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Abstract: Artificial intelligence (AI) is expected to have a major effect on radiology as it demon-
strated remarkable progress in many clinical tasks, mostly regarding the detection, segmentation,
classification, monitoring, and prediction of diseases. Generative Adversarial Networks have been
proposed as one of the most exciting applications of deep learning in radiology. GANs are a new
approach to deep learning that leverages adversarial learning to tackle a wide array of computer
vision challenges. Brain radiology was one of the first fields where GANs found their application. In
neuroradiology, indeed, GANs open unexplored scenarios, allowing new processes such as image-
to-image and cross-modality synthesis, image reconstruction, image segmentation, image synthesis,
data augmentation, disease progression models, and brain decoding. In this narrative review, we will
provide an introduction to GANs in brain imaging, discussing the clinical potential of GANs, future
clinical applications, as well as pitfalls that radiologists should be aware of.

Keywords: generative adversarial networks; brain imaging; MRI; CT; PET; fMRI

1. Introduction

Artificial intelligence (AI) holds significant promise for radiology as it can help in
simplifying lesion detection, classification, and segmentation, thereby improving the diag-
nostic process [1–3]. In recent years, Deep Learning (DL) has been proposed and studied
in the field of radiology for classification, risk assessment, segmentation tasks, diagnosis,
prognosis, and prediction of response to treatment [4].

In 2014, Ian Goodfellow and colleagues developed an innovative Neural Network
architecture called Generative Adversarial Networks (GANs). In Goodfellow’s words,
“the generative model can be thought of as analogous to a team of counterfeiters, trying
to produce fake currency and use it without detection, while the discriminative model is
analogous to the police, trying to detect the counterfeit currency. Competition in this game
drives both teams to improve their methods until the counterfeits are indistinguishable
from the genuine articles” [5].

GANs will be expected to be used in future clinical AI applications since this technol-
ogy holds a lot of promise for a range of radiological demands [1,6]. Among the many uses
of GANs, image-to-image translation and cross-modality synthesis, image reconstruction,
image segmentation, image synthesis, data augmentation, disease progression models,
and brain decoding are open research fields in radiology. Some of these techniques have
already been found useful for different imaging modalities and diseases. Most of the
studies have focused on brain disorders, mainly due to the brain’s relatively static and
invariable anatomy [7].

J. Imaging 2022, 8, 83. https://doi.org/10.3390/jimaging8040083 https://www.mdpi.com/journal/jimaging

https://doi.org/10.3390/jimaging8040083
https://doi.org/10.3390/jimaging8040083
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com
https://orcid.org/0000-0001-7964-8798
https://orcid.org/0000-0002-6190-6688
https://orcid.org/0000-0002-3376-8740
https://doi.org/10.3390/jimaging8040083
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com/article/10.3390/jimaging8040083?type=check_update&version=1


J. Imaging 2022, 8, 83 2 of 17

In their systematic review, Sorin et al. [1] described the state of the art of GANs’
applications in radiology, analyzing papers published up to September 2019.

Since it represents a very hot topic and research is evolving considerably, in our
literature review, we aimed at giving an updated picture of the role that GANs play in the
field, with a particular focus on neuroradiology.

2. Search Strategy

To perform this narrative review, we selected articles based on our subjective assess-
ment of their relevance to the topic and novelty.

Specifically, we considered as eligible for being included in our review, all the articles
that exhaustively answered the following questions—that we considered as driving points
to deepen the various sections of our article—:

1. What is a GAN?
2. What are the principal applications of GANs in medical imaging?
3. How are GANs employed in brain imaging?
4. Are there any limitations for GAN in this field?

Secondly, we searched on PubMed the following keywords: “GAN,” “Generative ad-
versarial network”, “brain imaging”, “brain radiology”, “neuroradiology” to retrieve all the
papers of our interest. A total of 146 articles were retrieved from this first literature search.

We excluded from our search animals or phantom studies or papers not written in the
English language. Furthermore, we decided to exclude all the articles that did not treat any
of the topics shown below:

• technical explanation of GANs’ structure;
• focus on at least one application of GANs in brain imaging;
• focus on at least one limitation of GANs in medical imaging.

After the subjective screening of all the articles of interest for the aim of our review,
two authors who worked independently included and collected data from a total of forty-
six studies published between 2018 and 2021. No automation tools were used in this
phase. Most of the studies included had a specific focus on a particular application of
GANs in brain imaging, such as brain decoding (4 studies), disease progression modeling
(2 studies), image reconstruction (9 studies), image segmentation (4 studies), image synthe-
sis (7 studies), and image to image translation (18 studies) (Figure 1).

The main characteristics of the studies included in this review are described in Tables 1–6.

Table 1. Articles included in the review focusing on image-to-image translation and cross-
modality synthesis.

Author Year Application Population
(No. of Patients) Imaging Modality ML Model Results

Jin 2019

Image-to-Image
translation and
cross-modality

synthesis

202 patients MRI from CT image MR-GAN
MAE: 19.36
PSNR: 65.35
SSIM: 0.25

Kazemifar 2019

Image-to-Image
translation and
cross-modality

synthesis

66 patients CT from MRI GAN
mean absolute

difference
below 0.5% (0.3 Gy)

Dai 2020

Image-to-Image
translation and
cross-modality

synthesis

274 subjects
(54 patients with

low-grade glioma,
and 220 patients with
high-grade glioma)

MRI

multimodal MR
image synthesis
method unified

generative adversarial
network.

