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Random flaps are widely used in tissue reconstruction, attributed to the lack of vascular
axial limitation. Nevertheless, the distal end of the flap is prone to necrosis due to the lack of
blood supply. Notoginseng triterpenes (NTs) are the active components extracted from
Panax notoginseng, reducing oxygen consumption and improving the body’s tolerance to
hypoxia. However, their role in random flap survival has not been elucidated. In this study,
we used a mouse random skin flap model to verify that NT can promote cell proliferation
and migration and that increasing blood perfusion can effectively improve the survival area
of a skin flap. Our study also showed that the autophagy of random flaps after NT
treatment was activated through the Beclin-1/VPS34/LC3 signaling pathway, and the
therapeutic effect of NT significantly decreased after VPS34 IN inhibited autophagy. In
conclusion, we have demonstrated that NT can significantly improve the survival rate of
random flaps through the Beclin-1/VPS34/LC3 signaling pathway, suggesting that it might
be a promising clinical treatment option.
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INTRODUCTION

Skin flap transplantation is a commonly used method in reconstructive surgery to repair skin loss
caused by trauma, surgical resection, and other factors (Schürmann et al., 2009; Lee et al., 2017).
Random flaps can be transplanted and arranged arbitrarily because they are not restricted by axial
blood vessels and are widely employed in skin flap transplantation (Fang et al., 2020). In the flap, the
blood supply is maintained by the vascular network of the pedicle bed of the flap (Lorenzetti et al.,
2001). When the flap’s aspect ratio exceeds, the distal region of the flap will necrose due to
insufficient blood supply to the microvascular network, which significantly limits randomness (Luo
et al., 2021). Therefore, improving the vitality of random flaps and inhibiting necrosis are crucial for
improving the clinical application of random flaps.

Notoginseng triterpene (NT) is an active ingredient extracted from Panax notoginseng, which has
the functions of reducing oxygen consumption of the organism, improving tolerance of the organism
to hypoxia, expanding blood vessels and increasing blood flow, and anti-thrombosis and anti-
coagulation (Shi et al., 2013; Wang et al., 2021). Studies have shown that NT can be used to treat
cerebral infarction and ischemic cerebrovascular disease (Xie et al., 2020). The results have shown
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that NT has an excellent clinical therapeutic effect on the acute
stage of cerebral infarction, and it can significantly improve
cerebral edema during global ischemia or focal I/R (Wang
et al., 2018). In cytology, morphology, and lipid peroxidation
studies, NT has been shown to protect cells from damage caused
by energy metabolism disorders (Huang et al., 2015; Huang et al.,
2017). Other studies have shown that NT can significantly reduce
platelet surface activity; inhibit platelet aggregation, adhesion,
and anti-thrombosis; improve microcirculation; and other effects
(Wang et al., 2016). However, it has not been examined yet if it
can enhance the survival of voluntary skin flaps. Autophagy is
referred to as the rough-surfaced endoplasmic reticulum of the
ribosome area of the double-membrane package, which is part of
the cytoplasm and cell organelles. Protein compositions, such as
the degradation of domestic demand autophagy, will form, and
fusion with lysosomes that produce autophagy-lysosome and
degradation of the contents of the package to realize the
metabolism of the cell itself and some organelles needs to be
updated (Hale et al., 2013; Hurley and Young, 2017; Doherty and
Baehrecke, 2018; Yu et al., 2018). In this process, Beclin-1 is an
essential molecule which plays a key role in the formation of
autophagosomes, that can mediate the localization of other
autophagic proteins to phagocytes and thus regulate the
formation and maturation of autophagosomes (Menon and
Dhamija, 2018; Xu and Qin, 2019; Kaur and Changotra,
2020). In an acute injury, autophagy can clear damaged
organelles and convert them into energy (Tamargo-Gómez
and Mariño, 2018; Yang et al., 2019; Lin et al., 2021).
Therefore, moderately upregulated autophagy expression after
acute injury is beneficial to tissue survival. Apoptosis is activated
at the distal end of random flaps, autophagy is inhibited due to
prolonged injury time, and the tissue self-protection ability is
weakened. Therefore, the activation of autophagy in random flaps
is essential (Chen et al., 2017; Li J. et al., 2021; Tu et al., 2021).

