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Long noncoding RNAs: pivotal 
regulators in acute myeloid leukemia
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Abstract 

Long noncoding RNAs (lncRNAs) have emerged as a class of pivotal regulators of gene expression. Recent studies 
have shown that lncRNAs contribute to the initiation, maintenance, and development of acute myeloid leukemia 
(AML). In this review, we summarize the current knowledge of the lncRNAs that play critical roles in AML. We first 
briefly describe the characteristics of lncRNAs, and then focus on their regulatory roles in AML, including the modu-
lation of differentiation, proliferation, cell cycle, and apoptosis. We further emphasize the action of lncRNAs during 
leukemogenesis by describing how they interact with RNA, protein and chromatin DNA to exert their functions. We 
also highlight an urgent need to investigate the mechanisms by which lncRNAs contribute to the pathogenesis of 
AML. Finally, we discuss the prognostic value of lncRNAs in AML patients.
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Background
Acute myeloid leukemia (AML) is a group of hematopoi-
etic malignancies with various genetic abnormalities, 
including chromosomal translocations and/or somatic 
mutations, which are mainly responsible for the abnor-
mal proliferation, differentiation or survival of myeloid 
progenitors [1, 2]. Extensive studies have established the 
regulatory roles of protein-coding genes in the initiation, 
maintenance, and development of AML, which consti-
tutes our main knowledge of the pathogenesis of AML.

Recently, long noncoding RNAs (lncRNAs) have 
emerged as a novel class of pivotal regulators of gene 
expression and has received increasing attention in the 
field of AML. LncRNAs are operationally defined as RNA 
larger than 200 base pairs that appear to lack coding 
potential. They participate in various cellular processes, 
like inflammatory response [3], neuronal activity [4] 
and erythropoiesis [5]. Mechanistically, lncRNAs could 
promote the strength of specific enhancer-promoter 
looping and thus contribute to gene activation [6–8], 
regulate protein modifications and activities, sequester 

microRNAs, and serve as precursors of small RNAs 
[9–11]. Based on the genomic locations where lncRNAs 
are transcribed, they can be classified into the follow-
ing groups: (1) sense, which overlap with at least part 
of another gene in the same strand; (2) antisense, which 
overlap with at least part of another gene on the oppo-
site strand; (3) intronic, which originate from the intron 
of another gene; (4) intergenic, which does not overlap 
with any gene. In addition to the above four classes, it is 
possible to characterize an additional fifth category: (5) 
chimeric, which are the fusion products due to chromo-
somal rearrangements, based on a study showing the 
existence of fusion transcripts between protein-coding 
genes and lncRNAs in AML [12]. Since only two known 
protein-lncRNA fusions have been identified in AML and 
their function has not been elucidated [12], the further 
investigation would be required. In this review, we sum-
marize the recent progress in the knowledge of lncRNAs 
in AML, including their biological functions, the mecha-
nisms behind their actions, the upstream regulation and 
the prognostic values in the clinic.
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The roles of lncRNAs in myeloid leukemia
The latest studies have demonstrated that lncRNAs 
contribute to many critical signaling pathways in AML 
development and therapy. We summarize the reported 
AML-related lncRNAs and their roles in Table 1.

LncRNAs exert important roles in myeloid differ-
entiation and can respond to differentiation induc-
tion therapy. At present, two lncRNAs, HOTAIRM1 
and NEAT1 are known to regulate the differentiation 
of AML cells. HOTAIRM1 is a myeloid-specific long 
non-coding transcript, which is transcribed from the 
locus between HOXA1 and HOXA2 genes. HOTAIRM1 
regulates myeloid differentiation genes such as CD11b 
and CD18, and its knockdown impairs all-trans retinoic 
acid (ATRA)-induced granulocytic differentiation [14]. 
This work could serve as a paradigm for exploring lncR-
NAs in AML, from the discovery of the lncRNA candi-
date to the investigation of the biological function. This 
work also has an interesting finding—HOTAIRM1 is 
derived from HOXA clusters, and in turn regulates the 
nearby genes in HOXA cluster. Whether this regulation 
is direct or indirect awaits further investigation. Another 
example is NEAT1, a widespread and abundant long 
noncoding RNA. Although myeloid differentiation is 
usually considered to be dominantly controlled by highly 
myeloid-specific factors, NEAT1 has been reported to 
be responsive to ATRA and be indispensable for ATRA-
mediated myeloid differentiation [28]. This observation 

indicates that myeloid differentiation also requires com-
monly expressed long noncoding transcripts. However, 
since both studies of HOTAIRM1 and NEAT1 men-
tioned above were conducted in myeloid leukemia cells, 
it has yet to be determined whether HOTAIRM1 and 
NEAT1 are required for normal myelopoiesis. Further 
in vivo studies are needed to evaluate their roles in nor-
mal hematopoiesis and the development of AML.

