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N E U R O S C I E N C E

Context-specific control over the neural dynamics 
of temporal attention by the human cerebellum
Assaf Breska* and Richard B. Ivry

Physiological methods have identified a number of signatures of temporal prediction, a core component of attention. 
While the underlying neural dynamics have been linked to activity within cortico-striatal networks, recent work 
has shown that the behavioral benefits of temporal prediction rely on the cerebellum. Here, we examine the in-
volvement of the human cerebellum in the generation and/or temporal adjustment of anticipatory neural dynamics, 
measuring scalp electroencephalography in individuals with cerebellar degeneration. When the temporal predic-
tion relied on an interval representation, duration-dependent adjustments were impaired in the cerebellar group 
compared to matched controls. This impairment was evident in ramping activity, beta-band power, and phase 
locking of delta-band activity. These same neural adjustments were preserved when the prediction relied on a 
rhythmic stream. Thus, the cerebellum has a context-specific causal role in the adjustment of anticipatory neural 
dynamics of temporal prediction, providing the requisite modulation to optimize behavior.

INTRODUCTION
Temporal anticipation is essential for survival in our dynamic world. 
Whether playing sports, listening to music, or driving, our brain is 
able to use temporal regularities to predict the timing of upcoming 
events (1, 2). These predictions guide proactive allocation of atten-
tional resources and preparation of adaptive responses, expressed in 
various contexts by the behavioral benefits observed when predic-
tions are confirmed and costs when violated (3–10). Neurophysio-
logical recordings in humans and nonhuman primates (NHPs) have 
associated temporal prediction and attention with a set of neural 
signatures reflecting activity in cortico-striatal networks (1). First, 
ramping neuronal activity, expressed in human scalp recordings as 
the contingent negative variation (CNV) potential, is adjusted such 
that it peaks near the expected time of an upcoming event (6–8, 11–14). 
Second, the power of movement-related beta-band activity decreases 
just before the expected time of the imperative (7, 15–20). Third, an 
increase in phase consistency of low-frequency activity (e.g., delta 
range, 0.5 to 3 Hz) is observed across repeated instances of the same 
interval in temporally predictable contexts, putatively reflecting align-
ment of high excitability states at an expected time (3, 4, 6, 21, 22). 
These patterns are evident in NHP recordings in frontal, parietal, 
and basal ganglia circuits, regions that feature prominently in human 
functional magnetic resonance imaging (fMRI) studies of temporal 
anticipation (9, 23–27).

However, a strict cortico-striatal view of temporal anticipation 
was recently challenged by evidence that individuals with cerebellar 
degeneration (CD) failed to exhibit behavioral benefits from tem-
poral cues on a simple detection task (28). The impairment was lim-
ited to conditions in which temporal anticipation was based on 
associations between cues and isolated intervals (6, 8–10), but not 
when based on a periodic signal (3–7). These findings established a 
context-specific role of the human cerebellum in temporal anticipa-
tion, extending prior work that had emphasized the critical role of 
the cerebellum in tasks that require explicit timing (29–34).

Given that temporal anticipation involves neural dynamics within 
a cortico-striatal network, a fundamental question concerns how a 
cerebellar timing system might interact with this network. Electro-
physiological recordings in NHPs have shown beta-band activity 
and ramping activity in the cerebellum during timed movements 
(35–38), and neuroimaging studies have reported increased cerebellar 
activation and cerebro-cerebellar correlation during temporal antici-
pation (39, 40). Moreover, an increase in the cerebellar blood oxygen 
level–dependent response is observed during the buildup of the CNV, 
paralleling activity in premotor areas (41). However, given the cor-
relational nature of fMRI and its low temporal resolution, it is not 
clear whether cerebellar activity provides a modulatory input to 
cortico-striatal circuits involved in temporal prediction, reflects 
cortico-striatal activity projected to the cerebellum, or affects tem-
poral preparation independently of cortico-striatal activity (e.g., by 
modulating descending motor pathways).

Aiming to identify the causal role (if any) of the cerebellum in 
the cortical dynamics of temporal anticipation, we measured elec-
troencephalography (EEG) in individuals with CD while they per-
formed two temporal prediction tasks. In one task, prediction was 
based on an interval representation; in the other, the prediction was 
derived from a rhythmic stream. On the basis of our previous study 
(28), we expected to find a behavioral impairment in the CD group 
for interval-based, but not rhythm-based prediction. Our primary 
goal was to examine the role of the cerebellum in the CNV, delta- 
band phase locking, and beta-band amplitude. For each of these 
neural patterns, we considered three models with respect to the 
expected deficits in the Interval task (Fig. 1A). First, the cerebellum 
may be critical for the generation of extracerebellar (e.g., cortico- 
striatal) ramping, delta-band, and/or beta-band activity. By this 
“cerebellar generation” model, these patterns would be abolished or 
severely attenuated in the CD group. Second, the cerebellum may 
be critical for the temporal adjustment, rather than generation, of 
these neural patterns. By this “cerebellar adjustment” model, the 
CD group would still demonstrate these neural patterns before 
anticipated events, but no duration-dependent adjustments would 
be observed in the CNV and beta suppression, and delta phase-locking 
would not increase to a similar extent as in controls. Third, the 
cortico-striatal mechanisms reflected in these patterns may operate 

Department of Psychology and Helen Wills Neuroscience Institute, University of 
California, Berkeley, 2121 Berkeley Way, Berkeley, CA 94720, USA.
*Corresponding author. Email: assaf.breska@berkeley.edu

Copyright © 2020 
The Authors, some 
rights reserved; 
exclusive licensee 
American Association 
for the Advancement 
of Science. No claim to 
original U.S. Government 
Works. Distributed 
under a Creative 
Commons Attribution 
NonCommercial 
License 4.0 (CC BY-NC).



Breska and Ivry, Sci. Adv. 2020; 6 : eabb1141     2 December 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

2 of 15

independently of the cerebellum. By this “cerebellar independent” 
model, EEG patterns in the CD group would be similar to those ob-
served in control participants.

A second goal of the study was to examine how an impairment 
in interval-based prediction might affect EEG signatures of temporal 
anticipation under rhythm-based prediction. This question is rele-
vant to the current debate in the literature regarding the context 
specificity of these neural signatures of temporal prediction (42–46). 
Increased delta-band phase locking has been interpreted as reflecting 
rhythm-specific prediction mechanisms, such as the entrainment of 
endogenous oscillations (3, 4, 21). However, similar neural adjust-
ments are observed for aperiodic streams that enable interval-based 
prediction (6). This has motivated the hypothesis that neural patterns 
observed during rhythmic predictions may be mediated by the re-
peated operation of an interval-based mechanism given that a periodic 
stream consists of a series of concatenated intervals (47). Alterna-
tively, a similar neural adjustment in rhythm- and interval-based 
contexts may result from a shared downstream process that is driven 
by distinct, context-specific mechanisms. Finding a selective disrup-
tion in the Interval task would be consistent with the latter hypothesis, 
in this case pointing to the necessity of the cerebellum for interval- 
based adjustment. However, finding that some signatures of neural 
anticipation are disrupted in both tasks in the CD group would in-
dicate that they are driven by cerebellar-dependent interval-based 
mechanism, even in rhythmic contexts.

RESULTS
Individuals with CD (n = 16) and controls (n = 14) completed two 
variants of a temporal prediction task in the visual modality (Fig. 1B) 
(6, 28). The participants performed a detection task, making a button 
press as quickly as possible in response to a target that was preceded 
by a warning signal. In turn, the warning signal was preceded by a 
cue that indicated the likely interval between the warning signal onset 
and target onset [stimulus onset asynchrony (SOA)]. In the Interval 
task, the cue consisted of two stimuli whose SOA was either 700 or 
1200 ms. The warning signal appeared after an interval of either 1.5 or 
2.5 times the cue SOA, making the stimulus stream non-isochronous. 
In the Rhythm task, the temporal cue was defined by a periodic stream 
of four stimuli, with the last stimulus being the warning signal. The 
stimuli were separated by a fixed SOA of 700 or 1200 ms. In both 
tasks, the SOA between the warning signal and target matched the 
cue SOA on 75% of the trials (valid trials); on 25%, the interval be-
tween the warning signal and the target matched the other, uncued 
SOA (invalid trials). We also included catch trials in which no target 
appeared, to discourage premature responses (10). We predicted that 
the CD group will exhibit a behavioral impairment in the Interval 
but not Rhythm task and hypothesized that this impairment would 
be accompanied by abnormalities in some or all of the EEG signa-
tures of temporal anticipation. Therefore, for each behavioral and 
neural measure, the analyses were designed to test the temporal 
anticipation effect within each group and compare the two groups 
within each task.