In this study, we comprehensively investigated the application
of NT in promoting angiogenesis and antioxidant stress of
random flaps and found that NT can improve the survival
rate of random flaps by promoting autophagy. The VPS34 IN
inhibition experiment showed that NT promoted the survival of
random flaps through the Beclin-1/VPS34/LC3 pathway.

MATERIALS AND METHODS

Reagents and Antibodies
NT, 3-methyladenine (3MA), and VPS34 IN were supplied by
MedChemExpress (NJ, United States). The NT sample was
dissolved in normal saline (Xie et al., 2019). Primary
antibodies to Beclin-1, VPS34, LC3B, P62, CD34, SOD1,
eNOS, and HO-1 were bought from Abcam (Cambridge,
United Kingdom). Primary antibodies to VE-cadherin and
VEGF were supplied by Affinity Biosciences (OH,
United States) and primary antibodies to LC3 I/II were bought
from ZenBio (Chengdu, China). Anti-mouse and anti-rabbit
secondary antibodies IgG-conjugated with Alexa Fluor 488
(green) and Alexa Fluor 594 (red), or with horseradish
peroxidase (HRP), were obtained from Abcam (Cambridge,

United Kingdom). Umbilical vein endothelial cells were
bought from OTWO (Shenzhen, China). RPMI 1640 medium
(1640) and fetal bovine serum (FBS) were bought from Gibco
(California, United States).

Cell Culture and Cell Stimulate
Umbilical vein endothelial cells (UVECs) were cultured in RPMI
1640 complete medium containing 10% serum. The cells were
divided into four groups: the control group, the H2O2 group
(added 100 μM H2O2), the NT group (added 100 μM H2O2 +
100 μg/ml NT), and the NT + VPS34 IN group (added 100 μM
H2O2 + 100 μg/ml NT + 10 nM VPS34 IN).

Cell Scratch Assay and CCK-8 Test
The UVECs were laid on a 12-well petri dish and cultured
overnight until a fused monolayer was formed. The cells were
scratched with a 200-μL pipette and washed with phosphate-
buffered saline (PBS) three times. The images of monolayers of
injured cells were captured using light microscopy at 0, 6, 12, and
24 h post-injury. UVECs were laid onto 96-well plates with
10,000 cells per well. After 12 h, the cells were divided into
three groups: the control group, the 50 μg/ml NT group, and
the 100 μg/ml NT group. The CCK-8 kit was used to detect cell
proliferation.

Animal Model of the Random Flap
Sixty healthy C57BL/6 male mice (20–22 g) were provided by the
Experimental Animal Center of Wenzhou Medical University.
The animal experiment was approved by the Animal Protection
and Use Committee of Wenzhou Medical University (Wydw.
2021-0242). These mice were randomly divided into 4 groups,
including the control group, NT-treated group (NT group),
NT+3MA treated group (NT+3MA group), and NT + VPS34
IN–treated group (NT + VPS34 IN group). Prior to surgery, all
mice were anesthetized by 1% sodium pentobarbital (50 mg/kg,
i.p.). The random dorsal flap was constructed by removing all the
blood-supplying arteries from the central back of the mouse with
an aspect ratio of 8:3. Finally, the detached flap was fixed. The
mice were killed on the seventh day after surgery. After
euthanasia, the skin flap tissue and substantial organs were
immediately collected for follow-up experiments.

Treatment Protocols
The mice in the NT and NT+3 MA groups were treated with
40 mg/kg/d NT intraperitoneal injection for 7 days and the
control group was treated with an unequal volume of saline.
The mice in the NT+3MA group received 15 mg/kg/d 3MA
30 min before NT through intraperitoneal injection. The mice
in the NT + VPS34 IN group received 5 mg/kg/d VPS34 IN
30 min before NT through intraperitoneal injection.

General Evaluation of Flap Survival
Three and seven days after surgery, the survival of the flap was
observed using high-quality photography. The macroscopic
development, appearance, and color characteristics of the flaps
were observed 7 days after surgery. All images were measured
using ImageJ (MD, United States). To calculate the survival area,
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the survival area percentage was measured as follows: survival
area range/total area × 100%.

Tissue Edema Assessment
Seven days after surgery, the skin flaps were collected from each
group and weighed. Then, they were dehydrated until the weight
remained stable. The degree of edema can be determined as
follows: ([wet weight − dry weight]/wet weight) × 100%.