LncRNAs also exert effects on proliferation, cell cycle 
and apoptosis in AML cells. Such lncRNAs tend to be 
expressed more widely than those myeloid-specific tran-
scripts that regulate differentiation. A typical example 
is lncRNA PVT1, which can promote the proliferation 
of AML cells [21]. The oncogenic activity of PVT1 is 
closely related to MYC, whose overexpression can lead 
to hyper proliferation of cancer cells. A gain-of-func-
tion of both the MYC gene and the PVT1 lncRNA due 
to the amplification of 8q24.21 is observed in about 10% 
of AML patients [30]. On the one hand, PVT1 protects 
MYC from degradation by direct physical interaction 
[30]. On the other hand, PVT1 acts as a microRNA pre-
cursor for indirect regulation of MYC [31]. The PVT1 
locus can produce six annotated oncogenic microRNAs 
[31, 32], and one of these microRNAs, hsa-miR-1204, 
which is derived from the exon 1b, has been reported 
to be able to enhance the expression level of MYC [31]. 
From the example of PVT1, we should note that lncR-
NAs may have multifaceted roles and can function 

Table 1  LncRNAs in AML

LncRNAs Classification Function Target genes Reference

RUNXOR Sense Be involved in chromosomal translocation RUNX1 [13]

HOTAIRM1 Antisense Regulate myeloid differentiation and cell cycle 
enhance the autophagy pathway regulates 
chromatin state and architecture

HOXA1, HOXA4, CD11b and CD18  
miR-20a/106b and miR-125b

[14–17]

HOXA-AS2 Antisense Act as an apoptosis repressor Unknown [18]

PU.1-AS Antisense Inhibit the translation of PU.1 PU.1 [19]

WT1-AS Antisense Control WT1 expression WT1 [20]

EGO Intronic Regulate MBP and EDN expression MBP and EDN [22]

IRAIN Intronic Be engaged in long-range intra chromosomal 
interactions

IGF1R [23]

BGL3 Intergenic Sensitize leukemic cells to undergo apoptosis miR-17, miR-93, miR-20a, miR-20b, miR-106a 
and miR-106b

[24]

CCAT1 Intergenic Repress monocytic differentiation and promote 
cell growth

miR-155 [25]

CCDC26 Intergenic Control the growth of AML cells c-Kit [26]

HOTAIR Intergenic Induce cell growth and inhibit apoptosis miR-193a and c-Kit [27]

NEAT1 Intergenic Regulate ATRA-induced myeloid differentiation Unknown in AML [28]

PVT1 Intergenic Regulate proliferation of promyelocytes MYC [21]

UCA1 Intergenic Sustain proliferation of AML cells p27kip1 [29]

PVT1-NSMCE2 Fusion Unknown Unknown [12]

BF104016-NSMCE2 Fusion Unknown Unknown [12]
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through multiple ways. Also, the co-amplification of 
PVT1 and MYC informs us that it might be interest-
ing to see the association or causal relationship of copy 
number of lncRNAs with leukemogensis. In addition to 
PVT1, lncRNA UCA1 has also been reported to have 
the capability to modulate the proliferation of AML cells 
[29]. UCA1 silencing by short-hairpin RNA transduction 
results in a significant reduction of cell proliferation, 
with an increase in the G1 phase and a decrease in the 
S phase. Another example is lncRNA CCAT1, which can 
coordinate the proliferation and differentiation of AML 
cells [25]. Overexpression and knockdown experiments 
demonstrate that CCAT1 inhibits the PMA-induced 
monocytic differentiation as well as promotes the pro-
liferation of AML-derived HL60 cells [25]. As to apop-
tosis of AML cells, Xing et al. [27] found that HOTAIR 
knockdown inhibits cell growth and colony formation, 
and also induces the apoptosis of AML cells [27]. Of 
note, the oncogenic properties of these lncRNAs are not 
limited to leukemia, but can also be observed in solid 
tumors. For example, PVT1 can promote the prolifera-
tion of hepatocellular carcinoma and non-small cell lung 
cancer cells [33, 34]. Similarly, CCAT1 can promote the 
proliferation and invasion of colon cancer cells, gallblad-
der cancer cells and hepatocellular carcinoma cells [25, 
35, 36]. These observations indicate that such lncRNAs 
usually share similar functions in leukemia and other 
types of malignancies. Further experiments are required 
to investigate the underlying mechanism by which these 
lncRNAs control the cellular phenotypes—proliferation, 
cell cycle and apoptosis in AML cells.