NMAEs for the
generated T1c, T2, Flair:

0.034 ± 0.005,
0.041 ± 0.006,

and 0.041 ± 0.006.
PSNRs:

32.353 ± 2.525 dB,
30.016 ± 2.577 dB, and

29.091 ± 2.795 dB.
SSIMs: 0.974 ± 0.059,

0.969 ± 0.059, and
0.959 ± 0.05.
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Table 1. Cont.

Author Year Application Population
(No. of Patients) Imaging Modality ML Model Results

Hamghalam 2020

Image-to-Image
translation and
cross-modality

synthesis

Various datasets MRI-HTC Cycle-GAN

Dice similarity scores:
0.8%, (whole tumor)

0.6% (tumor core)
0.5% (enhancing

tumor).

Maspero 2020

Image-to-Image
translation and
cross-modality

synthesis

60 pediatric patients SynCT from
T1-weighted MRI cGANs

mean absolute error of
61 ± 14 HU

pass-rate of 99.5 ± 0.8%
and 99.2 ± 1.1%

Sanders 2020

Image-to-Image
translation and
cross-modality

synthesis

109 brain tumor
patients

relative cerebral
blood volume

(rCBV) maps from
computed from
DSC MRI, from

DCE MRI of
brain tumors

cGANs

Pearson correlation
analysis showed strong

correlation (ρ = 0.87,
p < 0.05 and ρ = 0.86,

p < 0.05).

Wang 2020

Image-to-Image
translation and
cross-modality

synthesis

20 patients MRI-PET cycleGANs
PSNR > 24.3
SSIM > 0.817
MSE ≤ 0.036.

Lan 2021

Image-to-Image
translation and
cross-modality

synthesis

265 subjects PET-MRI
3D self- attention
conditional GAN

(SC- GAN)
constructed

NRMSE:0.076 ± 0.017
PSNR: 32.14 ± 1.10
SSIM: 0.962 ± 0.008

Bourbonne 2021

Image-to-Image
translation and
cross-modality

synthesis

184 patients with
brain metastases CT-MRI 2D-GAN(2D U-Net)

mean global gamma
analysis passing rate:

99.7%

Cheng 2021

Image-to-Image
translation and
cross-modality

synthesis

17 adults

Two-dimensional
fMRI images using
two-dimensional

EEG images;

BMT-GAN

MSE: 128.6233
PSNR: 27.0376
SSIM: 0.8627
VIF: 0.3575
IFC: 2.4794

La Rosa 2021

Image-to-Image
translation and
cross-modality

synthesis

12 healthy controls
and 44 patients
diagnosed with

Multiple Sclerosis

MRI (MP2RAGE
uniform images

(UNI) from
MPRAGE)

GAN
PSNR: 31.39 ± 0.96
NRMSE: 0.13 ± 0.01

SSIM: 0.98 ± 0.01

Lin 2021

Image-to-Image
translation and
cross-modality

synthesis

AD 362 subjects;
647 images

CN 308 subjects;
707 images

pMCI 183 subjects;
326 images

sMCI 233 subjects;
396 images

MRI-PET
Reversible Generative
Adversarial Network

(RevGAN)

Synthetic PET:
PSNR: 29.42
SSIM: 0.8176
PSNR: 24.97
SSIM: 0.6746

Liu 2021

Image-to-Image
translation and
cross-modality

synthesis

12 brain cancer
patients

SynCT images from
T1-weighted

postgadolinium MR

GAN model with a
residual network

(ResNet)

Average gamma
passing rates at
1%/1 mm and
2%/2 mm were

99.0 ± 1.5%
and 99.9 ± 0.2%,

Tang 2021

Image-to-Image
translation and
cross-modality

synthesis

37 brain cancer
patients

SynCT from
T1-weighted MRI GAN

Average gamma
passing rates at
3%/3 mm and

2%/2 mm criteria were
99.76% and 97.25%

Uzunova 2021

Image-to-Image
translation and
cross-modality

synthesis

Various datasets
MRI (T1/Flair to T2,

healthy to
pathological)

GAN

T1→ T2
SSIM: 0.911
MAE: 0.017
MSE: 0.003
PSNR: 26.0
Flair→ T2
SSIM: 0.905
MAE: 0.021
MSE: 0.004
PSNR: 24.6

Yang 2021

Image-to-Image
translation and
cross-modality

synthesis

9 subjects

Multimodal
MRI-CT registration

into monomodal
sCT-CT registration

CAE-GAN MAE: 99.32
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Figure 1. Flow diagram of the study search and inclusion process.

Table 2. Articles included in the review focusing on image reconstruction.

Author Year Application Population (No. of
Patients) Imaging Modality ML Model Results

Ouyang 2019 Image
reconstruction 39 participants PET/MRI GAN MAE: 8/80

Song 2020 Image
reconstruction

30 HRRT scans from the
ADNI database.

Validation dataset =
12 subjects

low-resolution PET
and high-resolution

MRI images

Self-supervised SR
(SSSR) GAN Various results

Shaul 2020 Image
reconstruction

490 3D brain MRI of a
healthy human adult;

64 patients from
Longitudinal MS Lesion
Segmentation Challenge
(T1, T2, PD, and FLAIR);
14 DCE-MRI acquisitions
of Stroke and brain tumor

MRI GAN
PSNR: 40.09 ± 3.24
SSIM: 0.98 ± 0.01

MSE: 0.0021 ± 0.036

Zhao 2020 Image
reconstruction 109 patients PET S-CycleGAN Average coincidence:

110 ± 23

Zhang 2021 Image
reconstruction 581 healthy adults MRI

noise-based
super-resolution

network (nESRGAN)
SSIM: 0.09710 ± 0.0022

Sundar 2021 Image
reconstruction 10 healthy adults PET/MRI cGAN AUC: 0.9 ± 0.7%

Zhou 2021 Image
reconstruction

151 patients with
Alzheimer’s Disease MRI GAN Image quality: 9.6%

Lv 2021 Image
reconstruction

17 participants with a
brain tumor MRI PI-GAN SSIM: 0.96 ± 0.01

RMSE: 1.54 ± 0.33

Delannoy 2020
Image

reconstruction and
segmentation

dHCP dataset = 40;
Epirmex dataset = 1500 MRI SegSRGAN Dice 0.050
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Table 3. Articles included in the review focusing on image segmentation.

