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Abstract
Introduction Skeletal homeostasis is an exquisitely regulated process most directly influenced by bone resorbing osteoclasts, 
bone forming osteoblasts, and the mechano-sensing osteocytes. These cells work together to constantly remodel bone as a 
mechanism to prevent from skeletal fragility. As such, when an individual experiences a disconnect in these tightly coupled 
processes, fracture incidence increases, such as during ageing, gonadal hormone deficiency, weightlessness, and diabetes. 
While therapeutic options have significantly aided in the treatment of low bone mineral density (BMD) or osteoporosis, 
limited options remain for anabolic or bone forming agents. Therefore, it is of interest to continue to understand how osteo-
blasts regulate their metabolism to support the energy expensive process of bone formation.
Objective The current project sought to rigorously characterize the distinct metabolic processes and intracellular metabolite 
profiles in stromal cells throughout osteoblast differentiation using untargeted metabolomics.
Methods Primary, murine bone marrow stromal cells (BMSCs) were characterized throughout osteoblast differentiation 
using standard staining protocols, Seahorse XFe metabolic flux analyses, and untargeted metabolomics.
Results We demonstrate here that the metabolic footprint of stromal cells undergoing osteoblast differentiation are distinct, 
and while oxidative phosphorylation drives adenosine triphosphate (ATP) generation early in the differentiation process, 
mature osteoblasts depend on glycolysis. Importantly, the intracellular metabolite profile supports these findings while also 
suggesting additional pathways critical for proper osteoblast function.
Conclusion These data are the first of their kind to characterize these metabolites in conjunction with the bioenergetic profile 
in primary, murine stromal cells throughout osteoblast differentiation and provide provocative targets for future investigation.
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1 Introduction

Bone is an incredibly dynamic tissue that undergoes continu-
ous remodeling involving bone resorbing osteoclasts, bone 
forming osteoblasts, and mechanical sensing osteocytes. 

When individuals experience a disconnect in this tightly 
coupled process such that bone formation does not equal 
bone resorption, and/or both mechanisms are suppressed, 
fracture incidence increases (Hadjidakis & Androulakis, 
2006). While therapeutic treatment options have signifi-
cantly aided in the management of fracture, some patients 
still experience undesirable, adverse side-effects, and there-
fore, continued development of refined options is necessary 
(Bauer, 2018; Compston et al., 2019; Yedavally-Yellayi 
et al., 2019). As this quest continues, it is imperative to gain 
further insight in to the cellular and molecular responses 
occurring within the skeletal niche. Targeting metabolic 
pathways in bone cells is an incredibly provocative tool that 
could be applied to combat various conditions which lead to 
increased fracture incidence (i.e., post-menopausal osteopo-
rosis, type 2 diabetes mellitus, and age-related osteoporosis). 
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In fact, first-generation anti-resorptive bisphosphonates 
(i.e., etidronate and clodronate) used to treat osteoporosis 
inhibit cellular energy (adenosine triphosphate or ATP) of 
the osteoclast (Khosla et al., 2017). These widely prescribed 
drugs represent an impeccable example of how metabolic 
pathways can be exploited to impact overall bone health and 
improve patient quality of life. As such, the current study 
sought to provide an in-depth characterization of intracel-
lular metabolites throughout osteoblast differentiation.

We conducted untargeted liquid chromatography tan-
dem mass spectrometry (LC–MS/MS) based metabolomics 
investigation of primary murine bone marrow stromal cells 
(BMSCs) throughout stages of osteoblast differentiation 
including the stromal phase, committed osteo-progenitors, 
and mature matrix secreting osteoblasts (0, 2, and 7 days).