Recently, the discovery of a novel class of lncRNAs 
piques the curiosity of scientists and potentially ignites 
their efforts to characterize them: fusion transcripts 
between coding genes and lncRNAs. In an AML patient 
sample and an AML-derived HL-60 cell line, it is verified 
that NSMCE2 rearrangement gives rise to two novel chi-
meric genes, PVT1-NSMCE2 and CCDC26-NSMCE2 
[12]. Although their identities have been revealed, their 
involvement in leukemogenesis is elusive to date. It is 
likely that PVT1-NSMCE2 and CCDC26-NSMCE2 may 
contribute to the leukemogenesis through the oncogenic 
activity of PVT1 and CCDC26 [26]. At present, our under-
standing of the fusion transcripts between lncRNAs and 
protein-coding genes is still in its infancy. Further experi-
ments are required to determine the causal relationship 
between the protein-lncRNA-fusion transcripts and leuke-
mia as well as the mechanism behind their behaviors.

Mechanisms of lncRNA action in acute myeloid 
leukemia
LncRNAs exert their functions through multiple ways 
(Fig. 1).

First, lncRNAs can interact with other RNA mol-
ecules, e.g. microRNAs and mRNAs. The lncRNAs that 
can act by competing with endogenous RNA to seques-
ter microRNAs include BGL3, CCAT-1, HOTAIR and 
HOTAIRM1. BGL3 functions as a competitive endog-
enous RNA for binding miR-17, miR-93, miR-20a, miR-
20b, miR-106a and miR-106b to cross-regulate PTEN 
expression [24]. CCAT-1 exerts its oncogenic activity by 
sequestering tumor-suppressive miR-155, an inducer of 
apoptosis and cell differentiation, which is down-regu-
lated in AML [25, 37]. HOTAIR competitively binds to 
and sequesters miR-193a, thus modulating the expres-
sion of c-KIT in AML cells [27]. A recent study showed 
that HOTAIRM1 regulates the ATRA-induced degra-
dation of PML-RARα by acting as microRNA sponge 
sequestering miR-20a, miR-106b and miR-125b to target 
autophagy-associated genes [16]. The lncRNAs can also 
bind to the protein-coding transcripts and induce the 
translation inhibition. One such lncRNA is PU.1-AS. It 
is transcribed from the opposite strand of PU.1, a mas-
ter transcription factor controlling myeloid differentia-
tion. It has been found that PU.1-AS negatively regulates 
the expression of PU.1 by stalling the translation of PU.1 
mRNA [19]. Furthermore, the preliminary data shows 
that PU.1-AS interferes with the binding of eEF1A to 
PU.1 mRNA, impairing the elongating complexes [19], 
although further studies are required to determine the 
precise mechanism.

Second, lncRNAs can bind protein partners to form a 
complex. For instance, a proposed mechanism for UCA1 
action in proliferation regulation is to sequester hnRNP 
I, which is a positive translation regulator of p27 protein. 
Consistent with this hypothesis, it has been shown that 
UCA1 has a moderate binding capacity to hnRNP I and 
that UCA1 knock-down leads to an increased expres-
sion of p27 protein in AML cells [29]. Further evidence is 
required to support the hypothesis that UCA1 functions 
by sequestering hnRNP I, since the investigation of the 
biological effects and molecular mechanism underlying 
the interaction between lncRNAs and proteins is more 
difficult than the identification of factors interacting with 
the lncRNA of interest. A possible effect of the lncRNAs’ 
interaction with proteins is involved in regulating the 
stability of protein partners, as exemplified by PVT1. In 
both breast cancer and AML cells, it has been reported 
that PVT1 protects MYC from phosphorylation by the 
direct interaction with MYC, stabilizing and enhancing 
MYC [30].