Reduced behavioral benefits of interval-based, but not 
rhythm-based, temporal prediction in CD
In our design, temporal anticipation should lead to faster reaction 
times (RTs) on cue-valid trials compared to cue-invalid trials (we 
refer to this as “validity effect”) (5, 8, 9). This was indeed found in 

Fig. 1. Paradigm and behavioral results. (A) Top: Controls are expected to show 
adjustment in cortico-striatal anticipatory neural activity as a function of the cue-to- 
target interval. Bottom: Three hypotheses and their associated predictions concerning 
the role of cerebellum in modulating cortico-striatal attentional networks following 
interval-based temporal cues. Left: Cerebellar-dependent generation hypothesis of 
neural preparation predicts no neural preparation in the CD group. Middle: Cerebellar- 
dependent adjustment hypothesis predicts neural preparation that is not adjusted 
by knowledge of the expected interval (for illustration purposes, anticipatory activity is 
depicted as peaking at the average interval of 950 ms regardless of the expected 
target time). Right: Cerebellar-independent hypothesis predicts a similar pattern to 
controls. (B) Experimental paradigm. Participants viewed a stream of flickering colored 
squares and provided a speeded response upon detecting a target (green square). 
Top: Interval task. Two red squares were separated by either a short or a long 
stimulus onset asynchrony (SOA). After a variable delay period, a warning signal 
(white square) appeared, preceding the target. The interval between the warning 
signal and target could be the same SOA (valid) or the other SOA (invalid). Bottom: 
Rhythm task. Three red squares and a warning signal appeared with identical SOA 
(short/long). Valid and invalid trials were as in the Interval task. In both tasks, short 
SOA = 700 ms, long SOA = 1200 ms. On 25% of the trials, no target was presented 
(catch trials), and participants were to withhold response. (C) Behavioral results. Mean 
reaction times (RTs) for the CD and control groups for the Interval and Rhythm tasks. 
Error bars represent 1 SEM. *P < 0.05. (D) Magnitude of validity effect (Invalid − Valid). 
The validity effect is smaller in the CD group in the Interval task but has a similar 
magnitude in the Rhythm task. Error bars represent 1 SEM.
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our data across all conditions and groups [omnibus mixed analysis 
of variance (ANOVA), F(1,28) = 138.2, P = 3 × 10−12,    p  2    = 0.83]. 
However, the magnitude of the effect varied between groups and tasks 
[Task × Group × Validity interaction, F(1,28) = 4.4, P = 0.02,    p  2    = 0.14]. 
We next turned to the critical question of whether the CD group was 
impaired relative to controls, using planned contrasts comparing the 
groups within each task. In the interval task (Fig. 1, C and D, left 
panels), the validity effect was smaller in the CD relative to the control 
group [25 and 53 ms for the CD and control groups, respectively; 
mixed ANOVA, Validity × Group interaction: F(1,28) = 8.75, 
P = 0.006,    p  2    = 0.24]. The within-group analyses using planned con-
trasts indicated that the validity effect was significant within each 
group [repeated-measures ANOVA, Control: F(1,13) = 43.7, P = 1 × 
10−5,    p  2    = 0.77; CD: F(1,15) = 25.9, P = 1 × 10−4,    p  2    = 0.63].

Turning to the Rhythm task (Fig. 1, C and D, right panels), we 
found that the magnitude of the validity effect did not differ signifi-
cantly between groups [CD, 89 ms; Control, 91 ms; interaction F(1,28) = 
0.01, P = 0.94,    p  2    < 0.01; Bayes factor, BF10 = 0.34, weak evidence in 
favor of the null hypothesis], with the validity effect again significant 
within both groups [Control, F(1,13) = 54.9, P = 3 × 10−6,    p  2    = 0.81; 
CD, F(1,15) = 89, P = 1 × 10−7,    p  2    = 0.86]. Direct comparison of the 
two tasks within each group revealed that the validity effect was 
larger in the Rhythm task in both groups [Validity × Task interac-
tion, Controls, F(1,13) = 19, P = 8 × 10−4,    p  2    = 0.59; CD, F(1,15) = 
54.9, P = 2 × 10−6,    p  2    = 0.79].

In sum, participants were faster to detect a target that appeared 
at a cued point in time, compared to when the target appeared at an 
unexpected time. However, the CD group exhibited a reduced 
validity effect for interval-based predictions, but a normal validity 
effect for rhythm-based predictions.

CD abolishes temporal adjustment of CNV buildup 
in interval-based prediction
Temporal anticipation leads to adjustment of anticipatory ramping 
neural activity according to the expected interval, such that it peaks 
just before the expected time (11–14). In human EEG, this is ex-
pressed in the CNV, a negative potential typically elicited following 
a warning signal (6–8). To test the role of the cerebellum in this 
adjustment, we analyzed the CNV amplitude in a time window just 
before the early target time, where the difference between expecting 
the target at the early and late times should be maximal. We also used 
a cluster-based permutation analysis (48) without restriction to a 
specific time range. Temporal anticipation should lead to a more 
negative CNV amplitude following the short SOA cue compared to 
the long SOA cue, or what we will refer to as the “cue effect.”

Across all conditions, the CNV was observed after the warning 
signal with a typical fronto-central scalp distribution (Fig. 2A). Both 
groups showed a CNV buildup, expressed as a significant difference 
from baseline, following both cue durations in both tasks (all t’s > 2.65, 
all P’s < 0.05, all Cohen’s d > 0.7; Fig. 2, B and C). Across groups and 
tasks, the CNV amplitude showed a cue effect [mixed ANOVA in 
predefined window: F(1,28) = 19.9, P = 2 × 10−4,    p  2    = 0.42], although 
the magnitude of this effect varied as a function of Group and Task 
[Cue SOA × Group × Task: F(1,28) = 2.94, P = 0.048,    p  2    = 0.14]. 
Planned contrasts within tasks revealed that in the Interval task, the 
cue effect was smaller in the CD group [Cue SOA × Group interac-
tion: F(1,28) = 4.33, P = 0.046,    p  2    = 0.13; Fig. 2B]. Analysis of the 
Interval task within each group found a cue effect in controls [pre-
defined time window: t(13) = −3.12, P = 0.008, Cohen’s d = 0.83; 

Fig. 2. CNV adjustment depends on the cerebellum in interval-based but not 
rhythm-based prediction. (A) CNV elicited following warning signal onset (0 ms) 
for the short and long cue SOA conditions, averaged across groups and tasks. Black 
and gray squares indicate expected target times. Scalp distribution depicted for a 
time window preceding the short SOA target (yellow bar). Green dots: predefined 
fronto-central electrode cluster used for the CNV analysis. (B) CNV in the Interval 
task following short SOA cue (dark color) or long SOA cue (light color). The cue effect 
observed in the control group (top) is abolished in the CD group (bottom). Yellow 
bars: Predefined window for analysis of CNV amplitude. Horizontal bars: Clusters 
showing significant difference between conditions (P < 0.05). Error margins indicate 
1 SEM of the difference between expected SOAs. *P < 0.05 against baseline. (C) Same 
as (B) for the Rhythm task. A cue effect is observed in both groups. (D) Ramping 
activity model of the CNV buildup, allowing variation of ramping onset time (T) and 
ramping slope (S). The depicted model fit is for the control data in the Interval task. 
(E) Parameter estimates of the ramping model in the Interval task. The black arrow 
illustrates transition from short to long cue SOA. Controls show delayed ramping 
onset and steeper slope in the long SOA condition. The CD group shows no cue effect 
in either parameter. Horizontal and vertical error bars indicate 1 SEM of the difference 
between expected SOAs for ramping onset latency and slope, respectively. (F) Same 
as (E) for the Rhythm task. Controls show a similar pattern to the Interval task, whereas 
the CD group shows a cue effect in the slope parameter only, with a steeper slope 
in the short SOA condition, opposite that observed in the control group.
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cluster-based permutation P < 0.05] but not in patients with CD 
[t(15) = 0.1, P = 0.92, d = 0.03; BF10 = 0.26, moderate evidence in 
favor of the null hypothesis; strongest cluster P > 0.5].

A different pattern was observed in the Rhythm task. Here, there 
was no difference in the cue effect between the two groups [F(1,28) = 
0.003, P = 0.96,    p  2    < 0.01; BF10 = 0.33, moderate evidence for the 
null hypothesis; Fig. 2C], with a cue effect observed in controls 
[t(13) = −4.44, P = 7 × 10−4, d = 1.19; cluster P < 0.05] and no Cue 
SOA × Task interaction [F(1,13) = 0.75, P = 0.4,    p  2    = 0.05]. The cue 
effect was also significant in the patients with CD [t(15) = −2.96, 
P = 0.01, d = 0.74; cluster P < 0.05], as was the interaction, with the cue 
effect larger in the Rhythm task [F(1,15) = 6.78, P = 0.02,    p  2    = 0.31].

Thus, when temporal prediction relied on timing cued by an iso-
lated interval, the CD group failed to exhibit temporal adjustment 
in the buildup of the CNV. In contrast, when temporal predictions 
relied on a rhythm, the CD group showed an adjustment of the CNV 
buildup, leading to similar difference in CNV amplitude before the 
early target SOA as in controls.

CNV modulation in the Rhythm task for the CD group is 
manifest as a change in slope rather than latency adjustment
Given that the CNV is reflective of ramping activity, its shape can be 
informative concerning the dynamics of preparatory resource allo-
cation. Adjustment of ramping activity in response to different tem-
poral goals can involve modulation of either its onset latency or its 
slope, as evident in NHP neural recordings (12, 37, 38, 49). To ex-
amine the effect of temporal anticipation on these parameters, we 
fit the CNV waveform generated between the warning signal onset 
and the earliest possible target time (700 ms) with a two-parameter 
linear ramping model (Fig. 2D), one corresponding to the slope and 
the other corresponding to onset latency [(6, 7); see validation in 
Materials and Methods]. Four fits were performed for each group 
(two tasks and two cue SOAs), with the data averaged across partic-
ipants within a group. To compare the parameters between condi-
tions, we used a permutation-based approach. For each comparison, 
we built a null distribution for the test statistic (e.g., latency when 
expecting short minus latency when expecting long) by shuffling the 
labels of exchangeable conditions for that comparison (50), re-averaging 
the shuffled data, fitting the model, and registering the randomized 
test statistic. A given comparison was considered statistically sig-
nificant if the true test statistic exceeded 95% of the randomized 
test statistics.