Author Year Application Population
(No. of Patients)

Imaging
Modality ML Model Results

Liu 2020 Image
segmentation 14 subjects MRI

cycle-consistent
generative
adversarial

network
(CycleGAN)

Dice 75.5%;
ASSD: 1.2

Oh 2020 Image
segmentation 192 subjects 18 F-FDG

PET/CT and MRI GAN AUC-PR:
0.869 ± 0.021

Yuan 2020 Image
segmentation 484 brain tumor scans MRI GAN Dice: 42.35%

Table 4. Articles included in the review focusing on image synthesis.

Author Year Application Population (No. of
Patients)

Imaging
Modality ML Model Results

Kazuhiro 2018 Image synthesis

30 healthy individuals
and 33 patients with

cerebrovascular
accident

MRI DCGAN

45% and 71% were
identified as real

images by
neuroradiologists.

Islam 2020 Image synthesis 479 patients PET DCGAN SSIM 77.48

Kim 2020 Image synthesis

139 patients with
Alzheimer’s Disease

and 347 Normal
Cognitive participants.

PET/CT

Boundary
Equilibrium
Generative
Adversarial

Network (BEGAN)

Accuracy: 94.82;
Sensitivity: 92.11;
Specificity: 97.45;

AUC:0.98

Qingyun 2020 Image synthesis

226 patients
(HGG (high-grade
gliomas): 166, LGG

(low-grade gliomas):
60) as a training set to

train TumorGAN,

MRI (FLAIR, T1,
T1CE) TumorGAN Dice 0.725

Barile 2021 Image synthesis

29 relapsing-remitting
and 19

secondary-progressive
MS patients.

MRI GAN AAE F1 score 81%

Hirte 2021 Image synthesis 2029 patients normal
brain MRI GAN Data similarity 0.0487

Kossen 2021 Image synthesis
121 patients with
Cerebrovascular

disease
MRA

3 GANs:
(1) Deep

convolutional
GAN,

(2) Wasserstein-
GAN with gradient

penalty
(WGAN-GP), and

(3) WGAN-GP with
spectral

normalization
(WGAN-GP-SN).

FID 37.01
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Table 5. Articles included in the review focusing on brain decoding.

Authors Year Application Population
(No. of Patients) Image Modality ML Model Results

Qiao 2020 Brain decoding 1750 training sample
and 120 testing sample fMRI

GAN-based
Bayesian visual
reconstruction

model
(GAN-BVRM)

PSM: 0381 ± 0.082

Ren 2021 Brain decoding Various datasets MRI

Dual-Variational
Autoen-

coder/Generative
Adversarial

Network
(D-Vae/Gan)

Mean identification
accuracy: 87%

Huang 2021 Brain decoding Five volunteers
(3 males and 2 females) fMRI

CAE, LSTM, and
conditional

progressively
growing GAN

(C-PG-GAN) deep

Various results for
each participant

Al-
Tahan 2021 Brain decoding

50 healthy
right-handed
participants

fMRI
Adversarial

Autoencoder (AAE)
framework

MAE 0.49 ± 0.024

Table 6. Articles included in the review focusing on disease progression modeling.

Author Year Application Population
(No. of Patients)

Imaging
Modality ML Model Results

Elazab 2020
Disease

progression
modeling

9 subjects MRI
growth prediction
GAN (GP-GAN)

GP-GAN

Dice: 88.26
Jaccard Index: 78.99

Han 2021
Disease

progression
modeling

408 subjects/
1133 scans/
57,834 slices

MRI

medical anomaly
detection

generative
adversarial

network
(MADGAN)

Cognitive impairment:
AUC: 0.727

AD late stage: AUC 0.894
Brain metastases: AUC 0.921

3. GANs in Brain Imaging
3.1. Generative Adversarial Network: A Brief Overview

GANs have been described as an elegant DL approach to generate artificial data that
are theoretically indistinguishable from real data. They consist of two networks that work
in parallel: a generator G and a discriminator D, which are trained by adversarial learning.

As proposed by Goodfellow, a GAN consists of two antagonistic generative neural
networks—the generator (G) and the discriminator (D)—pitted against each other with a
min-max game mechanism (Figure 2). G creates new data that is then analyzed by D, which
has to determine whether the data received was synthetic—generated by G—or real [5].

When building a GAN, D is trained with a dataset of real images, while G—which
never saw the training dataset—has to produce images that are very similar to the real ones
through the feedback that it receives from D, who “knows” how real images look like.

At the same time, while G creates images, D continuously learns to differentiate
between real and generated (fake) images [3]. This process is repeated over and over,
so both networks continuously improve their performances, with the ultimate goal of
generating images indistinguishable from the real ones.
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Figure 2. Example of the functioning of a GAN. The generator creates synthetic images from random
noise while the discriminator has to differentiate between real and synthetic images. The blue
arrow shows the discriminator’s loss back-propagation, the red arrow shows the generator’s loss
back-propagation.