Currently, orchestrating the chromosomal looping 
is a seldom-observed yet critical aspect regarding the 
action of lncRNAs in AML. Two lncRNAs have been 
reported to mediate the long-range regulation. Interest-
ingly, both lncRNAs are transcribed from the loci that 
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produce critical protein regulators. LncRNA RUNXOR 
is derived from the locus of transcription factor RUNX1 
(AML1). It is 216 kb long and covers the entire locus of 
RUNX1, an important transcription factor in AML [13]. 
The 3′ UTR of RUNXOR is capable of binding to the 
promoter and enhancer of RUNX1, forming an intra-
chromosomal looping modulating the expression of 
RUNX1. Also, RUNXOR participates in the long-range 
interaction between the chromosomes, and thereby 
might be involved in chromosomal translocations and 
leukemia development [13]. Another example is IRAIN, 
an imprinted lncRNA transcribed from the intron of 
insulin-like growth factor type I receptor (IGF1R), an 
oncogene promoting cell growth in AML cells. IRAIN 
interacts with chromatin DNA and participates in scaf-
folding the long-distance DNA regions to form an intra 
chromosomal loop involving the IGF1R promoter and 
the intronic enhancer [23].

However, apart from the cases mentioned above, the 
mechanisms of lncRNA action in AML are still largely 
unknown. Further studies are required to investigate the 
interactome of lncRNAs, and to determine the causal 
relationship between the direct physical interaction and 
the resultant phenotypic changes. For example, although 
HOTAIRM1 and NEAT1 are found to be required for 
ATRA-induced myeloid differentiation in AML cells, the 
mechanism of how they exactly exert their functions is 
poorly known.

Regulation and dysregulation of lncRNAs 
in myelopoiesis
Emerging studies have indicated that lncRNAs specifi-
cally expressed during myelopoiesis are under the direct 
control of hematopoietic transcription factors. C/EBPα 
(CCAAT/enhancer-binding protein-α) is one of key 
regulators in myelopoiesis. A genome-wide study on 

Fig. 1  LncRNAs in acute myeloid leukemia. LncRNAs influence apopotosis, differentiation and proliferation of acute myeloid leukemia cells. 
Selected examples of AML lncRNAs and their molecular partners as well as the associated cellular phenotpyes are shown
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investigating C/EBPα-regulated lncRNAs has revealed 
that 930 lncRNAs, including 600 up-regulated and 330 
down-regulated, are regulated by C/EBPα [38]. At the 
individual gene level, a more in-depth study has shed 
light on the regulatory role of C/EBPα in the control 
of lncRNA UCA1 [29]. About 10% of AML cases bear 
CEBPA mutations [39], which leads to overexpression of 
C/EBPα-p30. Hughes et al. [29] and his colleagues identi-
fied that UCA1 is a novel target of both C/EBPα isoforms, 
i.e. C/EBPα-p42 and C/EBPα-p30, and the short isoform 
C/EBPα-p30 induces the expression of UCA1, leading to 
the abnormal up-regulation of UCA1 in CEBPA-mutated 
AML patients [29]. The work suggests the complexity of 
the transcriptional modulation of lncRNAs, as they could 
be controlled in a distinct regulatory pattern by different 
isoforms produced from the same gene.

PU.1 is another master regulator in myeloid differ-
entiation. Most recently, we have found that the mye-
loid differentiation lncRNA HOTAIRM1 is a direct 
target of PU.1 [40]. The up-regulation of HOTAIRM1 
during granulopoiesis depends on PU.1. Furthermore, 
low HOTAIRM1 expression is observed in APL cells, 
which is attributed to the reduced PU.1 expression, rather 
than the direct binding and repression by PML-RARα, 
the unique oncofusion protein in APL cells. This work 
identifies HOTAIRM1 as a novel target of PU.1, suggests 
the role of HOTAIRM1 in PU.1-mediated regulation net-
work during myeloid differentiation and elucidates the 
mechanism by which HOTAIRM1 is deregulated in APL 
cells.

In addition to the direct regulation by transcription 
factors, lncRNA expression is closely associated with 
recurrent mutations in AML [39], indicating an indi-
rect way of regulation. For example, lncRNA HOXB-
AS3, MEIS1-AS2, PVT1, and CCD26 are up-regulated 
in cytogenetically normal AML patients with mutated 
NPM1. WT1-AS is associated with FLT3-ITD muta-
tions. IDH1R132 mutated patient samples have up-regu-
lated DLEU2 as well as down-regulated RP11-147N17.1. 
RUNX1-mutated patients have up-regulated vault RNA 
1-1 (VTRNA1-1) [39]. Whether these observations 
merely represent a co-expression pattern or these lncR-
NAs indeed have roles in AML with the associated muta-
tions remains to be explored.