Laser Doppler Blood Flow Imaging
LDBF imaging was used to determine the blood supply and
vascular flow of the flap. Under anesthesia, the mouse lies in
the prone position in the scanning area, and the laser Doppler
imager scans the entire flap area. The blood flow at 0, 3, and
7 days was observed postoperatively through the color of the live
blood flow images provided. The quantification of blood flow was
performed via perfusion units, and the blood flow was measured
using moorLDI Review software (version 6.1).

Hematoxylin and Eosin and Masson’s
Trichrome Staining
Tissue samples were taken from each group for pathologic
analysis. The tissue was fixed with 4% paraformaldehyde and
embedded in paraffin, cut into 5 μm for H and E and Masson’s
trichrome staining. H and E–stained sections were examined
under a light microscope (x 10) to assess histological changes,
including granulation tissue, swelling, and microvascular
remodeling. Masson-stained sections were examined under a
light microscope (x 10) to assess fibrotic accumulation.

Immunofluorescence
The primary antibodies against LC3B (1:500), P62 (1:1,000),
CD34 (1:300), eNOS (1:200), and SOD1 (1:200) were used.
Next, the tissues were washed with PBS three times. Then, the
corresponding secondary antibodies (1:1,000) were applied for
1 h. The tablets were washed three times with PBST and were

FIGURE 1 | NT promotes cell migration by inhibiting oxidative stress. (A) Structure illustration of NT. (B) Images of wound healing in the control, H2O2, and
H2O2+NT groups. Images were captured at 0, 6, 12, and 24 h after the scratch. (C) Cell migration rate that were affected by the abovementioned factors for 6, 12, and
24 h. (D) Cell viability of each cell. Data were expressed as mean ± SD, n � 3. “**” and “*” represent p ＜0.01 or p ＜0.05 versus the H2O2 and 50 ug/mL NT groups,
indicating statistical significance.
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finally sealed with a sealing solution containing DPAI. A
Nikon ECLIPSE Ti microscope (Nikon, Tokyo, Japan) was
used to take images. Single dyeing uses grayscale display and
double dyeing uses color display.

Western Blot Analysis
The extracted protein was determined by Coomassie bright
blue method, and the protein sample was prepared with a
concentration of 40 μg/20 μLl. After electrophoresis, the
proteins were transferred onto polyvinylidene fluoride
(PVDF) membranes (Bio-Rad, Hercules, CA, United States).
The membrane was pre-incubated with 5% milk (Bio-Rad) for
2 h and incubated with each of the following antibodies:
anti–Beclin-1 (1:500), anti-VPS34 (1:1,000), anti-LC3 I/II
(1:1,000), anti-P62 (1:10,000), anti–HO-1 (1:1,000), anti-
SOD1 (1:3,000), anti-eNOS (1:2000), anti-VEGF (1:500),
anti–VE-cadherin (1:500), anti-CD34 (1:500), and GAPDH
(1:3,000) at 4°C for 12 h. After that, the membranes were
washed with TBST three times and incubated with
secondary antibodies for 90 min. The signals were detected
using ChemiDoc XRS + Imaging System (Bio-Rad).

Blood Biochemical Test
The blood of mice was collected by anticoagulant vessels
containing heparin lithium, and the supernatant plasma was

collected after centrifugation at 3,000 r at 4°C for 5 min.
100 μL of plasma was poured into a blood biochemistry tray
(Micro-nano Chip, Tianjin, China) and diluted with 430 μL of
pure water. An M3 biochemical analyzer was used (Micro-nano
Chip, Tianjin, China) to test related indexes on the test tray with
better density.

Statistical Analysis
Statistical analysis was performed using a two-sided Student’s
t-test. SPSS13 was used for statistical analyses. Data were
expressed as mean ± standard deviation (SD). p < 0.05 was
considered statistically significant.