In this way, the generator will learn to create progressively more realistic images.
In medical imaging, GANs are commonly employed by exploiting either their gener-

ative or discriminative nature. Thanks to the former, a GAN learns how to discover the
essential structure of training datasets and learns to produce new information, proving to
be an essential tool to deal with data scarcity and patient privacy, as they could generate
synthetic material to enrich existing datasets or create new anonymous data ex novo.

With regards to their discriminative nature, a GAN can be employed as a “regularizer”
or “detector” of aberrant images since the discriminator D learned in the training phase
how a normal image is made, and it can recognize all the images that significantly differ
from the ones it already “saw”.

Since 2014, GANs have evolved in their architectural design, leading to the creation of
new models such as Conditional Generative Adversarial Networks (CGAN), Deep Convo-
lutional Generative Adversarial Networks (DCGAN), Wasserstein Generative Adversarial
Networks (WGAN), and many more.

Evaluation of the performance of GANs is still a hot topic, and an optimal numerical
metric to assess the quality of the synthetic images produced by the generator hasn’t
been proposed yet. This is strongly related to the absence of an objective loss during the
generator training.

The evaluation can be done through qualitative or quantitative metrics. It is important
to keep in mind that there is no consensus as to which measure best captures the strengths
and limitations of models and should be used for fair model comparison [8]. The Incep-
tion Score (IS), one of the most widespread metrics, is based on the use of a pretrained
InceptionNet (hence the name) to classify the generated images into different classes. The
score rises if the images are highly classifiable and diverse. The Fretchet Inception Distance
(FID) was introduced by [9] and worked by computing the distance between real and
generated images. The data is embedded into a feature space through a CNN (often an
InceptionNet), and a multivariate Gaussian is used to approximate the embeddings; the
distance is calculated on the mean and covariance. Other metrics are based on the quality
of the image itself: the Structure Similarity Index Measure (SSIM) the Peak Signal-to-Noise
Ratio (PSNR) are common examples. The SSIM and its multi-scale variant (MS-SSIM)
describe the similarity of paired images at the structure level, operating on corresponding
pixels and their neighbors. The PSNR is used to compute the amount of noise between
paired images.
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3.2. Applications of GAN in Brain Imaging

The most important brain imaging techniques include computed tomography (CT),
magnetic resonance imaging (MRI), functional magnetic resonance imaging (fMRI), and
positron emission tomography (PET) [6]. Each of them provides important reference infor-
mation regarding early diagnosis, identification, treatment, and follow-up of the disease.

Radiologists have been applying AI to a wide range of tasks, and, specifically for
brain imaging, DL has mainly been used for the detection, classification, segmentation
of anatomical structures and lesions [10,11]. With the advent of GANs, other scenarios
are opening in this field, resulting in a direct positive impact in patients’ care by, among
others, lowering radiation and contrast dose, shortening examinations’ time, and reducing
costs [12].

In particular, the main applications of GANs in brain imaging are:

• Image-to-image translation and cross-modality synthesis;
• Image reconstruction: Super-resolution and artifact removal;
• Image Segmentation;
• Image Synthesis and data augmentation;
• Disease progression modeling;
• Brain decoding.

3.2.1. Image-To-Image Translation and Cross-Modality Synthesis

One of the most interesting applications of GANs is their ability to translate data be-
tween different techniques, as they can “translate” images across different modalities—for
example, transforming CT to MR or PET images and vice versa (cross-modality syn-
thesis) [13]—or generate new images in the setting of the same modality—for example
transforming images across different MRI sequences from T1-weighted to T2-weighted—
image-to-image translation) [13]. This could bring a significant reduction of acquisition
times or radiation exposure and prevent patients from undergoing multiple examinations.
Furthermore, in this setting, GANs could be particularly useful in cases where there is
limited access to different imaging devices when the patients need to lie still for a long time
and for reducing costs [1].

Moreover, the possibility of having access to multi-modality information could help
doctors make a more accurate diagnosis [14] and ease their work, as collecting data from
the same patient using different imaging techniques is often impractical [15].

Table 1 provides a summary of the papers included in the review, focused on GANs
applications in image-to-image translation and cross-modality synthesis.

Jin et al. [16] used a CycleGAN-like approach, called MR-GAN, to convert CT into MR
images for radiotherapy planning. The authors focused mainly on patients for which MR
was not recommended due to claustrophobia or the presence of cardiac pacemakers, as
well as other scenarios in which only CT scans were available. The authors advocate for
the use of both paired and unpaired data, reaching better results in terms of MAE, SSIM,
and PSNR than when using only one kind. Leveraging unpaired data is crucial in medical
image translation, as acquiring both CT and MR images of a single patient in a short time
span is often infeasible and puts a hard limit on the available data.

Kazemifar et al. [17] used GAN to generate brain CT images from MR images of
patients affected by brain tumors for treatment planning (intensity-modulated proton
therapy), obtaining excellent dosimetric accuracy. Similarly, Maspero et al. [18] included
60 pediatric patients undergoing brain radiotherapy. The authors trained three 2D CGANs
to generate synthetic CT (sCT) from T1-weighted MRI. They were able to obtain accurate
MR-based dose calculations. Liu et al. [19] and Yang et al. [20] used GAN to synthesize CT
images from T1-weighted MRI showing promising results for dosimetric accuracy.

Lan, Toga, and Sepehrband [21] propose a new GAN pipeline that is designed and
optimized for the application of multimodal 3D neuroimaging synthesis. They first ex-
panded the original conditional GAN architecture to 3D space by using 3D (transposed)
convolutions and introduced an array of stabilization techniques to ensure the training
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procedure remained smooth. The performance of the network was evaluated on the data set
from ADNI-3, in which the proposed network was used to predict PET images, fractional
anisotropy, and mean diffusivity maps from multimodal MRI. The prediction error of the
SC-GAN was 18%, 24%, and 29% lower compared to 2D conditional GAN for fractional
anisotropy, PET, and mean diffusivity tasks, respectively.

