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Therapeutic potential of stem cells in orthopedics
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introduCtion

There are a myriad of musculoskeletal disease 
conditions and injuries that presently have limited 
therapeutic options and could benefit from developing 

technologies in regenerative medicine. The goal of 
regenerative medicine is to functionally repair tissues and 
organs using cell-based techniques, thereby avoiding the 
need for artificial replacement therapies. Within this field, 
stem cells hold great potential as a method to either stimulate 
repair through systemic/local delivery or grow new organ 
systems de novo through tissue engineering technologies. 
Despite rapid progress, significant challenges remain in the 
translation of these stem cell therapies for clinical applications. 

The purpose of this review is to first provide a working 
definition of stem cells and discuss the hierarchal potential 
of different cell populations. The remainder of the review 
will offer a perspective on the current state of stem cell 
research. Together, this information should be encouraging, 
yet cautionary, toward the potential application of stem cell 
therapy in orthopedic surgery and traumatology.

what Makes a CeLL a “steM CeLL”?

The phrase “stem cell” has become so commonly used and 
misused that the rigor behind its scientific meaning has, in 
many cases, been lost. For a cell to be a stem cell, by definition, 
it must have the capacity to differentiate into multiple types 
of cells and the cell must be able to self-renew. The ability 
of a stem cell to simultaneously maintain the stem cell pool 

and generate daughter cells that can terminally differentiate 
into numerous tissues describes the unique capability of stem 
cells to undergo asymmetric cell division. This contrasts with 
somatic cells that divide symmetrically to create two identical 
daughter cells with the same potential. When activated during 
fetal development or in disease/repair states, stem cells can also 
undergo symmetrical cell division and rapid proliferation, but 
they typically remain relatively quiescent. 

the niChe deFines steM CeLL aCtivity

The stem cell niche is an extracellular microenvironment in 
which the cell resides. The niche is an important regulator 
of the biochemical and physical signals that a stem cell 
receives, thereby impacting key aspects of activity, such 
as cell survival, proliferation and differentiation.1-3 Tissue 
mechanics, composition/structure of the extracellular matrix, 
and cell–cell interactions are defining attributes of a specific 
stem cell niche. For example, tissues such as bone, cartilage, 
and muscle naturally have distinct moduli,4 and stem cells 
will preferentially differentiate toward certain cell types 
depending on the mechanical properties and nanostructure 
of the extracellular environment.5-8 Similarly, the affinity of 
a stem cell for certain niches defines its localization within 
the body, as well as its ability to mobilize and engraft. These 
niche requirements impact the therapeutic potential of the 
stem cell as they will not engraft or function properly outside 
of their niche. the extracellular niche may also contribute to 
disease states in which stem cell differentiation or inherent 
tissue repair mechanisms are altered.3 Consequently, when 
designing artificial systems to promote tissue regeneration, 
it is critical to engineer a niche environment conducive to 
the desired tissue response.9-11

not aLL steM CeLLs are the saMe!

Totipotent stem cells
Even after meeting the scientific requirements necessary 
to be classified as a “stem cell,” there is a highly variable 
capacity for differentiation. The number and types of 
progeny cells that an individual stem cell can produce 
define its “potency.” Totipotent stem cells are the most 
potent stem cell type, and can differentiate to form all of the 
embryonic and extraembryonic cells (such as the placenta) 
in an organism. Totipotent stem cells are generally obtained 
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at, or before, the morula stage (an early, preimplantation 
stage of an embryo representing the 2–32 cell stage of 
development).

Pluripotent stem cells
As the embryo continues to divide, stem cell potency 
becomes more restricted. At the blastocyst stage, the 
cells divide into two “pluripotent” stem cell populations: 
embryonic and extraembryonic. The word pluripotent 
comes from the Latin “plurimus” (very many) and 
“potentia” or (powered) and refers to the ability of 
these cells to differentiate into a diverse set of progeny. 
Embryonic stem cells (ESCs) are found in the inner cell 
mass of a blastocyst and can generate all of the cells of the 
embryo. The trophoectoderm of the blastocyst contains 
the extraembryonic (trophoblast) stem cells, which can 
populate the placenta.12