RESULTS

NT Could Promote Cell Proliferation and
Migration
NT is the active extract of Panax notoginseng (Figure 1A),
which can promote blood circulation, remove blood stasis, and
increase blood flow. The proliferation, migration, and
remodeling of vascular endothelial cells are crucial in
random flap transplantation. We first tested the migration
ability of UVECs by the cell scratch test, and the experimental
results showed that the migration ability of UVECs was
significantly decreased after H2O2 stimulation than the
control group, and the migration ability of UVECs was
well-recovered after NT treatment (Figures 1B–C). Then,
we used the CCK-8 test to detect UVEC proliferation by
NT, and the experimental results showed that NT could
effectively promote the proliferation of UVECs (Figure 1D).
Furthermore, we detected the toxicity of NT in vivo, and no
obvious pathologic changes were found in the brain, kidneys,
spleen, and other tissues by H and E staining (Figure 2A). The
fluctuation of AST, ALT, and CRE in blood biochemistry was
found to be within a normal range (Figure 2B). In conclusion,
NT can promote cell proliferation and migration with
minimum toxicity.

NT Could Improve the Survival Rate of
Random Flaps
The distal end of the random flap is prone to ischemic necrosis
because the pedicle of a blood vessel is cut off during modeling
(Figure 3A). We first observed the necrosis of the flap and
quantified the necrotic area. Our results showed that small
areas of necrosis began to occur in the flaps of each group
3 days after surgery, and the survival of the flap in the control
group was less than that in the NT and NT+3MA groups (Figures
3B–C). The flap survival rate in the NT group was higher than
that in the NT+3MA group. On the seventh postoperative day, a
large area of skin flap necrosis occurred in both the control and
NT+3MA groups, while the survival rate of the NT group was
better than that of the other two groups (Figures 3D–E). Our
results suggest that NT can effectively promote the survival of
random flaps, and the pro-survival effect may be related to
autophagy activation.

FIGURE 2 | Tissue toxicity verification of NT. (A) H and E staining of the
brain, kidneys, and spleen of mice in each group. Magnification: 20X; Scale
bar � 100 μm. (B) Blood biochemical test in each group. Data were expressed
as mean ± SD, n � 3. n.s. represents no statistical significance.
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NT Could Enhance the Blood Flow Signal in
Random Flaps
Adequate blood perfusion is the key to flap survival, and LDBF
was used to trace the microvascular network reconstruction. Our
results showed that the random flaps in each group lost blood
supply after modeling, and the blood flow signal in the NT and
NT+3MA groups rebounded on the third day after surgery, as
well as the blood flow signal in the NT group was higher than that
in the NT+3MA group (Figures 4A–D). On postoperative day 7,
blood flow signals in the NT group showed significant recovery
among the three groups. The control and NT+3MA groups
showed no significant recovery compared to the third
postoperative day (Figures 4E,F). In conclusion, NT can
effectively restore random flap perfusion and promote flap
survival.

NT Could Improve the Blood Perfusion and
Tissue Morphology of Random Flaps
Neovascularization is the key to increase blood perfusion. We
used histologic staining to observe the blood supply regeneration
of random flaps. H and E staining showed no obvious
neovascularization in the flap of the control group. On
postoperative day 7, the NT group showed a large number of
microvessels. The number of microvessels in the NT+3MA group
was less than those of the NT group (Figures 5A,B). Masson’s
trichrome staining showed that the NT group had angiogenesis

and collagen fiber arrangement was dense and in order, while the
collagen fiber arrangement was irregular and loose in the control
and NT+3MA groups (Figure 5C). Then, we assessed the degree
of edema in the flap, and the results showed that the degree of
edema in the NT group was lower than that in the control and
NT+3MA groups (Figure 5D). In conclusion, NT could
effectively improve the blood perfusion and tissue morphology
of random flaps to promote the survival of flaps.

NT Could Promote Angiogenesis and Inhibit
Oxidative Stress
Western blotting was used to further analyze the expression of
neovascularization. Our results showed that the CD34 index
representing neovascularization significantly increased after
NT treatment, and the number of neovascularization in the
NT+3MA group was significantly reduced than that in the NT
group (Figures 6A,B). The expression levels of VEGF promoting
angiogenesis and VE-cadherin promoting vascular maturation
were also significantly increased in the NT group compared with
those of the control group. The levels of VEGF and VE-cadherin
in the NT+3MA group were significantly lower than those in the
NT group (Figures 6A,C,D). Then, the oxidative stress levels of
random flaps were analyzed by Western blotting. We detected
eNOS, HO-1, SOD1, and other reductive indexes and found that
the expression of reductive indexes in the NT+3MA group was
significantly higher than that in the control group after NT
treatment, and the expression of reductive indexes in the