Recently, since a new class of specialized stand-alone PET scanners has been intro-
duced, there is a need for accurate methods to perform attenuation correction. These new
PET scanners are low-cost, specialized in brain imaging, and have a high spatial resolu-
tion [13]. Attenuation correction (AC) is necessary to estimate radiotracer distribution in
PET [22].

Armanious et al. [13] estimated attenuation maps from non-attenuation corrected
data by using GANs. During their experiment, the generator received a non-attenuation
corrected PET image and synthesized a pseudo-CT image resulting in independently
attenuation-corrected PET data. They showed no regional bias and only minimal average
errors, around ±0% in the attenuation maps, and no differences in image-based diagnoses
in 20 patients with neurological disorders.

Similarly, Gong et al. [23] showed that Cycle-GAN could generate AC compara-
ble performance to standard CNN-based pipelines in their series—32 patients (14 males,
18 females) who underwent 18F-FDG PET/CT and PET/MRI without pathology. The
proposed methods created synthetic CTs for AC computation. Its performance in terms of
the Dice score of the bone region outclassed the ones based on the more conventional Atlas
or Segmentation method.

3.2.2. Image Reconstruction: Super Resolution and Artifact Removal

GANs find another interesting application in the modification of acquired images by
improving both the definition and the quality and reducing artifacts.

With SR techniques, GANs generate high-resolution (HR) from low-resolution (LR)
images. Furthermore, GANs can also remove artifacts in the area under investigation, thus
avoiding an important reduction in image quality, which negatively influences radiologi-
cal interpretation.

Super-resolution techniques, often known as simply super-resolution, allow to increase
the resolution of an image and thus its quality. Traditionally, SR was done through standard
image processing techniques, but recently GANs have shown that they can be a powerful
tool in the task of SR. SR is especially interesting in the medical field as the low resolution
can be an intrinsic characteristic of the imaging modality, such as in the case of PET, or can
be related to the acquisition process, such as in the case of low field MR scanners.

By improving the quality of images, GANs can be useful in the post-processing of
examinations like low dose scans or images containing artifacts—thus preventing pa-
tients from undergoing additional or repeated examinations—and in reducing the dose of
radiation administered.

Artifacts represent one of the main limitations in imaging. They are usually caused
by motion, or the presence of metallic materials in the region examined. Concerning MRI,
motion can be classified into two categories [24]:

- Rigid motion, which is caused by the movement of a solid part of the body, in which
deformation is zero or so small it can be neglected, such as arm, knee, and head
motion; and

- Non-rigid motion, which arises from those parts of the body that do not retain any
consistent shape, like cardiac motion.

Regarding intra-brain scans, the contribution of rigid motion is more significant in
contrast to non-rigid motion. For this reason, one of the challenges of brain imaging is that
it depends on the patients’ ability to remain still. GANs can improve the quality of images
by removing artifacts, and this could be especially useful for patients who cannot lie still
for long periods.
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Table 2 provides a summary of the papers included in the review, focused on GANs
applications in image reconstruction.

Ouyang et al. [25] raised the issue that obtaining HR PET images usually implies
exposing the patient to a higher radiation dose. For this reason, they used a GAN to
synthesize standard-dose amyloid PET images from ultra-low-dose images. They used
40 PET datasets from 39 participants with a simultaneous PET/MRI scanner after an
injection of 330 ± 30 MBq of the amyloid radiotracer, 18F-florbetaben. They were able
to synthesize standard-dose amyloid PET images from ultra-low-dose images with an
image quality score of 4.27 ± 0.56. Their GAN [25] outperformed a previously developed
CNN [26] that required additional MRIs.

Zhao et al. [27] used a supervised deep learning approach to create a GAN, named
S-CycleGAN, obtained by a fusion of the cycle-consistency loss, Wasserstein distance loss,
and an additional supervised learning loss. Their aim was to establish a non-linear end-to-
end mapping model to recover low-dose PET (LDPET) brain images. For this purpose, they
selected 109 patient PET/CT scans acquired with the injection of 370.81 ± 64.38 MBq of
18F-fluorodeoxyglucose (FDG). Their model was able to suppress image noise and preserve
structure details in a supervised learning fashion with an SSIM of 0.981 ± 0.00803 and
0.994 ± 0.00262 for 10% and 30% doses, respectively.

Song et al. [22] focused on resolution enhancement using an unsupervised SR method
based on dual GAN to generate SR brain PET images. The network was trained using
unpaired clinical LR and HR PET images, the latter acquired with an HR dedicated brain
PET scanner. The LRPET images corresponded to an older scanner model. They obtained
an SSIM of 0.926 and demonstrated promising results in terms of image quality.

Furthermore, CGAN has aided motion correction of involuntary subject motion during
dynamic 18F-FDG brain studies. Sundar et al. [28] developed a fully automated motion
compensation approach that enabled the translation of non-invasive clinical absolute
quantification from PET/MR to PET/CT [28] using 20 brain images taken from 10 healthy
volunteers who underwent a test-retest 18F-FDG PET/MRI examination.

Zhou et al. [12] trained a GAN model to learn from 1.5-T and 3-T scans obtained from
the same subjects at the same time to generate 3T* synthetic images, jointly training a Fully
Convolutional NN (FCN) to detect Alzheimer’s Disease in the generated 3T* images. The
FCN classification loss propagated back to implicitly convey the disease-related information
to the generator, which then created 3T* images where the Alzheimer’s Disease was
more evident.