For the latency parameter, CNV onset was earlier following the 
short cue SOA compared to the long cue SOA (P < 0.05). This effect 
differed between groups (Cue SOA × Group interaction: P < 0.05), 
but the three-way interaction was not significant (Cue SOA × Group × 
Task, P > 0.5). Planned contrasts within each task found that the cue 
effect was smaller in the CD group in both tasks (Cue SOA × Group 
interaction, both P < 0.05; Fig. 2, E and F). The control group showed 
a cue effect in both tasks (both P’s < 0.05; no difference in cue effect 
between tasks, Cue SOA × Task interaction, P > 0.05). Notably, the 
CD group did not show a cue effect in either task (both P’s > 0.4; no 
difference in cue effect between tasks, P > 0.5). Thus, the absence of 
latency modulation in the CD group was evident for both interval- 
based and rhythm-based prediction.

For the slope parameter, the CNV slope was not significantly dif-
ferent following the short and long cue SOAs (P > 0.05). However, 
there was a three-way interaction (Cue SOA × Group × Task; 
P < 0.05). Planned contrasts revealed that in the Interval task, the 

cue effect differed between the control and CD groups (Cue SOA × 
Group interaction, both P < 0.05; Fig. 2E). In controls, the CNV slope 
was shallower following the short cue SOA compared to the long 
cue SOA (P < 0.05), while in the CD group, no cue effect was ob-
served (P > 0.5). In the Rhythm task, the cue effect also differed be-
tween groups (P < 0.05; Fig. 2F). For the controls, the effect was in 
the same direction as in the Interval task (P < 0.05; no difference in 
cue effect between tasks, P > 0.05). In contrast, the CD group showed 
a steeper slope following the short cue SOA compared to the long 
cue SOA (P < 0.05). Moreover, the modulation of the slope was larger 
in the Rhythm task compared to the Interval task (P < 0.05). Thus, 
the adjustment of slope in the CD group was abolished for interval- 
based predictions and reversed for rhythm-based predictions.

CD reduces temporal alignment of low-frequency activity 
in interval-based but not rhythm-based prediction
Temporally predictive streams are associated with phase alignment 
of low-frequency activity during the anticipatory period, expressed 
as an increase in phase consistency across trials for a given expected 
target interval (3, 4, 6). To test the dependence of phase alignment on 
the cerebellum, we band-pass–filtered the EEG data to a delta-band 
frequency range that corresponds to the expected intervals (0.6 to 
2 Hz, symmetrical around the frequencies corresponding to the ex-
pected intervals, see Materials and Methods) and calculated the 
inter-trial phase concentration (ITPC) index (51) following the warn-
ing signal (fig. S2). We used the same, predefined fronto-central 
electrode cluster as in the CNV analysis, allowing us to look at tem-
poral consistency in signals associated with the systematic adjust-
ments in the CNV (Fig. 3A, top) (an exploratory analysis revealed 
another cluster of increased ITPC in occipital electrodes, showing a 
similar pattern of results to that described below for the fronto-central 
cluster; fig. S3).

Across groups and tasks, ITPC increased before the early target 
window, with a frequency distribution that was centered on the delta 
range (Fig. 3A, bottom). Focusing on this range, we first examined 
the baseline epoch, when no temporal prediction was available, and 
found no difference in ITPC between the control and CD groups 
(between-subject permutation test: P > 0.3; Fig. 3, B and C, left). 
Across groups and tasks, delta ITPC before the early target was higher 
than baseline (permutation-based ANOVA, P < 0.05; Fig. 3B), but 
the magnitude of ITPC in this time window was different between 
groups and tasks (Group × Task interaction, P < 0.05). Planned con-
trasts within each task revealed that in the Interval task, the ITPC 
increase was smaller in the CD group relative to controls (between- 
subject permutation test, P < 0.05; Fig. 3C, middle; see fig. S2 for 
single-subject data), though the ITPC increase relative to baseline 
was still significant in both groups (both P’s < 0.01). If ITPC in 
rhythm-based prediction reflects repeated interval-based mechanisms 
(6, 42–44), then it should be similarly reduced in the Rhythm task. 
However, the magnitude of ITPC increase in the Rhythm task did 
not differ between the two groups (P > 0.8; Fig. 3C, right), with both 
groups showing significant ITPC increase from baseline (Control: 
P < 0.01; CD: P < 0.01). The control group showed no difference in 
ITPC increase between tasks (P > 0.8), whereas for the CD group, 
the ITPC increase was larger in the Rhythm task (P < 0.01). Thus, 
the ITPC increase in rhythm-based prediction does not rely on 
cerebellar-dependent interval mechanisms.

The dissociation between the two tasks indicates that the ITPC 
increase in aperiodic contexts is mediated by a cerebellar-dependent 
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interval-based mechanism. We next used a modeling approach to 
ask how an increase in ITPC might arise from a non-oscillatory, 
ramping mechanism. We simulated a set of trials using the two- 
parameter ramping model described above and conducted an ITPC 
analysis, similar to how we treated the EEG data (Fig. 4A). We first 
examined the spectral specificity of ITPC from the ramping model, 
filtering the data into a broad frequency range (0.5 to 40 Hz). ITPC 
from the simulated data had a frequency distribution that was cen-
tered on the delta range (Fig. 4B), matching that observed in the 
EEG data (compare with Fig. 3A).

As ITPC is essentially a measure of variability, we examined the 
impact of variability in ramping activity on delta-band ITPC (see 
fig. S2). For this purpose, we filtered the simulated trials (0.6 to 2 Hz) 
and compared simulations in which we manipulated the inter-trial 
variability of ramping onset latency for different levels of variability 
in ramping slope (Fig. 4C). As expected, ITPC decreased with larger 
inter-trial variability in ramping onset latency [t(74) = −6.2, P = 0.008]. 
ITPC was not affected by variation in the variability in ramping 
slope [t(74) = −1.04, P = 0.3].

Given the selective effect of onset latency on ITPC, we conducted 
an unrestricted spectral analysis of this variable, to examine whether 
the frequency distribution of ITPC effects predicted by the model 
matches the one in the EEG data. Simulations revealed that ITPC 
decrease due to increased variability in onset latency was restricted 
to delta frequencies (Fig. 4D, left). We then turned back to the EEG 
data, applying the same unrestricted spectral analysis. We focused 
on the Interval task given that the ITPC attenuation was observed in 
the CD group on this task. In line with the prediction of the model, 
ITPC decrease in patients with CD was limited to delta frequencies 
(Fig. 4D, right). Thus, countering the idea that ITPC modulations 
selectively reflect oscillatory alignment, a reduction in ITPC can 
also reflect reduced temporal consistency of the latency of ramping 
activity. We conjecture that this might underlie the pattern observed 
in the CD group.

This conjecture raises the hypothesis that individual differences 
in ITPC would be correlated with the cue effect on CNV latency: 
Higher ITPC should occur for participants who are better in adjust-
ing the timing of the CNV. To test this, we used the model fits of the 
neural data to extract estimates of the cue effect on CNV latency for 
each participant. We found that, when controlling for group and 
task differences, individual differences in this metric predicted 
the magnitude of ITPC [linear mixed-effects (LME) regression, 
2(1) = 5.34, P = 0.021; Fig. 4E].

Timed suppression of beta activity is impaired in CD 
in interval-based but not rhythm-based prediction
Beta-band activity is associated with the transition from motor 
preparation to movement initiation, and its amplitude decreases 
before a temporally predictable imperative stimulus (7, 15–17). We 
tested the dependence of this on the cerebellum by conducting a 
time-frequency analysis, asking whether beta-band amplitude would 
be reduced before the early target time following the short SOA cue 
compared to the long SOA cue. Beta-band activity was analyzed in 
a predefined time-frequency window (see fig. S4 for frequency range 
identification), as well as with a two-dimensional cluster-based per-
mutation test.