FIGURE 3 | Application of NT directly increased the storage area of the flaps. (A) Photographs of the flapmodeling area and visual images before and after vascular
occlusion. (B,D) Images reflecting flap survival at the third and seventh day after operation in the control group, treatment group with NT, and treatment group with
NT+3MA. (C,E) Chart of the percentage of the skin flap stock area in each group for 3 and 7 days. Data were expressed as mean ± SD, n � 3. “**” represents p＜0.01
versus the NT group, indicating statistical significance.
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NT+3MA group was significantly lower than that in the NT
group (Figures 6E–H). In summary, NT can effectively promote
angiogenesis, maintain the stability of regenerated blood vessels,
and promote vascular recanalization to form an arteriovenous
loop. Moreover, it can promote the generation of reducing
substances to reduce the damage caused by oxidative stress.

NT Promoted the Survival of Random Flaps
by Activating Autophagy
In random flaps, autophagy is needed to generate energy to
supply cell survival due to the lack of vascular pedicle and
tissue blood supply. Therefore, the activation of autophagy can
effectively promote the survival of flaps. We first detected
autophagy-related proteins, namely, Beclin-1, VPS34, LC3, and

P62 using Western blotting. We found that the autophagy
activation indexes, namely, Beclin-1, VPS34, and LC3 in the
NT group were significantly higher than those in the control
group. Beclin-1 in the NT+3MA group was significantly higher
than that in the control group after autophagy inhibitor 3MA.
The expression levels of VPS34 and LC3 were significantly
downregulated (Figures 7A–D). P62 as a substrate for
autophagy decreased significantly in the NT group than in the
control group. The level of P62 in the NT+3MA group was
significantly higher than that in the NT group (Figures 7A,E).
Then, we further verified the expression of LC3B and P62 in each
group by immunofluorescence. Our results showed that LC3B in
the NT group was significantly higher than that in the control
group, and the LC3B level in the NT+3MA group was
significantly lower than that in the NT group. The results of

FIGURE 4 | NT promotes blood flow reconstruction of the skin flap. (A) LDBF technique shows the subcutaneous blood flow status immediately after surgery, as
well as 0 days. (B) Statistical result of blood flow signal intensity at 0 days. (C) LDBF technique shows the subcutaneous blood flow status immediately after surgery, as
well as three days. (D) Statistical result of blood flow signal intensity at the third day. (E) LDBF technique shows the subcutaneous blood flow status immediately after
surgery, as well as the number of days. (F) Statistical result of blood flow signal intensity at the seventh day. Scale: 0.5 cm. Data were expressed as mean ± SD, n �
3. “**” and “*” represent p ＜0.01 or p ＜0.05 versus the NT group, indicating statistical significance. n.s. represents no statistical significance.
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P62 are exactly the opposite of those of LC3B (Figures 7F–H). In
summary, NT promotes the survival of random flaps through the
Beclin-1/VPS34/LC3 pathway.

NT Inhibits Autophagy Through the
Beclin-1/VPS34/LC3 Pathway
To verify the autophagy pathway of NT action, the VPS34
inhibitor: VPS34 IN was first used to inhibit the expression of
VPS34 at the cellular level. Western blotting results showed
that the expression of VPS34 activated by NT was
downregulated after VPS34 IN, LC3 expression was also
downregulated, and P62 expression was increased. The
expression levels of CD34, an indicator of angiogenesis, and

eNOS and SOD1, an indicator of oxidative stress protection,
were down-regulated after using VPS34 IN (Figures 8A–F).
CCK-8 results showed that VSP34 IN significantly inhibited
the protective effect of NT on UVECs (Figure 8G). Next, we
used immunofluorescence to detect the expression of
autophagy, angiogenesis, and oxidative stress protectants in
tissues. Our results showed that VPS34 IN inhibited
autophagy, reduced angiogenesis, and downregulated the
expression of oxidative stress–protective substances (Figures
9A–I). The cell scratch assay showed that VPS34 IN could
significantly inhibit the migration activity of UVECs (Figures
9J,K). In conclusion, NT activates autophagy in random flaps
through the Beclin-1/VPS34/LC3 pathway, promoting the
survival of flaps.