2  Methods

2.1  Bone marrow isolation and osteoblast culture

Primary, murine total bone marrow was isolated from the 
long bones (tibiae, femora, and iliac crest) of 7–10 week 
old male and female C57BL/6 N mice and plated for 48 h in 
complete α-MEM (α-MEM, 10% FBS, 1% penicillin/ strep-
tomycin). In accordance with the plastic adherence theory, 
cells from the stromal/ mesenchymal lineage (BMSCs) 
adhered to the plastic culture ware whereas the non-adher-
ent hematopoietic cells were washed away (Phinney et al., 
1999; Sun et al., 2003). The adherent BMSCs were then 
collected following trypinsinzation, counted and plated in 
appropriate tissue-culture treated plates. BMSCs were then 
cultured in complete α-MEM or osteogenic medium (com-
plete α-MEM, 50 µg/mL ascorbic acid, and 5 mM β-glycerol 
phosphate) to induce osteoblast differentiation for specified 
time point (Maridas et al., 2018). To demonstrate osteogenic 
potential and differentiation, cells were stained for alkaline 
phosphatase (ALP) enzymatic activity (red) and hematoxy-
lin following 0, 2, 7 days, or Von Kossa at day 10 (Chung 
et al., 1992; Orriss et al., 2014; Sun et al., 2003).

2.2  RNA isolation and gene expression analyses

Following BMSC isolation and culture described above, 
total RNA was isolated using ReliaPrep RNA Miniprep 
Systems (Promega, Madison, WI), according to the manu-
factures protocol. Following cDNA synthesis, each qPCR 
reaction was performed in duplicate using SYBR green 
chemistry (BioRad, Cat#1708882) on the BioRad CFX-
384Real-time system. All qPCR results were evaluated by 
the comparative cycle number at threshold  (CQ) method 
(User Manual #2, Applied Biosystems), using hypoxan-
thine phosphoribosyltransferase 1 (Hprt1) as the invariant 

control, FWD 5′-GCC TAA GAT GAG CGC AAG TTG; 
REV 5′-TAC TAG GCA GAT GGC CAC AGG. Target gene 
primer sequences are as follows: Runx2 FWD 5′-CGA CAG 
TCC CAA CTT CCT GT, REV 5′-CGG TAA CCA CAG 
TCC CAT CT; Sp7 FWD 5′-GAA GTT CAC CTG CCT 
GCT CTG T, REV 5′-CGT GGG TGC GCT GAT GT; Alpl 
FWD 5′-GGT ATG GGC GTC TCC ACA GT, REV 5′-GCC 
CGT GTT GTG GTG TAG CT; Col1a1 FWD 5′-CGT CTG 
GTT TGG AGA GAG CAT, REV 5′-GGT CAG CTG GAT 
AGC GAC ATC; Bglap2 FWD 5′-TGA GCT TAA CCC 
TGC TTG TGA CGA, REV 5′-AGG GCA GCA CAG GTC 
CTA AAT AGT.

2.3  Seahorse XFe flux analysis of ATP production

To measure ATP flux in real time, BMSCs were plated in 
Seahorse XFe 96-well plates at 2.0 ×  104 cells/well and cul-
tured under osteogenic conditions for either 0, 2, or 7 days. 
On specified days, ATP assay were performed according 
to the manufacturers protocol. Briefly, basal assay medium 
was supplemented with 10 mM glucose, 1 mM sodium pyru-
vate, 2 mM glutamine, and 100 nM insulin. Subsequently, 
oligomycin (2 µM) and rotenone/antimycin A (1 µM/1 µM) 
were injected during assays while oxygen consumption rates 
(OCR) and extracellular acidification rates (ECAR) were 
monitored. Hoechst stain was also injected in the last port 
and a Cytation 5 (BioTek) was used provide cell counts, both 
for normalization and as a means to monitor proliferation 
throughout differentiation. Considering the stoichiometry 
of the glycolytic pathway, the rate of ATP produced via in 
glycolysis is calculated as such: glycolytic ATP production 
rate (pmol ATP/min) = glycolytic proton efflux rate (pmol 
H+/min). Conversely, the rate of oxygen consumption that 
is coupled to ATP production during oxidative phospho-
rylation can be calculated as the OCR that is inhibited by 
addition of the ATP synthase inhibitor, oligomycin:  OCRATP 
(pmol  O2/min) = OCR (pmol  O2/min)—OCROligo (pmol 
 O2/min). Further transformation of  OCRATP to the rate of 
mitochondrial ATP production consists of the final equation 
mitoATP production rate (pmol ATP/min) =  OCRATP (pmol 
 O2/min) × 2 (pmol O/pmol  O2) × P/O (pmol ATP/pmol O). 
Finally, the total cellular ATP Production Rate is the sum 
of the glycolytic and mitochondrial ATP production rates: 
ATP Production Rate (pmol ATP/min) = glycoATP Produc-
tion Rate (pmol ATP/min)+mitoATP Production Rate (pmol 
ATP/min).