Across groups and tasks, beta amplitude was lower following the 
short SOA cue [cue effect, omnibus mixed ANOVA: F(1,28) = 16.6, 
P = 3 × 10−4,    p  2    = 0.37], with a typical central-parietal distribution 
(Fig. 5A). The cue effect was different between the two groups [Cue 
SOA × Group interaction: F(1,28) = 4.56, P = 0.042,    p  2    = 0.14], al-
though the three-way interaction of Group × Task × Cue SOA did 
not reach significance [F(1,28) = 1.14, P = 0.15,    p  2    = 0.04]. Despite 
the absence of a three-way interaction in the omnibus test, we per-
formed planned contrasts within each task to test the a priori hy-
pothesis that the CD group would show abnormality in the Interval 
task but some degree of modulation in the Rhythm task. As predicted, 
the cue effect was smaller in the CD group on the Interval task 

Fig. 3. Temporal alignment of neural activity depends on the cerebellum in interval-based, but not rhythm-based prediction. (A) Top: Scalp topography of 
delta-band (0.6 to 2 Hz) ITPC in a time window just preceding the short interval target (predefined, 600 to 700 ms after the warning signal). Green dots mark the pre-
defined fronto-central electrode cluster used for the ITPC analysis. Bottom: Frequency distribution of ITPC across groups and tasks. Error margins indicate 95% confidence 
interval (uncorrected). ITPC peak is centered on the delta band. (B) Delta ITPC time-series, locked to the warning signal onset (white square) for the two tasks and groups. 
Target anticipation is associated with ITPC increase from baseline in both tasks and groups. Error margins indicate 1 SEM of the difference from baseline. Yellow bars mark 
the baseline period (left in the left panel) and pretarget window for analysis (right in both panels). *P < 0.05 for difference against baseline. (C) Phase distributions of 
delta-filtered neural activity in the baseline phase (left), and pretarget window for the Interval (middle) and Rhythm (right) tasks. The control group exhibits stronger ITPC 
than the CD group in the Interval task only.
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[Group × Cue SOA interaction, predefined window: F(1,28) = 4.41, 
P = 0.04,    p  2    = 0.14, cluster-based permutation P < 0.05; Fig. 5B]. 
Analyses within each group (Fig. 5, C and D) revealed that the cue 
effect was significant in controls [t(13) = −2.59, P = 0.022, d = 0.69, 
cluster P < 0.05], but not in the CD group [t(15) = −0.08, P = 0.94, 
d = 0.02, BF10 = 0.26, moderate evidence for the null hypothesis, strongest 
cluster P > 0.5].

In contrast, in the Rhythm task, the magnitude of the cue effect 
did not differ between the two groups [F(1,28) = 0.98, P = 0.33,    p  2    = 
0.03; strongest cluster P > 0.5; Fig. 5E]. Analyses within each group 
(Fig. 5, F and G) revealed a cue effect in controls [t(13) = −3.35, 
P = 0.01, d = 0.89; cluster P < 0.05; Task × Cue SOA interaction: 
F(1,13) = 0.01, P = 0.93,    p  2    < 0.01, strongest cluster P > 0.5]. This 
was also observed in the CD group [t(15) = −2.39, P = 0.03, d = 0.6; 
cluster P < 0.05], and the effect was stronger in the Rhythm task 
compared to the Interval task in the cluster-based analysis (P < 0.05), 
but not the predefined window [F(1,15) = 1.88, P = 0.19,    p  2    = 0.11]. 
Thus, the CD group was impaired in timed suppression of beta-band 
activity in interval-based predictions, but no such impairment was 
observed for rhythm-based predictions.

CD results in reduced target-evoked P3 response in  
interval-based but not rhythm-based prediction
We next turned to a neural signature of target processing, focusing 
on the P3, a parietal-maximum positive polarity event-related poten-
tial (ERP) associated with stimulus evaluation and response selection 
(52, 53). The P3 is typically enhanced when a temporal prediction is 
confirmed relative to when a stimulus occurs at an unexpected time 
(8, 54). For this measure, we analyzed activity in a parietal electrode 
cluster, in a predefined time window (Fig. 6A), as well as with a 
cluster-based permutation test.

Across groups and tasks, the P3 response was enhanced on valid, 
relative to invalid trials [mixed ANOVA: F(1,28) = 35.9, P = 2 × 10−6, 
   p  2    = 0.56; Fig. 6A], and the magnitude of this effect differed for the 
two tasks [Cue Validity × Task interaction: F(1,28) = 8.38, P = 0.007, 
   p  2    = 0.23]. The Group × Task × Cue Validity three-way interaction 
was not significant [F(1,28) = 0.97, P = 0.17,    p  2    = 0.04]. We used our 
planned contrasts to test, within each task, our a priori hypothesis 
regarding abnormality in the CD group. In the Interval task, the 
P3 enhancement was smaller in the CD group in the Interval task 
[Group × Validity interaction: F(1,28) = 5.66, P = 0.024,    p  2    = 0.17; 
Fig. 6B]. Analyses within each group revealed that the control group 
displayed a significant P3 enhancement [predefined window: t(13) = 
3.43, P = 0.005, d = 0.92; cluster P < 0.05], but the CD group did not 
[t(15) = 1.88, P = 0.08, d = 0.47; cluster P > 0.05].

In contrast, in the Rhythm task, there was no significant difference 
in the magnitude of P3 enhancement between groups [F(1,28) = 0.41, 
P = 0.53,    p  2    = 0.01; Fig. 6C]. Analyses within group revealed P3 
enhancement in controls [t(13) = 4.2, P = 0.001, d = 1.12; cluster 
P < 0.05] and no difference in the size of this effect between tasks 
[Task × Cue Validity interaction: F(1,13) = 1.36, P = 0.26,    p  2    = 0.09]. 
The CD group also showed P3 enhancement [t(15) = 3.68, P = 0.002, 
d = 0.92, cluster P < 0.05], with the effect larger in the Rhythm task 
[F(1,15) = 10.41, P = 0.006,    p  2    = 0.41].

Relating anticipatory neural dynamics to behavior
We took a two-stage approach to look at the relationship between 
the anticipatory neural dynamics and behavioral performance. As an 
initial stage, we asked whether trial-to-trial variability in CNV and 
beta-band predicts RT, regardless of the temporal cue. To analyze 
this question, we extracted single-trial CNV amplitude and beta-band 
amplitude (the other measures cannot be obtained from single-trial 

Fig. 4. Consistency of ramping activity can yield low-frequency ITPC in response to aperiodic events. (A) Modeling ITPC dependence on temporal variability of 
ramping activity. Left: Simulated ramping activity elicited following the warning signal (white square), with return to baseline after target onset (green square), for a set 
of trials with no variability in slope and low variability in onset latency. Middle: Same simulated trials, band-pass–filtered to the delta range (0.6 to 2 Hz). Right: Circular 
distribution of phase angles just before target time in the simulated trial set. (B) Frequency distribution of ITPC increase relative to baseline (horizontal dashed line) pre-
dicted by the ramping model. The model replicates the frequency distribution in the data (compare with Fig. 3A). (C) Predicted ITPC levels in simulated trial sets as a 
function of the inter-trial variability in ramping onset latency and in ramping slope. ITPC depends on the magnitude of variability in ramping onset latency. (D) Frequency 
distribution of ITPC increase from baseline. Left: Predictions of ramping model, as a function of the inter-trial variability in ramping onset latency. Right: EEG data from the 
Interval task, using the same time window as in (A). ITPC reduction is observed in the delta range, in line with the model prediction. Error margins indicate 95% confidence 
interval (uncorrected). (E) Between-participant correlation between ITPC and the difference of the CNV latency between the short and long cue SOAs. Purple, controls; 
green, patients with CD.
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data). Both neural signatures predicted single-trial RT (LME regres-
sion controlling for group, task, and cue SOA variability): Faster RTs 
were associated with larger CNV amplitude [i.e., more negative rel-
ative to baseline, 2(1) = 10.83, P = 0.001], as well as with stronger 
beta-band suppression [i.e., lower amplitude relative to baseline, 
2(1) = 5.49, P = 0.019] (55–57). However, no significant correlation 
was found between single-trial variability in these two neural mea-
sures [2(1) = 0.03, P = 0.86, BF10 = 0.024, strong evidence in favor 
of the null hypothesis].

Having confirmed that these measures are predictive of behavior, 
we next turned to a between-subject analysis, looking at the rela-
tionship between the impact of temporal anticipation on behavioral 
performance and anticipatory neural dynamics. To quantify the for-

mer, we used the RT validity effect. To quantify the latter, we used 
the cue effect, the difference between the short and long cue SOA 
conditions for the CNV amplitude, CNV latency, CNV slope, and 
beta-band amplitude. For ITPC, we took the magnitude of increase 
from baseline, collapsing across the cue SOA conditions. An LME 
regression model was used to control for group and task differences 
(fig. S5).

For the CNV amplitude, the size of the cue effect was not signifi-
cantly correlated with the validity effect [2(1) = 1.84, P = 0.17]. 
However, when we used the parameters from the CNV model, the 
cue effect on both CNV latency and slope was positively correlated 
with the validity effect [latency: 2(1) = 6.59, P = 0.01; slope: 
2(1) = 3.96, P = 0.046]. The size of the cue effect was also correlated 

Fig. 5. Timed suppression of beta-band activity depends on the cerebellum in interval-based but not rhythm-based prediction. (A) Scalp topography of beta-band 
(14 to 26 Hz) amplitude in a time window just preceding the short interval target (500 to 700 ms after the warning signal). Green dots mark the predefined central-parietal 
electrode cluster used for the beta-band analyses. (B) Time-frequency amplitude representations in the Interval task for the control (top) and CD groups (bottom), refer-
enced to a prewarning signal baseline period. Left: short cue SOA, target omitted. Right: long cue SOA. Vertical dashed line indicates warning signal onset. Both groups 
show amplitude decrease in a broad frequency range. (C) Beta amplitude (14 to 26 Hz) dynamics in the Interval task for the control (top) and CD groups (bottom). Around 
the short SOA target time, beta amplitude is decreased following short cue SOA in the control group, but not in the CD group. Error margins indicate 1 SEM of the differ-
ence between cue SOAs. Yellow bars mark the time window for analysis. (D) Time-frequency representations of the amplitude difference between expecting the target 
at short and long SOAs. A significant cluster in the beta range is only found for the controls (outlined in white, P < 0.05). The vertical dashed line indicates warning signal 
onset. (E to G) Same as (B) to (D) for the Rhythm task. Both groups show amplitude decrease in the beta range following short relative to long SOA cues.
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with the validity effect for beta-band activity [2(1) = 5, P = 0.025], 
such that a larger cue effect was associated with a larger validity effect, 
but not with the magnitude of ITPC increase [2(1) = 0.17, P = 0.68].