FIGURE 5 | Application of NT results in a better histologic state of the flap. (A)H and E staining images of the control, NT, and NT+3MA groups. Magnification was ×
10, Scale bar � 200 μm. Area selected by the white border is taken at high magnification as the representative image, Scale bar � 50 μm. (B) Number of new blood
vessels. (C) Masson’s trichrome stain images of each group showing blood vessels and collagen fibers. Scale bar � 200 μm. High-power images were also equipped,
Scale bar � 50 μm. (D) Percentage of the tissue water content of the flap on day 7. Data were expressed asmean ± SD, n � 3. “*” and “**” represent p＜0.05 or p＜
0.01 versus the NT group.
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FIGURE 6 | NT promotes blood vessel proliferation and reduces the level of oxidative stress (A)Western blot results showing the expression of CD34, VEGF, and
VE-cadherin in different groups. (B–D) Quantitative analysis of CD34, VEGF, and VE-cadherin protein expressions. (E) Western blot results showed the expression of
eNOS, HO-1, and SOD1 in different groups. (F–H)Quantitative analysis of eNOS, HO-1, and SOD1 protein expressions. Data were expressed as mean ± SD, n � 3. “**”
and “*” represent p ＜0.01 or p ＜0.05 versus the NT group, indicating statistical significance.
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FIGURE 7 | NT improves autophagy levels (A) Western blot results showing the expression of Beclin-1, VPS34, LC3, and P62 in different groups. (B–E)
Quantitative analysis of Beclin-1, VPS34, LC3, and P62 protein expressions. (F) Immunofluorescence showing the expression of LC3B (red), P62 (green), and DAPI
(blue) in different groups. Magnification: 20X; Scale: 100 μm. (G–H)Mean fluorescence intensity of LC3B and P62 in different groups. Data were expressed as mean ±
SD, n � 3. “**” and “*” represent p ＜0.01 or p ＜0.05 versus the NT group, indicating statistical significance.
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FIGURE 8 |NT regulates autophagy through the Beclin-1/VPS34/LC3 pathway in vitro (A)Western blot results showing the expression of VPS34, LC3, P62, CD34
and eNOS in different groups. (B–F) The quantitative analysis of VPS34, LC3, P62, CD34 and eNOS protein expression. (G) Cell viability of each cell. The data were
expressed as the mean ± SD, n � 3. “**” and “*” represent p＜0.01 or p＜0.05 versus the NT group, “##” and “#” represent p＜0.01 or p 0.05 versus the NT + VPS34 IN
group, indicating statistical significance.
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FIGURE 9 | NT regulates autophagy through the Beclin-1/VPS34/LC3 pathway in vitro (A) Immunofluorescence showing the expression of LC3B (red), P62 (green),
and DAPI (blue) in different groups. Magnification: 40X; Scale bar: 50 μm. (B–C)Mean fluorescence intensity of LC3B and P62 in different groups. (D) Immunofluorescence
showing the expression ofCD34 (green) andDAPI (blue) in different groups.Magnification: 40X; Scale bar: 50 μm. (E)Mean fluorescence intensity of CD34 in different groups.
(F) Immunofluorescence showing the expression of eNOS (green) and DAPI (blue) in different groups. Magnification: 40X; Scale bar: 50 μm. (G) Mean fluorescence
intensity of eNOS in different groups. (H) Immunofluorescence showing the expression of SOD1 (green) and DAPI (blue) in different groups. Magnification: 40X; Scale bar:
50 μm. (I)Mean fluorescence intensity of SOD1 in different groups. (J) Images of wound healing in the NT and NT + VPS34 IN groups. Imageswere captured at 0, 6, 12, and
24 h after the scratch test. (K)Cell migration rate that was affected by the abovementioned factors for 6, 12, and 24 h. Data were expressed asmean ± SD, n � 3. “**” and “*”
represent p ＜0.01 or p＜0.05 versus the NT group, “##” and “#” represent p ＜0.01 or p ＜0.05 versus the NT + VPS34 IN group, indicating statistical significance.
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DISCUSSION

During flap repair, avascular necrosis of the distal flap is the
most common cause of surgical failure (Bai et al., 2021; Zhang
et al., 2021). Therefore, the most important factor in protecting
flap survival is to promote angiogenesis (Zhu X. et al., 2021; Lou
et al., 2021). However, the adverse effects of I/R injury and
nutrient deficiency during angiogenesis should not be ignored
(Basu et al., 2014; He et al., 2021). Our findings showed that NT
was the core factor for the survival of random flaps. NT
promoted the survival of random flaps by inhibiting
angiogenesis and inhibiting oxidative stress and also
improved the tolerance of random flaps by activating
autophagy and increasing the probability of random flaps’
survival.