2.4  Sample preparation for metabolomics

Following indicated times of BMSCs in osteogenic medium, 
medium was removed from the cells, and washed twice with 
PBS. During the final was in PBS, cells were scraped and 
collected via centrifugation. Supernatant was removed from 
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cell pellet and pellet was frozen at − 80 °C. The metabolite 
extraction method was performed as described previously 
(Trushina et al., 2013). Cells were thawed on ice at 4 °C 
followed by deproteinization with methanol (1∶4 ratio of 
extract to methanol) and vortexed for 10 s, followed by incu-
bation at − 20 °C for 2 h. Prior to deproteinization, 4 µL of 
an internal standard solution of 13C6-Phenylalanine (247 ng/
µL) was added to the cellular extracts, and plasma QC and 
pooled quality control (QC) samples to monitor the recovery 
of extracted metabolites. The samples were centrifuged at 
18,000 g for 20 min at 4 °C. The supernatants were lyophi-
lized (Savant, Holbrook, NY) and stored at − 20 °C prior to 
analysis or reconstituted in running solvents and analyzed 
within 24 h. Metabolite separation was performed using a 
1200 Agilent UPLC system (Agilent Inc., USA) with both 
hydrophilic interaction chromatography (HILIC) (ethylene-
bridged hybrid 2.1 × 150 mm, 1.7 mm; Waters) and reversed-
phase liquid chromatography C18 (RPLC) (high-strength 
silica 2.1 × 150 mm, 1.8 µm; Waters) columns. For each col-
umn, the run time was 20 min at a flow rate of 400 µL/min. 
Reverse-phase chromatography was performed using 99% 
solvent A (5 mmol/L  NH4 acetate, 0.1% formic acid, and 
1% acetonitrile) to 100% solvent B (95% acetonitrile with 
0.1% formic acid). The gradient was 0 min, 0% B; 1 min, 
0% B; 3 min, 5% B; 13.0 min, 100% B; 16 min, 100% B; 
16.5 min, 0% B; and 20 min, 0% B. The hydrophilic interac-
tion chromatography gradient was as follows: 0 min, 100% 
B; 1 min, 100% B; 5 min, 90% B; 13.0 min, 0% B; 16 min, 
0% B; 16.5 min, 100% B; and 20 min, 100% B. The injec-
tion volume was 5 µL and column was maintained at 50 °C. 
Pooled QCs and standards were run at the beginning and the 
end of each sequence to monitor shift in the retention time 
on the column.

2.5  Mass spectrometry

Mass spectrometric acquisition was performed using a 6550 
ToF–MS (Agilent Technologies) platform in both positive 
and negative electrospray ionization (ESI) modes, scan range 
of 50–1200 m/z. The mass accuracy and mass resolution 
were 5 parts per million (ppm) and 20,000 ppm, respec-
tively. The instrument settings were as follows: nebulizer gas 
temperature 325 °C, capillary voltage 3.5 kV, capillary tem-
perature 300 °C, fragmentor voltage 150 V, skimmer voltage 
58 V, octapole voltage 250 V, cycle time 0.5 s, and run time 
15 min. Final data represents n = 3 biological replicates and 
n = 3 technical replicates.

2.6  Data preprocessing

All ToF–MS raw data files were converted to compound 
exchange File (.CEF) format using MassHunter DA Repro-
cessor software (Agilent Technologies Inc). Chromatography 

and centroided MS data were aligned to generate a single data 
matrix consisting of retention time (RT), mass-to-charge (m/z), 
and normalized ion intensity for each detected peak in indi-
vidual samples. Mass profiler professional (Agilent Technolo-
gies Inc.) was used for data processing. Default settings were 
used with the exception of signal-to-noise ratio threshold, mass 
limit (0.0025 units), and time limit (9 s). The resulting metabo-
lites were identified against the METLIN metabolite database 
using a detection window of ≤ 5 ppm. Putative identification 
of each metabolite was made based on mass accuracy (m/z), 
Kyoto encyclopedia of genes and genomes (KEGG) based 
identifiers. We annotated all metabolites reported in the study 
to level 2 as classified by the metabolomics standard initiative 
(MSI): putatively annotated compounds (without chemical 
reference standards) based on accurate precursor masses and 
mass spectral information by matching against spectral librar-
ies (Sumner et al., 2007).