When looking at the correlation between the physiological sig-
natures, the cue effects for the slope and latency parameters were 
correlated, with smaller latency difference associated with steeper 
slopes after short cues [2(1) = 116.83, P = 3 × 10−16]. The cue effect 
on beta-band amplitude was not correlated with the adjustments of 
CNV latency, CNV slope, or raw CNV amplitude (all P’s > 0.05). 
ITPC was correlated with the CNV latency (see above), but not with 
the other EEG measures (P’s > 0.05).

Overall, several signatures of anticipatory neural dynamics were 
correlated with behavior, manifest in both single-trial and indi-
vidual difference analyses. Other than the correlation between ITPC 
and CNV latency, we did not observe correlations between the 
physiological signatures.

DISCUSSION
Our results reveal a critical role for the cerebellum in the control of 
the neural dynamics associated with temporal prediction in an atten-
tional orienting task (1, 2). When temporal predictions were based 
on an interval-based representation, CD impaired several EEG 
signatures of temporal anticipation, including the CNV, beta-band 
activity, and phase locking of low-frequency activity. When the ex-
pected interval was cued using a periodic stream of stimuli, these 
same neural signatures were preserved. Echoing this dissociation, 
the CD group also showed diminished behavioral facilitation as well 
as an attenuation of the target-evoked P3 response to valid targets in 
interval-based prediction, but a normal response in rhythm-based 
prediction. Going beyond the group differences, we also found that 
the modulation of the physiological measures predicted the behav-
ioral benefit from temporal cues, corroborating the involvement of 
these neural patterns in temporal attention. Together, these results 
presented here establish a causal role of the cerebellum in the adjust-
ment of anticipatory neural dynamics associated with interval-based 
temporal prediction. Moreover, the dissociations between interval- 
and rhythm-based predictions indicate that these neural adjustments 
are not unique to periodic or aperiodic contexts, but can be driven 
by distinct mechanisms in different contexts.

The starting premise for this study is that temporal anticipation 
entails adjustment of dynamic activity across a cortico-striatal net-
work (3, 7, 9, 11, 19, 20, 58). Our primary goal was to identify how 
the cerebellum influences cortico-striatal dynamics by observing how 
CD affects EEG-based signatures of temporal anticipation (see Fig. 1A). 
We observed CNV buildup, beta suppression, and delta ITPC in-
crease in the CD group in response to both types of cues, evidence 
at odds with the hypothesis that the cerebellum is essential in the 
generation of these anticipatory signals. However, in the Interval 
task, the CD group showed no effect of cue SOA on the CNV or 
beta-band activity and reduced delta ITPC. Thus, the results are con-
sistent with the cerebellar-dependent adjustment model: Integrity of 
this subcortical structure is required to modulate anticipatory neural 
dynamics as a function of the expected interval when the prediction 
relies on an interval representation.

It is important to emphasize that we do not claim that the EEG signals 
described here directly reflect cerebellar activity. As noted above, evi-
dence from multiple methodologies indicates that these signals reflect 
activity in cortico-striatal networks. Furthermore, recent work suggests 
that EEG recordings only capture high-frequency cerebellar activity 
(>75 Hz) (59). Thus, EEG abnormalities in the CD group presumably 
reflect the downstream consequences of altered or absent cerebellar input.

In terms of functional interpretation, the CNV and beta activity 
have been associated with different processing stages. The CNV is 
observed on both motor and nonmotor tasks (60–62). Consequently, 
it has been interpreted as reflecting an increase in excitability in prepa-
ration for an upcoming event, independent of the response to that 
event (62, 63). In contrast, suppression of beta-band activity over senso-
rimotor regions is observed during motor execution and anticipation 
of movement cues (64, 65), suggesting that it reflects increased motor 
readiness (66, 67). Consistent with the assumption that the CNV and 
beta-band activity reflect nonoverlapping functional stages, we did 
not observe a correlation between the two physiological measures, in 
both the single-trial and individual differences analyses. Our results 
underscore that when temporal predictions rely on interval repre-
sentation, the cerebellum is critical for multiple functional compo-
nents of temporal anticipation.

Fig. 6. P3 enhancement depends on the cerebellum in interval-based but not 
rhythm-based prediction. (A) ERPs time-locked to target onset (green square) on 
valid (dark) and invalid (light) trials, averaged across groups and tasks. The P3 re-
sponse is enhanced on valid trials. Scalp distribution depicted for a time window 
surrounding the P3 peak. Yellow bars on the waveform plots mark the time window 
used to plot the scalp distributions and for subsequent analyses (275 to 325 ms 
after the target). Green dots mark the predefined parietal electrode cluster used for 
the P3 analysis. (B) P3 in the Interval task for the two groups in valid trials (dark color) 
or invalid trials (light color). P3 enhancement on valid trials is only observed in the 
control group (top) but not in the CD group (bottom). Error margins indicate 1 SEM 
of the difference between expected SOAs. Yellow background indicates the pre-
defined window for analysis following target onset. Horizontal bars indicate clusters 
of consecutive time points with significant difference between conditions. (C) Same 
as (B) for the Rhythm task. P3 enhancement on valid trials is observed in both groups.
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The notable dissociation between the Interval and Rhythm tasks 
has several important implications. Methodologically, it suggests that 
the CD group’s EEG abnormalities in the Interval task are unlikely 
to reflect inferior data quality that might be related to degenerative 
processes. Theoretically, the dissociation further corroborates the 
functional separation between interval-based and rhythm-based 
prediction (28) and specifies an important boundary constraint on 
cerebellar contributions to prediction and timing [but see (68, 69)]. 
Moreover, it indicates a separation between processes that are in-
volved in the generation of anticipatory neural patterns and pro-
cesses that modulate these signals in a context-specific manner. 
Specifically, the present results provide evidence that modulation of 
the CNV, beta-band activity, ITPC, and P3 in periodic streams does 
not reflect a single mechanism operating in both contexts. Rather, 
these physiological signatures reflect shared downstream processes 
that are temporally adjusted based on context-specific input such 
as cerebellar-dependent interval representations. We note that the 
three-way interactions were not significant for beta and the P3; 
however, in both cases, the CD group remained insensitive to the 
duration of the cue in the Interval task.

The one exception for this context specificity was that the CD 
group failed to show an SOA-dependent adjustment in the latency 
of ramping activity in both the Interval and Rhythm tasks. These 
results imply that the cerebellum is critical for modulating the onset 
timing of neural preparation independent of context. Consistent 
with this idea, neural recordings in NHPs reveal that, when the delay 
before a cued movement is varied, ramping activity in the cerebellum 
changes in onset latency but not slope. The reverse is observed in the 
striatum where the slope varies, but not the latency (37, 38). It may 
be that when the ability to control latency is compromised as in the 
CD group, some degree of compensation is possible by adjusting the 
slope of the ramping activity if the input engages striatal computa-
tions associated with rhythmic prediction (28).

Unlike the correlational nature of most neuroimaging work, neu-
ropsychological studies can provide an opportunity to make causal 
inferences, asking how damage to a particular structure affects be-
havior, and in the current study, electrophysiological correlates of 
that behavior. We recognize that there are limitations in making 
claims about causality, especially when the evidence is based on a 
single dissociation. For example, it is possible that the Rhythm task 
is less demanding than the Interval task. However, our control 
group, and two previous studies (6, 28), showed similar behavioral 
and neural adjustments for interval- and rhythm-based prediction. 
Moreover, we had, a priori, anticipated the observed dissociation: 
The interval-specific hypothesis arose from our previous behavioral 
work in which we observed a double dissociation, such that individ-
uals with Parkinson’s disease were selectively impaired in exploiting 
rhythmic temporal cues (28). Although we have chosen to focus on 
the cerebellum in this study, previous work from other laboratories 
has shown that PD is associated with impairments in CNV modula-
tion and beta-band attenuation based on rhythm-based predictions 
(70–72); future work should examine these measures in response to 
interval cues. At present, the dissociation within the CD group points 
to an asymmetric role of the cerebellum in these two modes of pre-
diction and implies that the neural signatures of predictions do not 
rely on the cerebellum across contexts.