As a better blood-activating agent, NT has been widely
used in cerebral infarction, central retinal vein occlusion, and
other diseases (Xie et al., 2019; Li H.-L. et al., 2021). Previous
studies have shown that NT played a major role in promoting
angiogenesis and dilating blood vessels to increase blood flow,
but no studies have reported the role of NT in random flaps
(Hong et al., 2009; Zheng et al., 2013; Yang et al., 2016; Zhong
et al., 2020; Zhu P. et al., 2021). Our results showed that NT
could effectively promote the regeneration of skin flap vessels
and increased the generation of neovascularization by
upregulating the secretion of VEGF and the expression of
VE-cadherin to promote the maturation of
neovascularization, making it a blood vessel connecting
arteries and veins and capable of supplying oxygen.

However, I/R injury is a key problem that cannot be ignored
to promote angiogenesis. Reactive oxygen species (ROS)
mainly cause the damage of microvessels and parenchymal
organs during ischemic tissue reperfusion. The synthesis
ability of antioxidant enzymes, which can scavenge free
radicals, is impaired in the ischemic tissue, thus aggravating
the damage of free radicals to ischemic reperfusion tissue
(Neeff et al., 2012; Sun et al., 2014; Szabó et al., 2020). SOD
can protect the tissue from ischemia and reperfusion by
scavenging free radicals (Ambrosio et al., 1987; Galiñanes
et al., 1992; Chen et al., 1996; Zhao et al., 2018). Our
experimental results showed that NT could upregulate
antioxidant indexes, such as SOD1, eNOS, and HO-1, in
tissues and effectively resist I/R injury. These results suggest
that NT promotes angiogenesis and regulates the tolerance of
random skin flap cells to a harsh environment.

Autophagy is referred to as the rough-surfaced
endoplasmic reticulum of the ribosome area of double-
membrane package which is part of the cytoplasm and cell
organelles. Protein compositions, such as the degradation of
domestic demand autophagy, will form, and fusion with
lysosomes forming autophagy-lysosome and degradation of
the contents of the package to realize the metabolism of the
cell itself and some cell organelles needs to be updated (Ariosa
et al., 2021; Ganley, 2021; Zhao et al., 2021). In normal cells,
small amounts of autophagy are maintained to retain cell
homeostasis (Talukdar et al., 2021). Due to the lack of
nutrients in random flaps, autophagy is required to

decompose damaged organelles to provide energy
(Sciarretta et al., 2014; Wu et al., 2020). Therefore, the
activation of autophagy in random flaps may improve the
survival of random flaps. Our study showed that Beclin-1
protein expression increased in NT-treated flaps, an
autophagy agonist, and can activate VPS34 and bind to
form the VPS34 complex, promoting the formation of
autophagosomes. Our subsequent detection of VPS34
protein expression showed a significant increase in its
expression level. LC3 is the gold standard for autophagy
expression, and our results showed that the expression of
LC3 II/LC3 I in the NT group was significantly increased
compared with that in the control group. P62 as a substrate for
autophagy was significantly reduced in the NT group.

To further verify that NT promotes the survival of random
flaps by activating autophagy, we applied the autophagy
inhibitor 3MA to the flaps treated by NT. Experimental
results showed that the therapeutic effect of NT was
significantly inhibited, and the number of new vessels,
blood flow signal intensity, and the survival area of flaps
were significantly downregulated. The organizational
structure becomes disorganized. Finally, to clarify the
pathway of NT’s role in autophagy, the VPS34 inhibitor:
VPS34 IN was used to inhibit NT-upregulated VPS34
expression to verify whether NT regulates autophagy
through the Beclin-1/VPS34/LC3 pathway. Our results
showed that the therapeutic effect of NT decreased
significantly after VPS34 IN.

In conclusion, we demonstrate for the first time that NT
promotes random flap angiogenesis and improves tissue
survival. In addition, NT has been widely used in clinical
practice and has high translational significance. Our study
confirmed that NT plays a crucial role in promoting
angiogenesis and defending against oxidative stress, and this
protective effect of NT may be closely related to Beclin-1/
VPS34/LC3-mediated autophagy activation.
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