Presently, mechanisms behind the dysregulation of 
lncRNAs in AML are far less clear than their biologi-
cal functions. For example, previous studies have shown 
the involvement of PU.1-AS and EGO in myelopoiesis 
[19, 22], but whether they are dysregulated in AML is 
unknown, and how they are controlled during hemat-
opoiesis and leukemogenesis is unexplored. Thus, more 
attention should be paid into the mechanisms behind the 
abnormal expression of lncRNAs in AML.

Prognostic value and therapeutic promise 
of lncRNAs in acute myeloid leukemia
LncRNAs are associated with AML clinical features and 
outcomes. A recent study has shown that lncRNAs can 
be used to predict treatment response and outcome in 
older patients with cytogenetically normal AML. Gar-
zon et  al. have investigated the associations of lncRNA 
expression with clinical characteristics, recurrent muta-
tions, and outcome in 148 cytogenetically normal older 
(age  >60  years) AML patients and built a prognostic 
score based on the expression values of 48 lncRNAs 
that can been used to for outcome prediction [39]. 
Future studies are required to investigate whether these 
lncRNAs are functional in the AML development and 
whether they are regulated directly or indirectly by bio-
logic changes influenced by specific mutations. Moreo-
ver, AML patients expressing a higher level of HOTAIR 
are associated with a worse clinical outcome in compari-
son with those with lower expression of HOTAIR [27]. 
Based on 215 intermediate-risk AML patients, Díaz-
Beyá et  al. [41] have reported that high HOTAIRM1 
expression is independently associated with worse prog-
nosis: a shorter overall survival and a higher cumulative 
incidence of relapse [41]. Besides, a higher HOTAIRM1 
expression level is also associated with worse clinical 
outcome in AML patients with mutated NPM1 [41]. 
Overall, only a few published reports of lncRNAs’ prog-
nostic value in AML are available currently, so more 
work is needed to explore the association between 
lncRNA and clinical characteristics, mutations and 
outcome.

LncRNAs are promising candidates for cancer ther-
apy, especially considering some of them are tissue-
specific drivers of cancer. Preclinical researches have 
implicated the efficacy of lncRNA-targeted therapeutics 
in certain types of cancer. In the MMTV-PyMT breast 
cancer mouse model, Malat1 exerts oncogenic activity 
by enhancing cell proliferation and tumor metastasis, 
and serves as a potential target for treatment [42]. Per-
turbation of Malat1 by RNA depletion induces differen-
tiation of mammary tumors, increases cell adhesion and 
decreases metastasis [42]. However, to the best of our 
knowledge, there is still no therapeutic examples tar-
geting lncRNAs in AML to date. Progress of developing 
lncRNA-targeted therapeutics is impeded by the limited 
understanding of their roles in AML and the molecu-
lar mechanisms by which they exert their functions in 
AML.

Conclusions and perspectives
It becomes increasingly clear that lncRNAs play criti-
cal regulatory roles in AML. However, there are as yet 
unidentified lncRNAs and undiscovered machineries 
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involved in AML. The road is still long before we fully 
understand their disease relevance and biological sig-
nificance in AML. Genome-wide studies, in parallel with 
careful and in-depth investigations of individual lncR-
NAs, will greatly advance our understanding of how 
lncRNAs are involved in the initiation, maintenance and 
development of AML. Furthermore, the nature of the 
interactions between lncRNAs and other molecules, to a 
large extent, remains a mystery in AML. Resolving such 
issues requires the implementation of methodologies 
such as chromatin isolation by RNA purification (ChIRP) 
[43], capture hybridization analysis of RNA targets 
(CHART) [44] and RNA immune precipitation (RIP) to 
identify the binding chromatin DNA or binding proteins 
of lncRNAs. Finally, an imperative aspect of research is 
the inquiry at the mechanism under the dysregulation 
of lncRNAs in AML. In particular, for those function-
ally characterized lncRNAs that have regulatory roles in 
AML, it is really worthwhile to investigate how they are 
modulated in physiological conditions and whether they 
are dysregulated in the pathogenesis of AML. Under-
standing the mechanisms underlying lncRNA’ actions 
and dysregulation will ultimately pave the way to com-
pletely understand the pathology and to better treat AML 
patients.
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