Whether temporal prediction relies on oscillatory entrainment 
is controversial, as is the interpretation of ITPC as a measure of 
rhythm-specific mechanisms such as entrainment (42–46). Two 

results in the current study are relevant to this debate. First, the find-
ing that the CD and control groups showed a similar change in ITPC 
in the Rhythm task argues against the idea that ITPC in rhythmic 
streams arises from an interval-based mechanism; indeed, ruling out 
this explanation of ITPC provides indirect support for an entrain-
ment account of rhythm-based prediction. Second, the attenuation 
of ITPC in the CD group in the Interval task indicates that an in-
crease in ITPC need not require a rhythm-based mechanism but, 
rather, can result from an interval-based prediction. Thus, we pro-
pose that an increase in ITPC reflects the operation of different 
mechanisms when predictions are based on rhythmic streams or 
an interval-based representation, with the latter depending on the 
cerebellum. As shown by the modeling work, the decrease in ITPC 
in the Interval task for the CD group can be accounted for by assum-
ing an increase in variability of the onset latencies of nonoscillatory 
ramping activity. Moreover, across participants, the magnitude of 
ITPC correlated with the cue effect in latency adjustment of the 
CNV, pointing to a possible shared computation related to latency 
control. We note that the fact that ITPC can reflect ramping activity 
in isolated interval contexts does not reject the possibility that it re-
flects oscillatory entrainment in rhythmic streams. Strong evidence 
for involvement of oscillatory mechanisms would require observing 
oscillatory patterns that cannot be explained by interval-based pre-
diction, such as reverberation after stream termination (6, 73, 74).

Our results speak against a generalized cerebellar role in atten-
tional anticipation, motor preparation, prediction, or rapid neural 
coordination (38, 75, 76). Instead, cerebellar computation appears 
to be specific to prediction in an interval-based context. Similar 
cerebellar selectivity to interval-based timing is also observed in other 
timing domains. In timed movement, CD impairs discrete tapping 
but not circle drawing, where the latter might be achieved by trans-
forming the temporal goal into a velocity-based signal (33). In ex-
plicit timing judgments, CD impairs interval discrimination but not 
beat identification (29, 31). Similar dissociations between isolated 
interval timing and more continuous forms of timing have been re-
ported in neuroimaging studies (30, 34).

Computationally, it has been proposed that the cerebellum is 
critical for timing isolated intervals that are defined by salient events 
(“event timing”), but not when temporal representation is inherent 
to the ongoing dynamic context (“emergent timing”) (77). Our re-
sults underscore that this constraint is not limited to tasks involving 
explicit temporal representation but also applies to temporal antic-
ipation tasks in which timing is implicit. The current results indicate 
that the cerebellum controls interval-based temporal predictions by 
adjusting the latency of anticipatory processes. When intact, this 
cerebellar-dependent adjustment process would support more cost- 
effective resource allocation, allowing an appropriately tuned neural 
state at the expected time.

This hypothesis makes explicit that the neural circuitry underlying 
temporal prediction entails multiple levels of information process-
ing. Adjustments of the CNV, beta activity, and delta ITPC reflect 
processes related to the control and implementation of attentional 
and motor preparation (1), independent of context. However, to be 
optimized, these signals require modulatory inputs; in an interval 
context, the cerebellum provides the context-specific representations 
of time (32). In other contexts, such as rhythmic streams, the repre-
sentation of time, as well as manner in which neural dynamics for 
temporal anticipation are modulated, might rely on other structures 
such as the striatum (28, 78). Consistent with this hypothesis, 
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temporal adjustment of the CNV and beta activity in these contexts 
is not impaired by cerebellar dysfunction, but by striatal dysfunc-
tion (71, 72).

To conclude, our results indicate that the neural dynamics of 
attentional anticipation in the time domain critically relies on the 
cerebellum in a context-specific manner, one in which prediction 
arises from an interval-based representation. The findings not only 
advance our understanding of the functional domain of the cerebellum 
in timing but also necessitate updating our understanding of neural 
signatures of temporal prediction. While these signals may originate 
in extracerebellar circuits, the ability to fine-tune the timing of these 
neural dynamics is dependent on cerebellar representations in the 
absence of a periodic context. When coupled with previous work on 
temporal judgment, reproduction, and sensorimotor learning 
(79–81), we begin to have a coherent picture of the unique role of 
the cerebellum in temporal attention.

MATERIALS AND METHODS
Participants
Eighteen patients with CD and 16 neurotypical control individuals 
were recruited for the study. The data from two individuals from 
each group were discarded because of excessive noise in the EEG 
recordings or an inability to perform the task, leading to a final sample 
size of 16 individuals with CD and 14 controls. The study was 
approved by the Institutional Review Board at the University of 
California, Berkeley, and all of the participants provided informed 
consent. They were financially compensated for their participation.

Participants in the CD group (10 females, 15 right-handed, mean 
age = 56.7 years, SD = 11.4) had been diagnosed with spinocerebellar 
ataxia, a slowly progressive adult-onset degenerative disorder in 
which the primary pathology involves atrophy of cells within the 
cerebellum. We did not test patients who presented symptoms of 
multisystem atrophy. Eleven individuals in the CD group had a spe-
cific genetic subtype (SCA1 = 1, SCA3 = 5, SCA5 = 1, SCA6 = 2, 
SCA8 = 1, and SCA10 = 1), and the other five individuals had CD of 
unknown/idiopathic etiology. All of the participants with CD 
completed a medical history interview to verify the absence of other 
neurological conditions and were evaluated at the time of testing 
with the Scale for the Assessment and Rating of Ataxia (SARA) (82). 
The mean SARA score was 11.8 (range, 3.5 to 25.5; SD = 6.6). Control 
participants (8 females, 13 right-handed, mean age = 60.4, SD = 9.2) 
were recruited from the same age range as the CD group and, based 
on self-reports, did not have a history of neurological or psychiatric 
disorders. The CD and control groups did not differ significantly in 
age (P = 0.34).

All participants were prescreened for normal or corrected-to- 
normal vision, intact color vision, and no professional musical train-
ing or recent amateur participation in musical activities (e.g., playing 
a musical instrument or singing in a choir). All of the participants 
completed the Montreal Cognitive Assessment (MoCA) as a simple 
assessment of overall cognitive competence. Although we did not 
select participants to provide a match on this measure, there was no 
significant group difference (CD: mean = 27.6, Control: mean = 28.3, 
P = 0.18).

Procedure
Upon arrival, all participants provided consent and demographic 
information and completed the MoCA. Participants in the CD group 

also provided their clinical history (if not on file from a visit within 
the past year) and were evaluated with the SARA.

The experiment was conducted in a quiet, dimly lit room, with a 
laptop computer placed on a table in front of the participant. The 
stimuli (colored squares, 5 × 5 cm, 5.5°) were presented at the center 
of a 15-inch laptop monitor on gray background (viewing distance ≈ 
50 cm). Stimulus presentation and response acquisition were handled 
using Psychophysics toolbox (83) for MATLAB (MathWorks).

Each trial began with the temporal cuing phase, consisting of the 
serial presentation of two or three red squares (stimulus duration = 
100 ms). There were two types of cues, tested in separate blocks. In 
the Interval task, the cue consisted of two red squares, each presented 
for 100 ms, with an SOA of either 700 ms (short cue) or 1200 ms 
(long cue). In the Rhythm task, the cue consisted of three red squares, 
presented periodically with an SOA of 700 ms (short cue, equivalent 
to 1.43 Hz) or 1200 ms (long cue, 0.83 Hz). The last red square was 
followed by the presentation of a white square, the warning signal, 
indicating to the participant that the subsequent stimulus would be 
the target. For the Rhythm task, the interval between the last red 
square and warning signal was set to the same duration as the cue 
SOA for that trial. Thus, the warning signal fell on the “beat” estab-
lished by the temporal cues. In contrast, for the Interval task, the 
interval between the last red square and warning signal was randomly 
set on each trial to be either 1.5 or 2.5 times the duration of the SOA on 
that trial (short cue SOA: 1050/1750 ms; long cue SOA: 1800/3000 ms). 
This strongly reduced any periodicity in the stimulus train and thus 
eliminated the use of a rhythmic strategy since the warning signal 
occurred at 180° phase relative to a beat that, in theory, could have 
been created by the two red squares (6). We favored this type of 
cuing over purely symbolic cuing (8, 9) to minimize the need to learn 
the target intervals across trials.

Starting with the onset of the warning signal, the trial events were 
identical for the two tasks. After a short delay, the target, a green 
square, was presented, and the participant was instructed to make a 
speeded button press using their right index finger upon detection 
of the target. The interval between the warning signal and target was 
either the same SOA as defined by the temporal cue (valid trial) or 
the noncued SOA (invalid trials). The cue was valid on 56.25% of 
the trials and invalid on 18.75% of the trials; this 3:1 ratio was selected 
to incentivize the participant to attend to the temporal cues to facil-
itate performance. On the remaining 25% of the trials, no target was 
presented. These catch trials were included to discourage partici-
pants from making anticipatory responses (10). Participants received 
feedback (error message on the monitor) if they responded prema-
turely, if they responded on a catch trial, or if they did not respond 
within 3 s of target onset.

Participants preformed four blocks of each task, each consist-
ing of 32 trials, in alternating order (eight blocks total, first block 
counterbalanced across participants). Within each block, the dura-
tion of the temporal cue was randomly determined with the con-
straint that each cue occurred on 50% of the trials for all conditions 
(valid, invalid, catch). Short breaks were provided between each 
block. Before the first block for each task, the experimenter demon-
strated the trial sequence and then conducted short blocks of practice 
trials (n = 8 trials), repeating the practice block until the participant 
could describe how the cues were predictive of the onset time of the 
target. For subsequent blocks, the participant first completed two 
practice trials as a reminder of the format for the temporal cues in 
the forthcoming block.
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EEG recording and preprocessing
EEG was recorded continuously from 64 preamplified Ag/AgCl elec-
trodes, using an Active 2 system (BioSemi, The Netherlands). The 
electrodes were mounted on an elastic cap according to the extended 
10-20 system. Additional electrodes were placed on the outer canthi 
of the right and left eyes, above and below the center of the right eye 
to track electro-ocular activity, and on the left and right mastoids 
and near the tip of the nose to be used as reference electrodes. The 
EEG signal was sampled at a rate of 1024 Hz (24 bits/channel), with 
an online anti-aliasing 204-Hz low-pass filter.

