our group reported high expression of IL-13R,
of both IL-13R𝛼 and IL-4R mRNA, in human psoriatic
skin [129]. Furthermore, we also showed that keratinocytes
are IL-13 producers when stimulated with rVEGF or with
PGN via LL-37-HIF-1𝛼-VEGF (Figure 1, j and k) [94]. These
results suggest that in the psoriatic skin HIF-1𝛼 favors the
polarization ofTh17 cells and induces VEGF for angiogenesis,
but at the same time VEGF could also lead the control of
the inflammatory environment by the induction of IL-13
(Figure 1, j) to counteract the activity of Th17 cells (Figure 1,
z). Nevertheless, we also reported that IL-13R protein was
not increased as observed for its mRNA in the psoriatic skin,
suggesting that the protein is not available for the inhibition
ofTh17 cells and it could be the causewhy in psoriatic patients
the lesions are not controlled [129].

On the other side, the plasticity of Treg cells to become
Th17 cells has been studied in human psoriasis and in mouse
models. Positive cells to both Th17 and Treg populations
(IL-17A+/Foxp3+/CD4+) have been found in CD18low P/J
mouse and in skin lesions from patients with severe psoriasis.
Treg cells from psoriatic patients had enhanced propensity
to differentiate to IL-17A-producing cells in cells stimulated
ex vivo with IL-23 (cytokine strongly associated with the
psoriasis, Figure 1, m), but, interestingly, the treatment
with trichostatin-A, a “histone/protein deacetylase” (HDAC)

inhibitor prevented the cellular differentiation [130]. These
data suggest that HDAC favors the production of IL-17
in patients with psoriasis (Figure 1, h). Our group has
demonstrated that in keratinocytes transfected with hdac-
1 HIF-1𝛼 translocated to the nuclei and the production of
VEGF was induced, but the treatment with trichostatin-A
inhibited that process. It is known that HDAC-1 induces the
downexpression of VHL which leads HIF-1𝛼 to proteasomal
degradation [51, 52]. Perhaps in the psoriasis Treg cells
treated with trichostatin-A occurred that when HDAC-1
was inhibited, the expression of VHL augmented, HIF-1𝛼
was proteolyzed (Figure 1, h), and the expression of IL-17
decreased, giving as result that Treg cells could not switch to
Th17. In the skin of psoriatic skin, we found that when VHL
was not detected, HIF-1𝛼 and VEGF were highly expressed
[90].

6. HIF-1𝛼 as a Potent Therapy
Target in Psoriasis

All the results shown above suggest that HIF-1𝛼 could be a
target to control psoriasis considering that this transcription
factor is involved in angiogenesis and inTh17 differentiation.

Actually, there are fewworks that focused on the blockade
of HIF-1𝛼 as treatment for inflammatory diseases. Kim et
al. reported that the expression of “extra cellular superox-
ide dismutase” (EC-SOD) is downregulated in the skin of
patients with psoriasis in comparison with healthy subjects.
In HaCaT cells overexpressing EC-SOD there was inhibition
of HIF-1𝛼 production under hypoxia conditions and in
EC-SOD transgenic mice irradiated with UV a decreased
inflammation and angiogenesis was seen [131].

The polyphenol “epigallocatechin-3-gallate” (EGCG),
obtained from green tea, is another molecule that acts over
HIF-1𝛼. In arthritis model (IL-1RaKO) EGCG decreased the
arthritis index and showed protective effects against joint
destruction. The expression of proinflammatory cytokines,
oxidative stress proteins, p-STAT3 (Y705), and p-STAT3
(S727), mTOR, and HIF-1𝛼 were significantly lower in mice
treated with EGCG. Besides, the proportion of Foxp3+ Treg
cells was increased in the spleens of mice treated with EGCG,
whereas the proportion ofTh17 cells was reduced. In vitro, p-
STAT3 (Y705) and p-STAT3 (S727) andHIF-1𝛼 and glycolytic
pathway molecules were decreased by EGCG [132].

Another strategy for the control of HIF-1𝛼 is the use of
microRNAs. The microRNA miR-210 downregulates HIF-
1𝛼 production, and the deletion of miR-210 promotes Th17
differentiation under limited oxygen conditions. In exper-
imental colitis, miR-210 reduced the abundance of HIF-1𝛼
transcripts as well as the number of cells that produce inflam-
matory cytokines, controlling the disease severity (Figure 1, x)
[133].

Decoy oligonucleotides have also been used as a strategy
for treatment. InK5.Stat3Cmice, where keratinocytes express
a constitutively active Stat3 and develop psoriasis-like skin
lesions, Stat3 was targeted with a decoy oligonucleotide and
after treatment psoriatic lesions were reversed [21].

STA-21, a small Stat3 inhibitor, (Figure 1, y) was also eval-
uated in K5.Stat3C mice. Treatment with STA-21 markedly
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inhibited the cytokine-dependent nuclear translocation of
Stat3 in normal human keratinocytes in vitro. Topical appli-
cation of STA-21 abolished the generation of skin lesions in
K5.Stat3C mice. STA-21 was also evaluated in patients. Psori-
atic lesions in six of the eight patients showed improvement
after topical STA-21 treatment for 2 weeks [134].

We suggest that these molecules could be used to control
the psoriasis pathology as they act over HIF-1𝛼 to control IL-
17 production and angiogenesis development.

7. Conclusion

HIF-1𝛼 is a transcription factor highly regulated that has an
important role in the angiogenesis and in the generation of
Th17 cells in the skin of psoriatic patients. HIF-1𝛼 and its
regulators (HDAC-1, HDAC-7, VHL-E3, PHD2, LL-37, HIF-
1𝛽, mTOR, miR-210, ROR𝛾t, STAT3, and IL-13Ralpha, as well
as glycolysis enzymes) could be important pharmacological
targets to restore the lack of regulation in the angiogenesis
and in immunological processes involved in psoriasis.
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