2.7  Statistical processing of metabolomics 
and transcriptomics datasets

Statistical processing of both the combined metabolomics 
data sets was performed using statistical software R (Version 
3.5.2) (Team, 2015). Normalized, transformed, imputed, out-
lier removed, and scaled peak area representative of relative 
metabolite amounts obtained from using DeviumWeb (Grapov, 
2014) are presented. Hierarchical clustering analysis (HCA) 
was performed on Pearson distances using PermutMatrix 
(Caraux & Pinloche, 2004), where the data was normalized 
using z-scores of the relative abundance of the metabolites 
for heat map display. Correlations reported are Spearman rank 
correlations. Principal components analysis (PCA) and partial 
least squared discriminant analyses (PLSDA) were performed 
using MetaboAnalyst 4.0 (Chong et al., 2018) where the output 
displayed score plots to visualize the sample groups.

2.8  Metabolic pathway and enrichment analysis 
of metabolomics datasets

For metabolomics datasets, pathway enrichment was per-
formed using MetaboAnalyst 4.0 (www. metab oanal yst. ca) 
(Xia et al., 2015) and pathways presented are KEGG based.

2.9  Data availability and sharing

All data discussed and presented in this manuscript are pro-
vided in Supplementary S1.

http://www.metaboanalyst.ca
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3  Results

3.1  Osteoblast differentiation and bioenergetics

To demonstrate the osteogenic potential of murine BMSCs 
to osteoblasts, cells were stained with either ALP, an 
osteoblast-specific marker, or hematoxylin following 
0, 2, or 7 days in osteogenic differentiation medium, or 
stained with Von Kossa to observe mineral deposition 
after 10 days. As expected, ALP is robustly expressed 
following 2 days in osteogenic medium and throughout 
osteoblast differentiation (Fig. 1A). Additionally, 10 days 
under osteogenic conditions these ‘mature’ osteoblasts 
have formed mineralized matrix as indicated by Von Kossa 
staining (Fig. 1B). Additional confirmation of osteogen-
esis is demonstrated by gene expression analyses whereby 
BMSC’s commit to the osteo-progenitor lineage by day 2 

and more mature osteoblast markers are up-regulated by 
day 7 (Fig. 1C). Osteogenic differentiation also enhances 
proliferation as depicted by cell count numbers taken after 
0, 2, or 7 days in culture (Fig. 1D). We next sought to char-
acterize the metabolic profile of osteoblasts throughout 
differentiation. These data show that stromal cells (day 
0) and osteo-progenitor cells (day 2) primarily generate 
ATP via oxidative phosphorylation, while mature osteo-
blasts (day 7) switch to a much more glycolytic pheno-
type (Fig. 1E, F). Interestingly, total ATP production also 
increases upon osteoblast differentiation (Fig. 1F).

3.2  Metabolomics analysis for identification 
of individual metabolites and pathways

Using two different chromatographic separations (RPLC, 
and HILIC) in an untargeted manner using LC–MS/MS 
platform we obtained the relative abundances for a total 

Fig. 1  Characterization of osteoblast differentiation and bioenergetic 
profile. Primary, murine stromal cells throughout osteoblast differen-
tiation stained for (A) alkaline phosphatase (ALP) enzymatic activity 
(red) or hematoxylin (blue/purple) at day 0, 2, and 7. B Von Kossa 
staining of mineralized matrix following 10  days of differentiation. 
C Gene expression analyses of yunt-related transcript factor (Runx2), 