EEG preprocessing was conducted in MATLAB using the FieldTrip 
toolbox and custom-written scripts. We used the following analysis 
pipeline: (i) referencing to average of right and left mastoid elec-
trodes; (ii) high-pass filtering using a zero-shift Butterworth filter 
with a cutoff of 0.1 Hz (24 dB/octave); (iii) correction of ocular arti-
facts using independent component analysis (84) based on typical 
scalp topography and time course; (iv) elimination of epochs that 
contained artifacts that were noncognitive in origin (defined as ab-
solute activity larger than 100 V or a change of more than 100 V 
in a 200-ms interval).

Behavioral data analysis
Trials were discarded if a response was detected before target onset 
or if the RT was shorter than 100 ms or longer than 3000 ms (2.2% 
of trials, no difference between groups or tasks). From the remain-
ing trials, we discarded those with RT of more than 3 SDs above or 
below the mean RT, calculated separately for each of the conditions. 
Only 0.7% of all trials were rejected on this criterion, with no differ-
ence between groups or tasks.

We first conducted an omnibus mixed ANOVA with factors 
Group (CD/Control), Task (Interval/Rhythm), Target SOA (Short/
Long), and Cue Validity (Valid/Invalid) to assess the validity effect 
(faster responses for valid versus invalid trials) across groups and 
tasks. The three-way interaction in the omnibus test also sheds light 
on how the validity effect varies between the two groups and two 
tasks. We expected that the CD group would show behavioral im-
pairments in the Interval task and, as such, designed a series of analyses 
based on this prediction. To compare the validity effect between 
groups within each task, we conducted planned contrasts using a 
mixed ANOVA with factors Group, Cue Validity, and Target SOA. 
To assess the validity effect within each task and group, we conducted 
planned contrasts using a repeated-measures ANOVA with factors 
Cue Validity and Target SOA. To assess context specificity within 
each group, that is, compare the validity effect between the two tasks, 
we used a repeated-measures ANOVA with factors Task, Target SOA, 
and Cue Validity. Here, and in all subsequent analyses, effect sizes 
were estimated using Cohen’s d and partial eta-squared (   p  2   ). For com-
parisons in which we predicted no difference between conditions, 
evidence in favor of this null hypothesis was tested by calculating the 
Bayes factor in JASP (JASP Team).

ERP analysis
All EEG analyses were conducted in MATLAB using custom-written 
scripts and the CircStat toolbox (85). Analysis of anticipatory ERP 
components focused on the CNV, a negative polarity potential arising 
in the interval between the warning signal and an expected target, 
which typically peaks just before the anticipated event (6–8). For the 
CNV analysis, continuous EEG data were segmented into epochs 
extending from 200 ms before to 700 ms after warning signal stimuli, 

and these were averaged separately for each participant, task, and 
expected SOA. The 100-ms epoch just before the warning signal was 
used as the baseline. Given that the early target would occur 700 ms 
after the warning signal, we predicted that the CNV would have a 
larger amplitude (i.e., be more negative) following the short temporal 
cue, relative to the long temporal cue.

Analysis of a target-evoked ERP focused on the P3 response, 
whose amplitude is typically enhanced following valid compared to 
invalid temporal cues (8, 54). Note that while temporal prediction 
was also found to affect early sensory EEG responses, these effects 
are only observed in demanding perceptual tasks (61), but are typi-
cally absent in supra-threshold detection tasks such as that used here. 
For the P3 analysis, segments extending from 200 ms before to 700 ms 
after target onset were averaged separately for each participant, task, 
and cue validity, with a period of 100 ms before the target used as 
baseline. The P3 analysis was restricted to short SOA targets, because 
of well-documented baseline contamination in invalidly cued long 
SOA targets by CNV resolution following an omitted short SOA 
target (6, 7).

The CNV and P3 were analyzed in predefined fronto-central 
(Fz, FC1, FCz, FC2, Cz) and parietal (P1, Pz, P2) electrode clusters, 
respectively (6–8). Electrode selections were validated by inspecting 
the data across groups and tasks (Figs. 2A and 5A). To compare the 
CNV and P3 amplitude between conditions, the amplitude was 
averaged for each participant across a predefined time window (CNV, 
600 to 700 ms after the warning signal, just before the short SOA 
target; P3, 275 to 325 ms after the target, around the expected peak 
latency based on the literature and an informal assessment of our 
data set across conditions).

For each of these neural measures, we first conducted an omnibus 
mixed ANOVA with factors Group (CD/Control), Task (Interval/
Rhythm), and Cue SOA (Short/Long), with the three-way interaction 
shedding light on how the measures vary between the two groups 
and two tasks. Given the expected behavioral impairment in the CD 
group on the Interval task, we designed a series of analyses based on 
the prediction that this impairment would be associated with selective 
abnormalities in some or all of the neural signatures of temporal 
anticipation. Within each task, we conducted planned contrasts 
using a mixed ANOVA with factors Group and Cue SOA to 
compare the modulation of each ERP by the cue duration be-
tween groups. Within each task and group, we conducted planned 
contrasts to test the effect of cue SOA on the CNV and P3 ampli-
tudes, using paired t tests. To assess context specificity within each 
group, we used a repeated-measures ANOVA with factors Task and 
Cue SOA.

We also used a cluster-based permutation test to evaluate the 
temporal extent of the difference between conditions without restric-
tion to a predefined window (48) (10,000 iterations, shuffling con-
ditions within participants, individual time point threshold: P < 0.05). 
Randomization test P value can vary slightly with repeated applica-
tion of the analysis because of the arbitrary shuffling. As such, here 
and in subsequent permutation analyses, P values are reported as 
lower than a significance threshold.

To quantify how the CNV was affected by CD in each task, we fit 
the CNV waveform observed between the warning signal and the 
time of the short SOA target (700 ms) with a two-parameter model 
of ramping activity (Fig. 2D). The model approximates a climbing 
neuronal activity process (86, 87), assumed to have linear ramping 
(slope, S) with a variable onset time (T) as follows
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   Amp(t ) =  {    0                if 0 < t ≤ T                    S * (t − T)   if T < t ≤ 700     

This model was fit to the data of each group, task, and cue SOA 
condition using the “fminsearch” function in MATLAB (Nelder–
Mead simplex optimization) with several initial values to minimize 
effects of local minima, covering a biologically plausible range of 
parameters (T = 0 to 700 ms, S = 0 to −350 V/s). We averaged across 
participants in each group given that the high levels of noise in 
single-subject data would lead to unstable fits.

To confirm that the extracted model parameters capture vari-
ability in the measure of raw CNV amplitude, we examined whether 
individual differences in the cue effect on the two parameters (e.g., 
latency difference between short and long cue SOA conditions) pre-
dict individual differences in the cue effect on CNV amplitude. As 
the model was only fit to group-averaged waveforms, we used a 
jackknifing procedure (88) to obtain single-subject approximations 
of the cue effect on the latency and slope parameters. An LME re-
gression model was then used to predict the size of the cue effect on 
CNV amplitude from the cue effect on the two model parameters 
simultaneously (because of the high correlation between them, see 
Results), controlling for group and task differences. This analysis 
revealed a joint effect of the two parameters [2(2) = 8.07, P = 0.018], 
confirming that the model provides a reasonable account of how 
temporal anticipation influences the CNV.

To compare the model parameters between conditions, we used 
a permutation-based approach for each parameter. For each effect 
of interest, we estimated the difference between conditions observed 
in the true unshuffled data. We compared this value to a null dis-
tribution, created by shuffling the appropriate condition labels, 
averaging according to the shuffled labels, fitting the model to 
group-averaged waveforms, and calculating the difference between 
parameters on these shuffled datasets (5000 iterations). The differ-
ence between conditions was considered significant only if it was larger 
than the difference obtained in 95% of the randomized datasets. To 
assess the effect of cue SOA across all conditions (i.e., short versus 
long, termed cue effect), the null distribution was created by shuf-
fling cue SOA labels within each group and task. A similar shuffling 
protocol was used to test the cue effect within each group and task 
(equivalent to simple effect of the Cue SOA factor). To compare the 
cue effect between groups (equivalent to a Group × Cue SOA inter-
action), the null distribution was created by shuffling group labels 
between participants within task. To compare the cue effect between 
tasks (equivalent to a Task × Cue SOA interaction), the null distri-
bution was created by shuffling task labels within participants. Last, 
to compare group difference in cue effect between tasks (equivalent 
to a three-way Task × Group × Cue SOA interaction), the null dis-
tribution was created by shuffling cue SOA and task labels within 
participants and group labels across participants.