Delannoy et al. [29] discussed a GAN-based framework (SegSRGAN) that performed
SR as well as cortical segmentation of neonatal brain MR. They used two datasets for a
total of 1540 LR images. Their model obtained a Dice Score of 0.845 ± 0.015 regarding
the cortical segmentation, while the SR scored the following: NCC 3.87 ± 2.47, PSNR
26.84 ± 0.62, and SSIM 0.721 ± 0.012.

Shaul et al. [30] proposed a solution to reduce the acquisition time of MRI examinations,
making a point that reducing the number of samples in the k-space was a very effective
way to speed up the acquisition time. They employed a two-stage GAN to estimate missing
k-space samples and reduce aliasing artifacts, obtaining an SSMI of 0.98 ± 0.01.

More recently, Zhang, Shinomiya, and Yoshida [31] successfully combined two DC-
GAN to perform 3D reconstruction of MRI images in a 2D field, solving artifacts and color
changes caused by the checkerboard effect. The results show their model had the best
performance for all the planes, with an SSIM of 0.9201 ± 0.0041, 0.9641 ± 0.0032, and
0.9600 ± 0.003 for the sagittal, coronal, and axial planes, respectively.

3.2.3. Image Segmentation

In brain imaging, image segmentation finds its main applications in measuring and vi-
sualizing anatomical structures, analyzing brain changes, delineating pathological regions,
and for surgical planning and image-guided interventions [10] or for the training of other
DL algorithms, saving time and resources of radiology professionals and optimizing costs.
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However, GANs have not been widely used for segmenting images on their own, but
they can help obtain a better segmentation quality if used along with other DL algorithms
that can perform supervised, semi-supervised or automatic segmentation [10].

For example, a CNN—which represents a standard network to perform segmentation—
can be used as the generator and be trained with adversarial learning. At that point, the
discriminator takes as input the segmentation mask produced by the CNN and the ground
truth image and has to discriminate between the two. This process, repeated over and over,
will improve the performances of the CNN—used as a generator—in its segmentation task.

Furthermore, a GAN can augment the initial dataset of ground truth images [10] used
to train a CNN, enriching the data from which the CNN learns and thus helping it to reach
better performances.

Moreover, a GAN could be useful for “domain adaptation” [10] also in this case.
For example, if trained with segmented T1w MRI images, the GAN is able to generate

the corresponding T2w image, which contains the segmentation mask in the same location
as the ground truth images.

Table 3 provides a summary of the papers included in the review, focused on GANs
applications in image segmentation.

Oh et al. [11] used a GAN to segment white matter from brain PET images to improve
the diagnosis of neurodegenerative disorders. To train their model, based on the pix2pix
architecture with a ResNet backbone, the authors used 192 18F-FDG PET/CT and MRI
images collected from the Alzheimer’s disease neuroimaging initiative (ADNI) database,
obtaining an AUC mean value of 0.869 ± 0.021.

Yuan et al. [10] proposed a 3D unified GAN, which unifies the any-to-any modality
translation and multimodal segmentation in a single network brain tumor segmentation
obtaining a dice of 0.5089 and sensitivity of 0.5290 and specificity of 0.9987.

Delannoy et al. [29] proposed a GAN-based framework (SegSRGAN) that jointly per-
formed SR and segmentation, as opposed to the more common sequential route. They
argued that performing these tasks jointly improved the performance of both the segmen-
tation and the reconstruction process, reporting a dice score of 0.855 ± 0.014.

3.2.4. Image Synthesis and Data Augmentation

Artificial intelligence models have shown great promise in assisting clinicians by
automating the diagnostic process; however, to achieve the appropriate performance, the
models must be trained with a large amount of data. Unfortunately, this represents a
challenge in the medical field, mostly due to the high standards of privacy that hinder the
possibility of creating large open datasets to share with the scientific community.

Indeed, the scarcity of data represents one of the main limitations to the application
of DL in medicine (research) [32,33]. Moreover, the respect for anonymity and privacy
can limit the use of patients’ data for research purposes when informed consent is not
obtained [34].

GANs have the ability to create new data not belonging to any real person, bypassing
all the privacy and anonymity concerns that can be used in various clinical applications [35].
Usually, translation, rotation, scaling, and flipping of available samples to generate “new”
samples are common strategies for data augmentation. These kinds of deterministic data
augmentation techniques, while effective, are under tighter constraints in the medical field:
because medical images cannot be distorted in shape and color, their applicability is limited.
GANs allow the synthesis of completely new scans to enlarge datasets by generating images
that have all the characteristics of the real images from real patients [3]. Table 4 provides a
summary of the papers included in the review, focused on GANs applications in image
synthesis and data augmentation.

In 2018, Kazuhiro et al. [7] used a GAN network (DCGAN) to produce artificial T1-
weighted MR brain images from healthy individuals and patients with cerebrovascular
accidents. Their performance was rated by two neuroradiologists who tried to discern the
synthetic images from the real ones: 45% and 71% of the synthetic images were rated as
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real MRIs by each radiologist, respectively, while 44% and 70% of the real images were
rated as synthetic images.

Likewise, Li et al. [36] applied GANs to augment brain data sets by generating paired
data which were used to train and test different DL-based segmentation techniques.

Kim et al. [37] used a model called Boundary Equilibrium Generative Adversarial
Network (BEGAN) to extract features of Alzheimer’s disease and normal cognitive brain
18F FDG PET/CT. They then used these features to train a support vector machine (SVM)
classifier to distinguish brains affected by Alzheimer’s disease from the normal cogni-
tive brain.