osterix (Sp7), alkaline phosphatase (Alpl), type I collagen (Col1a1), 
and osteocalcin (Bglap2) normalized to Hprt1. D Cell counted fol-
lowing DAPI staining. E Metabolic pathway contribution for adeno-
sine triphosphate (ATP) and F ATP production rates; blue, oxidative 
phosphorylation (OxPhos); red, glycolysis (Glyco). (*; p < 0.05, **; 
p < 0.01, ***; p < 0.001)
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19,000–28,000 features (we defined them as a set of m/z, 
RT, MS1 intensity with a MS2 spectrum) obtained using 
LC–MS/MS analysis in both positive and negative modes. 
Combined (posHILIC, negHILIC, posRPLC, and negR-
PLC) together after consolidation of features, resulted 
in 1345 metabolites with relative abundances. The raw 
metabolite abundance values alongside the identified 
metabolite IDs, RTs, m/z values, formulae, InchiKeys, 
SMILES, and the raw relative abundance values are pro-
vided (Supplementary Table S1). Representative tandem 
MS/MS spectra for several compounds are also shown in 
Fig. 4. Further, these datasets were refined after normaliza-
tion, transformation, and scaling, followed by imputation 
(Supplementary Table S2). Together these 1345 metabo-
lites, were enriched for 60 KEGG-based metabolic path-
ways, of which pyrimidine metabolism, aminoacyl-tRNA 
biosynthesis, arginine biosynthesis, alanine, aspartate and 
glutamate metabolism, taurine and hypotaurine metabo-
lism, histidine metabolism, beta-alanine metabolism, argi-
nine and proline metabolism, linoleic acid metabolism, 

glutathione metabolism, and purine metabolism (all signif-
icantly enriched, P value < 0.05), in addition to hundreds 
of lipid classes that were also represented in these datasets 
but are not KEGG-pathway mappable.

Firstly, we looked at chemical classes showing inter-
esting patterns during the time-course study based on 
their fold changes and statistically significant changes in 
abundances between a pair of conditions (Supplementary 
Table S3). We noted that specific purines, pyrimidines 
(i.e., I, A, G, U), and phosphates increased, while nucleo-
tides U, T, C, G decreased with differentiation (Fig. 2). 
We also observed a decrease in several DGDGs, and an 
increase in MGDGs, and DAGs in the analysis (Fig. 3). 
Increasing trends from 0 d through 2 d to 7d was also 
observed for redox-associated metabolites such as gamma-
glu-cys, cysteine, homocysteine, and riboflavin (Fig. 4A). 
Further, among the organic acids, except malate, we 
noted an increasing accumulation trend from 0 to 7 day 
(Fig. 4B).

Fig. 2  Individual nucleotide profiles in osteoblast differentiation. Significantly altered nucleotides throughout osteoblast differentiation at day 0, 
day 2, or day 7. (*; p < 0.05, **; p < 0.01, ***; p < 0.001)
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3.3  Multivariate analysis and markers derived 
thereof

Figure 5A shows PCA score plot using an unsupervised 
multivariate analysis, principal component analysis (PCA) 
we observed that metabolite abundances alone were able to 
discriminate the 3 groups (0 d, 2 d and 7 d) which explained 
the variation in the dataset by virtue of the first 2 PCs (PC1, 
PC2) by 80.6%. Various metabolites that were identified 

as being responsible for the separation between the sam-
ple groups in a loading plot (data not shown), revealed the 
differentiating metabolites which included uridine, uracil, 
niacinamide, lysophosphatidylcholine 16:0, creatinine, thre-
onic acid, catechin, inosine among others. Figure 5B shows 
heatmap from hierarchical clustering analysis (HCA) using 
Z-score normalized metabolite abundances of the quanti-
fied metabolites we observed clear clustering for the 3 time 
points, 0 d, 2 d and 7 d, as shown for top 25 metabolites 

Fig. 3  Lipid related metabolites altered throughout osteoblastogen-
esis. Significantly altered lipid-related metabolites throughout osteo-
blast differentiation at day 0, day 2, or day 7. PI phosphatidyl inositol, 
DGDG digalatosyldiacylglycerol, MGDG monogalatosyldiacylglyc-

erol, FAHFA fatty acid esters of hydroxyl fatty acids, PG phosphati-
dylglycerol, DAG diacylglycerol, FAs fatty acids. (*; p < 0.05, **; 
p < 0.01, ***; p < 0.001)
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Fig. 4  Metabolites involved in REDOX and TCA cycle. Signifi-
cantly altered metabolites involved in (A) Redox metabolism, and 
(B) the TCA cycle throughout osteoblast differentiation at day 0, day 

2, or day 7.ɤ-Glutamylcysteine (Gamma-Glu-Cys). (*; p < 0.05, **; 
p < 0.01, ***; p < 0.001)
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obtained from an analysis of variance (ANOVA) analysis, 
where the upper cluster formed of metabolites where sugars 
(arabinose), redox metabolites (cysteine, quercetin-3-glu-
curonide, gamma-glucys, catechin) and several lipids (PE 
24:1, FAHFA 31:5, PG:18:0, sphingosine) showed increased 
abundance for 7 d samples, when compared to 0 d and 2 d 
cells. The bottom cluster formed with low metabolite abun-
dances in 7 d cells when compared against 0 d and 2 d sam-
ples, and these metabolites are mostly nucleoside phosphates 
(IMP, UMP, GMP, AMP), lipids (OxPE 40:7, DGDG 21:0, 
OxPE 38:6, BMP 32:5) and malate.