Time frequency analysis
For the time frequency analysis, we focused on modulations in the 
delta and beta bands. In the delta band, temporal prediction is asso-
ciated with increased ITPC (51) in anticipation of a target (3, 4, 6), in 
both periodic and aperiodic streams (6, 42, 43). For the ITPC anal-
ysis, we band-pass–filtered the data in the delta-frequency range 
(0.6 to 2 Hz Butterworth filter, 24 dB/octave), extracted the instan-
taneous phase using the Hilbert transform, and calculated the ITPC 
(fig. S2). The 0.6- to 2-Hz frequency range was chosen as it is roughly 

symmetric (logarithmically) around the frequencies that correspond 
to the short and long target intervals (700 ms = 1.43 Hz and 1200 = 
0.83 Hz; ~0.5 octave margins from each side). We used a causal filter 
(instead of a noncausal zero-lag filter) to avoid contamination of 
the anticipatory period by target-evoked activity.

To examine the effect of CD on ITPC modulation by temporal 
prediction, we applied this analysis pipeline to the EEG data from 
the same fronto-central region of interest as used in the CNV anal-
ysis (Fz, FC1, FCz, FC2, Cz). By using the same electrodes, we were 
in a position to examine whether temporal variability across trials is 
related to systematic adjustments observed in the CNV analysis. The 
data were segmented within an epoch extending from 200 ms be-
fore the warning signal until 700 ms after the warning signal, with 
ITPC calculated at each time point, separately for each group, task, 
and cue duration. Given that we did not expect to observe a differ-
ence in this measure between the two temporal cue conditions, we 
averaged the results across this factor. We focused on ITPC levels 
just before the early target by averaging across a predefined window of 
600 to 700 ms after the warning signal. These values were baseline- 
corrected and then compared between groups. For the baseline, ITPC 
values were averaged across the 100-ms epoch just before the onset 
of the warning signal. The prewarning signal period from the Interval 
task was used as baseline for both tasks, given that, in the Rhythm 
task, the warning signal is also temporally predictable. Since ITPC 
values are not normally distributed, we used nonparametric permu-
tation tests, comparing observed ITPC differences to a null distri-
bution of randomized ITPC differences (5000 iterations). We used 
a permutation-based t test comparing all participants against base-
line to test for an ITPC increase. A similar approach was used to test 
for an ITPC increase within each group. To compare ITPC between 
groups within each task, we used a between-subject permutation test 
in which we shuffled group labels. To assess context specificity in 
each group, we used a within-subject nonparametric permutation test 
in which we shuffled task labels. To compare the group difference in 
ITPC between the two tasks, we used a nonparametric permutation- 
based mixed ANOVA (50), with the factors Group and Task.

To examine whether ITPC can reflect temporal consistency of 
nonoscillatory ramping activity, we used a modeling approach, ap-
plying our pipeline to simulated data. We simulated a set of 60 trials 
(matching the approximate number of trials per condition in the 
actual data) using the two-parameter ramping model described above. 
To avoid edge artifacts, we added a stage in which the activity grad-
ually returns to baseline after target onset (6, 7). For each set of sim-
ulated trials, ramping onset latency and slope for each trial were 
chosen randomly from a Gaussian distribution with a specific SD 
(onset latency: mean = 300 ms, SD = 0, 50, 100, 150, or 200 ms; slope: 
mean = −12 V/s, SD = 0, 5, 10, 15, 20 V/s). The range of SDs for 
each parameter were chosen to cover a physiologically relevant scale. 
The lower bounds were set to 0 (no variation) and the higher bounds 
were constrained to minimize the number of simulated trials exceed-
ing the task constraints (latency values up to 700 ms, which is the target 
time in which the CNV ramping is terminated, and slope values that 
would lead to an amplitude of ~−5 V, the observed peak ampli-
tude in the EEG data, after 700 ms). 1/f random noise was added to 
the simulated time series given its presence in EEG recordings. We 
then applied the ITPC pipeline used for the EEG data and extracted 
the ITPC just before target time. To ensure stability, the results for 
each of the 25 combinations of distribution SDs were averaged across 
100 iterations and three amplitude levels of the 1/f noise. To examine 
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whether ITPC depended on the magnitude of inter-trial variability 
in ramping onset latency or slope, we conducted a multiple regres-
sion analysis to predict the resulting ITPC values from these two 
predictors (see also fig. S2).

We also evaluated the model by performing a spectral analysis in 
which the EEG and simulated data were filtered to encompass a 
wider range of frequencies (seed frequency: 0.4 to 8 Hz, 1/6 octave 
steps, 9 to 40 Hz, 1-Hz steps, symmetric 0.5 octave filter width around 
seed frequency, Butterworth filter, 24 dB/octave). For the model, we 
repeated this analysis while varying the SD of the latency parameter, 
which was found in the regression analysis to affect ITPC. For the 
EEG data, this analysis was conducted separately for each group in 
the Interval task, where ITPC reduction was observed in the CD 
group. To test the association between ITPC and cue effects on CNV 
latency, an LME regression model was used to predict individual 
differences in ITPC from the magnitude in latency adjustment by 
the expected interval (using jackknifing, see above).

The amplitude of activity in the beta band decreases before the 
time of an expected event that requires a motor response (7, 15–17). 
Thus, we expected lower beta amplitude just before the time of the 
early target following a short cue compared to following a long cue. 
To test this prediction, segments extending from 1200 ms before to 
2200 ms after the warning signal were subjected to a time-frequency 
decomposition using a complex Morlet wavelet transform (1 to 40 Hz, 
1-Hz steps, ratio between the central frequency and the SD of the 
Gaussian-shaped wavelet in the frequency domain = 8). We dis-
carded the first and last 1000 ms from the analyses to exclude edge 
artifacts. Instantaneous amplitudes were averaged separately across 
trials for each participant, task, and temporal cue for each electrode. 
For the baseline measure of spectral amplitude, we used the 100-ms 
window after the warning signal (6).

Beta-band suppression is observed in central-parietal sites 
(7, 15, 16, 18), but there is no consensus on the appropriate frequency 
range for beta. To select the range for our analyses in an unbiased 
manner, we inspected the time-frequency representations, averaged 
across groups, tasks, and electrodes (fig. S4). From this grand aver-
age waveform, we identified suppression in the frequency range of 
14 to 26 Hz. Examining the scalp distribution of activity in these 
frequencies confirmed a central-parietal focus. Therefore, we ana-
lyzed beta activity in a central-parietal electrode cluster (C3, C1, Cz, 
C2, C4, CP3, CP1, CPz, CP2, CP4, P3, P1, Pz, P2, P4).

To compare the beta amplitude between conditions, the ampli-
tude was averaged for each participant across a predefined time 
window (500 to 700 ms after the warning signal, just before the early 
target time). To avoid contamination from target-evoked activity, 
we only included trials in which target did not appear at the early 
interval (invalid and catch for short cue, valid and catch for long cue). 
We first conducted an omnibus mixed ANOVA with factors Group 
(CD/Control), Task (Interval/Rhythm), and Cue SOA (Short/Long) 
to assess the cue effect across groups and tasks, as well as how it 
differs between them (focusing on the three-way interaction). To 
compare the impact of cue SOA on beta amplitude between groups, 
we conducted planned contrasts using a mixed ANOVA with factors 
Group and Cue SOA. Within each task and group, we conducted 
planned contrasts to compare the beta amplitude between short and 
long cue conditions, using paired t tests. For context specificity, we 
compared the cue effect between tasks within each group using a 
repeated-measures ANOVA with factors Task and Cue SOA. We 
also evaluated the spectro-temporal extent of the difference between 

conditions without commitment to a predefined time or frequency 
window using a two-dimensional cluster-based permutation test (48) 
(10,000 iterations, shuffling conditions within participants, individual 
time point threshold: P < 0.05).

Correlational analyses between EEG and 
behavioral measures
We used a two-stage approach to examine the relationship between 
neural signatures of temporal anticipation and behavioral perfor-
mance. First, we asked whether trial-to-trial variability in the neural 
measures predicted behavior. Here, we examined single-trial CNV 
and beta amplitudes, the two measures that can be obtained for sin-
gle trials, as predictors of RT, and also whether they were correlated, 
using LME regression. To avoid effects from prediction violations 
or foreperiod-related expectations, the single-trial amplitudes and 
RTs were only extracted from trials in which a short target interval 
was validly cued. CNV and beta-band amplitudes were extracted 
using the same time-frequency windows and electrode clusters as in 
the group analyses (just before the short interval target, see above) 
and referenced to the same baseline windows.

Second, in a between-subject analysis, we examined whether the 
magnitude of the cue effect (difference between short and long cue 
SOA conditions) for each neural marker predicted individual dif-
ferences in behavior and whether the different neural markers were 
correlated. Predictors here included raw CNV amplitude, CNV onset 
latency, CNV slope, and beta amplitude. Since ITPC is a measure of 
variability, it should not vary with SOA; thus, we used the mean 
value across the two cue SOAs (as was done for the group analysis). 
We tested the association between each measure and the behavioral 
validity effect, as well as between measures, using LME regressions. 
The use of LME models allowed us to simultaneously use the entire 
dataset while controlling for group and task effects (an analysis 
within each group and task would have considerably less power). In 
both analyses, the final models included fixed effects for group and 
task, as well as random intercepts for participant.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/49/eabb1141/DC1

View/request a protocol for this paper from Bio-protocol.
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