Islam and Zhang [32] used DCGAN to produce synthetic PET images of three different
stages of Alzheimer’s disease, showing that synthesized brain images share nearly identical
data and sharpness as the original real dataset.

3.2.5. Brain Decoding

Reading minds has been part of works of fiction.
However, in recent years, breakthroughs in neuroscience and AI have brought to

reality the possibility of visual image reconstruction decoding, providing intuitive and
vivid pictures regarding the objects a person is viewing [38,39]. GAN networks have
been used to achieve the accurate reconstruction of natural images from brain activity
by measuring fMRI brain activation patterns for decoding the identity of binary contrast
patterns, handwritten characters, human facial images, and even dreams.

GANs may analyze fMRI-derived brain activity in two steps. A visual stimulus is first
processed via neural networks to form a latent representation (code) of itself. This is then
received by a decoder sub-network, which seeks to reconstruct and reproduce the visual
input from the data in the code [4,40]. Table 5 provides a summary of the papers included
in the review, focused on GANs applications in brain decoding.

Ren et al. [38] reconstructed geometric shapes, alphabet letters, and natural color
photos from brain activity by visually-guided cognitive representation and adversarial
learning, obtaining 89% identification accuracy. Huang et al. [39] proposed a DL-based
framework that included a latent feature extractor, a latent feature decoder, and a natural
image generator to achieve the accurate reconstruction of natural images from brain activity.
Their results showed that the reconstructed image achieved comparable, accurate reproduc-
tion of the presented image in both high-level semantic category information (which refers
to the image context as perceived by humans) and low-level pixel information (related to
lower pixel dimensions and thus better image quality).

Al-Tahan and Mohsenzadeh [40] realized a GAN made up of two sub-networks
(encoder-decoder) that mimicked the human brain temporal (obtained by magnetoencephalo-
graphy—MEG) and spatial (obtained by fMRI) response patterns in biological vision.

Qiao et al. [4] proposed a new GAN-based Bayesian visual reconstruction model
(GAN-BVRM) composed of (1) a classifier to decode the categories from fMRI data, (2) a
pre-trained conditional generator of the distinguished BigGAN to generate natural images
for the categories, and (3) a set of encoding models and an evaluator to evaluate the
generated images. Their model was able to directly generate the reconstructed images by
iteratively updating the noise input vector through back-propagation to fit the fMRI voxels
and improved the fidelity and naturalness.

3.2.6. Disease Progression Modelling

Thanks to technological developments, much progress has been made in terms of
outcome prediction through the generation of several machine learning-based prognostic
models. Historically most of the models to estimate the progression of disease were based
on systems of a partial differential equation that require careful tuning and cannot learn
from the available data.

In this setting, GANs have been successfully employed in brain tumor growth pre-
diction and anomaly detection. Indeed, some authors succeeded in the generation of the
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possible images of future MRI scans of a patient by training the GAN with the current
MRI examinations.

Table 6 provides a summary of the papers included in the review, focused on GANs
applications in Disease Progression Modelling.

Elazab et al. [6] developed a 3D U-Net architecture, named GP-GAN, that showed
outperforming results for growth prediction of glioma compared to state-of-the-art methods,
reaching a sensitivity of 92.06 ± 1.46 and a specificity of 91.27 ± 2.12. Han et al. [41]
developed a two-step unsupervised medical anomaly detection generative adversarial
network (MADGAN) to discriminate subtle lesions on brain MRI in patients with early-
stage Alzheimer’s disease and brain metastasis, which helped in establishing a disease
progression model. They were able to detect Alzheimer’s disease on T1 scans at a very
early stage, with AUC 0.727, and at a late stage with AUC 0.894, while detecting brain
metastases on T1c scans with AUC 0.921.

4. Discussion

GANs represent very promising tools that could help doctors and health professionals
in their clinical and research routine from many points of view.

One of the major benefits of GANs is related to their content generation ability, which
could help in coping with the lack of data, anonymity, and quality of data [6]. Furthermore,
the possibility for image-to-image translation and cross-modality synthesis can be of benefit
for both patients and radiologists as it may reduce radiation exposure and improve image
interpretation [34]. With regards to image reconstruction, studies have shown how GANs
can reduce CT radiation exposure and MRI acquisition time, which may influence screening
and follow-up protocols and the radiologist workload. Moreover, GANs allow improving
data availability and quality at a low cost, which could be of great help for underdeveloped
and developing countries that usually do not have high-quality scanners or where patients
do not have access to some type of examinations. Indeed, as explained above, by using a
GAN, a low-resolution CT scan can be transformed into a high-resolution one or even in an
MR examination. As it is well known, DL algorithms require large-scale data sets, which
can sometimes be difficult to obtain, especially for rare diseases limiting the development
and implementation of DL in radiology. Current advances in this aspect show promising
results as GANs can help overcome this obstacle. Indeed, several studies have successfully
trained deep learning algorithms using synthetic data generated by GANs [1,2].

GANs have evolved considerably since their introduction, but even if there is hype
in the research field, they are still not applied in clinical practice. One reason that GANs
remain in a proof-of-concept stage is that their successful development and training can
be difficult.

The correct functioning of a GAN implies the harmonic combination between the
generator and the discriminator. An interruption of their balance can make the training
process fail. Another problem commonly presented is the complete or partial mode collapse.
In this case, the generator will synthesize a limited diversity of images or even the same
image, regardless of its input. In radiology, this can cause the generation of wrong artificial
features. The networks can also be biased when there is under or over-representation of
certain findings. This could lead to misdiagnosis of medical conditions as the composition
of the source and target domains can bias the image transformation to cause an unwanted
feature hallucination [42].