Ethical and political controversy over the origin and use 
of ESCs motivated researchers to engineer a system that 
would create functionally equivalent cell populations. In 
2007, the laboratories of James Thomson13 and Shinya 
Yamanaka14 simultaneously published methods to create 
embryonic-like human stem cells from mature fibroblasts. 
Hailed as the “Nature Method of the Year” in 2009,15-17 
the formation of these so-called “induced pluripotent stem 
cells” (iPS) was achieved by transfecting non-pluripotent 
cells with characteristic sets of four genes that could infer 
pluripotency. The genes used to generate the original 
iPS cells were slightly different: Yamanaka used retroviral 
transfection to deliver Oct3/4, Sox2, Klf4, and c-Myc, while 
Thomas transfected Oct 4, Sox2, Nanog, and Lin28 using 
a lentiviral system. Subsequent work has sought to refine 
the mechanisms and efficiency with which iPS cells are 
made, enhance techniques to expand the cell population, 
and characterize their differentiation potential.18

Adult stem cells
Adult stem cells are part of a “multipotent” cell population 
that is maintained and accessible in stem cell niches. These 
cells typically only generate progenitor cells along a specific 
cell lineage, and are therefore significantly more restricted 
in potential than the pluripotent stem cells. Hematopoetic 
stem cells found in the bone marrow, epidermal stem cells 
found in the bulge of the hair follicle, and intestinal stem 
cells found in the intestinal villus crypt are examples of adult 
stem cells and their associated niches.1,19

Mesenchymal stem cells
Of the adult stem cells, mesenchymal stem cells (MSCs) are 
probably the most interesting for orthopedic applications 
because of their potential to differentiate to both bone 
and cartilage. This population of progenitor cells was 
first identified by Friedenstein et al. as a population of 

mononuclear, fibroblast-like tissue culture adherent cells 
capable of colony formation.20,21 Subsequently, it has been 
repeatedly demonstrated that these cells are multipotent 
and the classic definition now includes a minimal ability 
to differentiate toward adipose, bone, and cartilage 
tissues in vitro.22,23 Differentiation toward other skeletal 
or mesenchymal cell types including tendon/ligament,24 
muscle,25 and stromal tissue26 has been demonstrated, 
but not rigorously vetted. Similarly, the ability of MSCs to 
regenerate non-mesenchymal lineages, such as cardiac,27 
neuronal,28 and skin29 tissues, has been reported. However, 
more recent research on this phenomenon demonstrates 
that engraftment and direct differentiation of MSCs into 
these cell types is minimal, suggesting their effect is likely 
due to a stimulation of the innate repair responses within 
these tissues.30-32

MSCs have been isolated from a number of tissue sources 
including bone marrow,33,34 adipose tissue,35 periosteum,36,37 
and the synovial lining.38,39 Interestingly, pericytes (also 
called adventitial reticular cells) appear to have the same 
defining characteristics as MSCs,40 bringing into question 
whether the perivasculature is another MSC niche or if these 
cells represent some precursor population.41,42 Presently, it 
is not clear whether MSCs from these different niches are 
identical or share the same differentiation potential.43-45 
Within any tissue, the population of MSCs is small and 
decreases with age. For example, the adherent population 
of cells represents at the most 1/10,000–1/2,000,000 of 
the initial mononuclear cells of bone marrow46 and this 
population is heterogeneous. Consequently, the clinical 
application of MSCs will likely require in vitro expansion 
prior to therapeutic use. The capacity for in vitro expansion 
of MSCs offers a clear therapeutic advantage of these 
cells over both pluripotent stem cells, which are difficult to 
expand, and their fully differentiated counterparts, such as 
chondrocytes, which become phenotypically modulated 
when cultured in monolayer.47-50

where are we now and where are we going 
with steM CeLL researCh?

Embryonic and induced pluripotent stem cells
The inherent potency and differentiation potential of 
the various stem cell populations define both the clinical 
utility and associated risk in therapeutic applications. 
For example, ESCs or the embryonic-like iPS cells have 
the potential to differentiate into all types of tissues, 
and therefore offer tremendous therapeutic promise. 
However, despite significant progress in this field, it 
remains highly difficult to achieve tight control over 
the lineage-specific differentiation of these cells.51 The 
consequence of this problematic control has been 
demonstrated in experiments showing the formation of 
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teratomas following the injection of undifferentiated ESCs 
into the knee joint52-54 and heart.55