In order to identify the genes responsible for the discrimi-
nation among the metabolomic profiles, the Variable impor-
tance in projection (VIP) score derived from the partial least 
square discriminant analysis (PLS-DA) model was used to 
select those with the most significant contribution in a PLS-
DA model. VIP scores are a weighted sum of PLS weights 
for each variable and measure the contribution of each pre-
dictor variable to the model. Further, the VIP statistic sum-
marizes the importance of the metabolites in differentiat-
ing the study groups (i.e., 0 d, 2 d, and 7 d) in multivariate 
space (Smart & Hodgson, 2018). The compounds exhibiting 
the higher VIP score are the more influent variables. Our 
VIP analysis revealed, purines/pyrimidines (uridine, uracil, 

adenosine-5′-monophosphate, inosine-5′-monophosphate), 
phosphocholine, organic acids (threonate, malate, citraco-
nate, gluconate), arabinose, sphingosine, thiamine and cat-
echin among others were the major contributors (Fig. 6A).

Random forest (RF) analysis is a data-driven method 
designed for prediction and is conducted to identify metabo-
lites that improved prediction of time points or the 3 sample 
groups. Contributions of individual predictors are meas-
ured by ‘variable importance’ using a conditional permuta-
tion scheme for correlated predictors. Variable importance 
greater (less) than 0 suggests an increase (decrease) in pre-
diction accuracy. By relying on the ranges of values of each 
selected feature using our RF classifier, one can identify 
dependencies between features which results in a good sepa-
ration for the two classes of interest, to help identify the most 
important metabolites and to exclude associations by chance. 
Thus, from RF analysis we present the top 15 features based 
on mean importance of each feature that were several lipids 
(BMP 32:5, DAG 20:1, DAG 22:2, PE 23: 2, Cer-AP 28:1, 
FA 21:0, Cer-BDS 33:1), organic acids (cholate, citraco-
nate, glycerate), redox metabolites (taurine, hypotaurine), 
putrescine among others (Fig. 6B). Finally, we looked at 
the significantly (P value < 0.05) increased (FC > 1.2) and 
decreased (FC < 0.8) metabolites in day 2 and day 7 cells 

Fig. 5  Distinct clustering of metabolites during osteoblasts differentiation. A PCA analysis and B HCA of intracellular metabolites from day 0, 
2, and 7 of osteoblast differentiation
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Fig. 6  Osteogenic biomarkers (A) Variable importance in projection 
(VIP) contribution of the differentiation biomarker metabolites for 
the differential expression among groups. B Top 15 metabolites with 
the strongest influence on the prediction accuracy (i.e., mean decrease 
accuracy, MDA) of the random forest (RF) analysis are presented 
in order of importance (top to bottom). RF analysis used individual 

metabolite profiles to predict whether the samples were from 0, 2, or 
7 days of osteoblast differentiation. C Vin diagram of significantly (P 
value < 0.05) increased (FC > 1.2) and decreased (FC < 0.8) metabo-
lites in 2-day and 7-day cells when compared to 0-day cells. Colors 
in the vin diagram correspond to various metabolic pathways listed in 
similarly colored pathway list
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when compared to day 0 osteo-progenitor cells (Fig. 6C). 
This revealed that there were profoundly more metabolites 
increased and decreased in mature osteoblasts (7 days) than 
cells differentiated for 2 days, when both compared to day 0 
time point (Fig. 6C).