Furthermore, the type and the quality of the new data generated by GANs are strictly
dependent on the training dataset [1]. If a GAN is trained to generate brain images, it will
earn how to create new scans based on the images “saw” in the training phase. For this
reason, if it was trained with a dataset of adults’ brain MRIs, the GAN would not be able to
generate MRI images of a pediatric brain. Thus, it is important to determine the purpose of
each GAN, design data flow, and train it with large data sets.

Some other risks are involved with the development of GANs. For example, in image
reconstruction, details can get lost in translation, while fake inexistent details can suddenly
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appear [1]. Furthermore, the possibility of hacking of imaging examinations and artificially
adding or removing medical conditions from patient scans.

Moreover, hackers could infiltrate the health care system with malicious intent, and
the effects of such attacks have already been shown. Mirsky et al. [43] manipulated CT
scan images by artificially adding or removing lung cancers on purpose, showing those
images to radiologists, who were blinded to the attack. The hack showed a 99.2% success
rate for cancer injection and 95.8% for removal. However, even when the radiologists
were informed of the attack, the success rates were still high (70% for cancer injection
decreased and 90% for cancer removal). The consequences of these types of attacks could
be dangerous, and they could be addressed to a specific patient or an institution.

Although their interesting and sophisticated structure, GANs are significantly sub-
jected to validation problems. Indeed, it is difficult to assess whether generated data can be
considered as “reliable”, in the sense that they’re sufficiently similar to real ones.

While this could be relatively easy for imaging, where generated data can be vali-
dated through visualization, a standardized metric of validation has to be implemented
when considering tabular or time-series data. For this reason, some alternative genera-
tive deep learning frameworks have been proposed, with the main one being Variational
autoencoders (VAEs) [44,45].

Autoencoders are a very popular deep learning framework in which data are “mapped”
(projected) to a lower-dimensional latent space by a first neural network, the encoder, and
then reconstructed by a second one, the decoder. The two networks are jointly trained by
gradient descent to minimize the reconstruction loss between original and reconstructed
data. Once the model has been trained, the latent space representation can maintain much
of the information carried by the original data and can be used for a series of tasks such as
dimensionality reduction or anomaly detection [46].

The problem with this kind of architecture lies in the way the latent space is structured.
Indeed, the network has to learn the latent representation of each data point, with no
relevant constraint on the representation itself. This can result in high training time and
overfitting and doesn’t provide a probabilistic framework suitable for generative tasks.

VAEs have been presented as the solution to these issues. Indeed, in these models,
Bayesian variational inference [47] is used to learn the parameters of a latent distribution
(usually a Gaussian), and then data points are sampled from the learned distribution and
used to generate reconstructed data. More in detail, the encoder is equipped with additional
dense layers representing the parameter of the target distribution (mean and standard
deviation for a Gaussian), and a reparametrization trick is used to minimize the Evidence
Lower Bound (ELBO) between the encoded data and a given prior distribution through
back-propagation. This bayesian “comparison” between the encoded data and the prior
provides a strong regularization on the latent space, making sure that the model very rarely
overfits the data and, by the sampling procedure carried on by the decoder, enabling the
generative framework.

Focusing on imaging application of VAEs, it is straightforward to see that the recon-
struction loss framework ensures a different generative process: indeed, since the latent
distribution is learned in the process, generated data must more strongly rely on training
samples and the generative part, the decoder, is constrained to follow that latent distribu-
tion when generating new images [45]. In other words, while in GANs, the generator is
left free to learn a distribution from random noise to fool the discriminator, in VAEs, the
decoder is forced to rely on a learned latent space.

In conclusion, images generated by GANs remain overall more detailed than the
ones generated from VAEs, which tend to be “blurry”. Considering this, if GANs can be
efficiently validated, they tend to generate better quality images than VAEs.

This review has several limitations. First of all, we designed it as a narrative review to
make an overview of what state of the art is on the topic. Thus, the literature search has not
been conducted in a systematic fashion.
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Secondly, effective assessment and comparison of GANs’ performances were difficult
between the considered articles. That is due to the variability of assessment measures
between studies. Some use objective numerical metrics of different sorts, but those vary
between studies. Examples include mean absolute error (MAE), peak signal-to-noise ratio
(PSNR), structural similarity (SSIM), Area Under Curve (AUC), Frechet Inception Distance
(FID). This lack of standardization and the use of subjective physicians’ evaluations of
image quality prevented us from performing a meta-analysis. Furthermore, the exact
number of patient cases was not clear in some of the papers.

Finally, the studies included in this review lack four fundamental criteria for algo-
rithm’s clinical assessment described by Kim et al. [37]: external validation, prospective
data collection, data being obtained in a diagnostic cohort study, and from multiple institu-
tions. The reviewed articles were new in each subfield of medical imaging and used small
data sets. Furthermore, most of the published studies ultimately assess technical feasibility
but not the practical clinical performance of GANs in radiology.

5. Conclusions

In conclusion, GANs in brain imaging show great potential, which is reflected in
the increasing number of studies. They enable the creation of new data or the imaging
modality transfer, which can be useful for several purposes. The achievement of low-dose
imaging and shortening acquisition time while maintaining image quality or improving
the image quality by removing artifacts certainly are of clinical relevance. Yet, it is still
early to determine whether GANs can significantly impact computer-assisted radiology
applications. More studies are needed, preferably with larger datasets, in order to determine
the feasibility of GANs in the clinical setting.
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