The best current applications for ESCs/iPS likely remain in 
the realm of basic research.56,57 Addressing the significant 
challenges associated with the in vitro culture, expansion, 
homogeneity, and maintenance of pluripotency are all 
essential to the future success of any clinical application. 
Current research efforts include a number of diverse 
approaches focused on optimizing the biochemical 
composition of the media or designing engineering controls 
to replicate the physical and/or structural microenvironment 
of the stem cell niche.58-61 Significantly more research is 
needed in order to produce a more reliable set of guidelines 
to reproducibly direct differentiation toward a specific cell 
or tissue lineage. Culture with defining growth factors, 
such as transforming growth factor (TGF)-β and bone 
morphogenic protein (BMP), may help direct differentiation 
toward orthopedically relevant tissues, but this approach 
has still been shown to produce heterotypic tissues following 
differentiation.62-64 More recently, the concept of utilizing 
a step-wise differentiation protocol, in which ESCs are 
first induced to MSCs, may enhance homogeneity and/or 
control over the resultant phenotype.65-67

One area of translational research that iPS cells specifically 
hold great potential is the ability to replicate diseased states 
in vitro. Since iPS cells can be generated from adult somatic 
cells, it is possible to establish iPS cells that reflect disease 
conditions where the underlying cause is either unknown 
or cannot be easily replicated in vivo or in vitro. Within 
orthopedics, a variety of genetic disease conditions, such as 
fibrodysplasia ossificans progressiva and fibrous dysplasia, 
could benefit from mechanistic studies with iPS cells.

Mesenchymal stem cells
Significantly more research has been conducted on the 
therapeutic potential of MSCs. One treatment option with 
these cells capitalizes on their ability to differentiate into 
bone and cartilage, using them for the repair of damaged 
or diseased tissues. A number of tissue engineering systems 
are being developed with a focus on treating articular 
cartilage68-70 and segmental bone71-73 defects. These systems 
generally combine stem cells and bioactive factors with a 
three-dimensional scaffold to support the development of 
a tissue-specific extracellular matrix. Significant challenges 
still exist in obtaining the appropriate biomechanical 
characteristics from the engineered tissue, facilitating 
integration of the graft and host and controlling the tissue-
specific differentiation of stem cells in vivo. Translation 
of these potential therapies will require research move 
from the bench into clinically relevant animal models. 
This progression will be best accomplished through 

collaborations between basic scientists, engineers, and 
clinicians. 

In addition to the capacity of MSCs for multipotent 
differentiation, they also function to create a supportive 
microenvironment in the bone marrow that facilitates 
survival and differentiation of hematopoietic stem cells.74 
Recently, this characteristic has been more generally 
appreciated as a stimulatory or “tropic” influence of 
MSCs on other cells.31 Some research has been done to 
determine the secretory molecules produced by MSCs, 
identifying measurable levels of TGF-β, stem cell factor 
(SCF), insulin-like growth factor (IGF), epidermal growth 
factor (EGF), and granulocyte and macrophage colony 
stimulating factors (G/M-CSF).75,76 Current evidence 
suggests that these paracrine trophic effects, rather than 
MSC engraftment/differentiation,31,32,77-79 are responsible 
for observed repairs following MSC therapy in disease 
conditions such as stroke,80,81 osteogenesis imperfecta,82 
and myocardial infarction.30

Therapeutically, MSCs also appear to be immunoprivileged 
and immunosuppressive. MSCs do not display major 
histocompatibility complex (MHC) class II cell surface 
markers, but only MHC class I markers without the co-
stimulator molecules, indicating that they will not illicit an 
immune response during allogeneic use.83 Additionally, 
MSCs secrete immunosuppressive and anti-inflammatory 
cytokines, such as interleukin-10,84 nitric oxide85 and 
prostaglandins,86 that can prevent host versus graft rejection 
through the modulation of T-cells.87,88 MSC regulation of 
T-cells appears to occur in an antigen independent manner89 
through the suppression of the primary and secondary T-cell 
responses by inhibiting cell proliferation.75,90,91

ConCLusions

Despite significant progress in the field of stem cell 
biology and regenerative medicine, there are a number of 
outstanding issues that should be appropriately addressed 
prior to the generalized adoption of clinical therapies. For 
example, most basic studies are conducted in healthy 
systems, and it remains unclear how disease states, such 
as arthritis, would influence any applied regenerative 
therapy. More serious concerns related to the long-term 
safety and efficacy of any stem cell treatment must also be 
addressed. For these studies, the issues of donor-to-donor 
variation, immunogenicity, and tumorgenic capacity of 
both pluripotent and adult stem cell populations must be 
rigorously examined. Establishing delivery mechanisms 
(scaffold versus injection), dosage, and timing of stem cell 
therapies for maximum efficacy are also needed to promote 
clinical success.
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