4  Conclusions

The data presented here highlights the intracellular metabo-
lites present throughout osteoblast differentiation process. 
Importantly, these data are from primary murine stromal 
cells, which captures the early stages of osteoblast differen-
tiation and represents physiological relevance. This is differ-
ent to other studies within the field which detail phenotypes 
associated with committed osteoblasts as with commonly 
used cell lines and calvaria cells (Esen et al., 2013; Guntur 
et al., 2014; Lee et al., 2020). Therefore, these data are of 
relevance in the field of bone biology in targeting bone for-
mation via osteoblast differentiation processes.

To be expected, our data demonstrate that committed, 
mature osteoblasts (day 7) produce ATP primarily through 
glycolysis (~ 75%) compared to oxidative phosphorylation 
(~ 25%), which has been previously described as aerobic 
glycolysis or the Warburg effect (Esen et al., 2015; Gun-
tur et al., 2014). Consistent with this glycolytic profile, 
mature osteoblasts increase lactate production compared 
to cells at early stages of differentiation. Interestingly, 
stromal cells and early, osteo- progenitors demonstrated 
a striking oxidative profile whereby ATP was primarily 
generated via oxidative phosphorylation (~ 60%), which 
has only recently been described but in calvaria osteoblasts 
(Lee et al., 2020). Upon osteoblast differentiation, nucleo-
tides were differentially impacted, however, its speculated 
that RNA synthesis and transcription is upregulated as the 
methylated form of DNA, 5′-methylcytosine, is enhanced 
in mature osteoblasts, consistent with other studies in vari-
ous cell models (Kang et al., 2007; Locklin et al., 1998; 
Zhang et al., 2011). Additionally, lipid metabolism, which 
until recently has been generally underappreciated in the 
field (Rendina-Ruedy et al., 2017), is also distinctly regu-
lated during the osteoblast differentiation process. Early 
in the differentiation process, stromal and osteo-progenitor 
cells demonstrate high levels of lipid metabolites reflective 
of membrane synthesis, which drop in more mature cells. 
This is speculated to be reflective of the initial proliferative 
phase stromal cells experience upon osteogenic differentia-
tion. Conversely, lipid signaling molecules, such as arachi-
donic acid, FAHFA, DAGs, are highly enriched in mature 
osteoblasts. Additionally, we noted a distinct enrichment 
of metabolites associated with oxidative stress including 
gamma-glu-cys, cysteine, homocysteine, and riboflavin 
in mature osteoblasts. This is of particular interest given 

that these cells have reduced oxidative phosphorylation, 
which would indicate potentially less reactive oxygen spe-
cies (ROS) generated from the mitochondria. However, 
others have noted that osteoblast differentiation is associ-
ated with enhanced ROS production (Arakaki et al., 2013), 
while our group has documented lipid droplets at this stage 
in osteoblast differentiation (Rendina-Ruedy et al., 2017). 
Taken together, these data would indicate that osteoblasts 
are particularly sensitive to ROS and could be using lipid 
droplets as a mechanism to maintain redox homeostasis 
and protect against lipotoxicity by sequestering toxic lipids 
(Herms et al., 2013). Finally, these metabolic data demon-
strate an increase in some tricarboxylic acid cycle (TCA) 
cycle intermediates in mature osteoblasts, most notably 
cis-isocitrate, the intermediate of citrate to isocitrate. In 
addition to being a ‘TCA cycle intermediate’, citrate is 
both an incredibly important component of the mineralized 
portion of bone, the hydroxyapatite, secreted by osteo-
blasts (Hu et al., 2010), and can also be shuttled out of 
the mitochondria for fatty acid/ sterol synthesis. While 
threonate is also elevated in mature osteoblasts, threonate 
is the active metabolite of ascorbic acid, which is a criti-
cal component of the osteogenic medium, our differentia-
tion cocktail is responsible. A final note related to TCA 
cycle, is that malate is remarkably high in early stromal 
cells and osteoprogenitors compared to mature osteo-
blasts. As malate is one of the final metabolites used in 
the TCA cycle to produce oxaloacetate, this is consistent 
with high oxidative phosphorylation noted in these cells, 
but also demonstrates a disconnect in the cycle in mature 
osteoblasts.

In summary, the current study used primary, murine 
BMSCs differentiated to osteoblasts, and provides a rigor-
ous profile of intracellular metabolites through this pro-
cess. These data are expected to provide novel insight as 
to how alterations in metabolic processes regulate osteo-
blastogenesis, and subsequent bone formation.
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