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Abstract: In the last few decades, obesity has increased dramatically in pediatric patients. Obesity
is a chronic disease correlated with systemic inflammation, characterized by the presence of CD4
and CD8 T cell infiltration and modified immune response, which contributes to the development
of obesity related diseases and metabolic disorders, including impaired glucose metabolism. In
particular, Treg and Th17 cells are dynamically balanced under healthy conditions, but imbalance
occurs in inflammatory and pathological states, such as obesity. Some studies demonstrated that
peripheral Treg and Th17 cells exhibit increased imbalance with worsening of glucose metabolic
dysfunction, already in children with obesity. In this review, we considered the role of adipose tissue
immunomodulation and the potential role played by Treg/T17 imbalance on the impaired glucose
metabolism in pediatric obesity. In the patient care, immune monitoring could play an important
role to define preventive strategies of pediatric metabolic disease treatments.

Keywords: childhood obesity; adipose tissue-associated inflammation; Th17; Treg; glucose
metabolism disorders

1. Introduction

In the last few decades, obesity has dramatically increased in pediatric patients and
the link between obesity-induced inflammation and its complications has been described in
numerous studies [1,2]. As reported by World Health Organization, the global prevalence
of overweight and obesity in children and adolescents aged 5–19 has risen from 4% in 1975
to 18% in 2016 [3]. In 2016 more than 340 million children and adolescents worldwide were
in a condition of excess body weight [3].

Obesity is a chronic disease correlated with various factors such as environment,
heredity, lifestyle and others [4]. The underlying process is triggered by imbalanced energy
intake and consumption [4]. It is well know that systemic inflammation correlates to obesity,
characterized by the presence of CD4 and CD8 T cell infiltration and modified immune
response, which contributes to the development of obesity related diseases and metabolic
disorders like dyslipidemia, type 2 diabetes (T2DM), and cardiovascular pathologies
already in pediatric age [5,6].
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Adipose tissue (AT) furnishes the organism with a storage of nutrients that is drained
during starvation. It produces signals which limit immune cell amount and activity
under conditions of nutrient deficiency, allowing proper immune system activity when
food sources are available [7]. When excessive AT deposition occurs, it becomes the
site of pathological immune system activation, leading to chronic low-grade systemic
inflammation. It becomes clear hence that obesity is associated with various disorders in
which the immune system plays a key role [8,9]. Naïve T cells are normally quiescent and
metabolically inactive, but after stimulation they proliferate and differentiate into various
T helper cells (Th), including Th17, and T-regulatory (Treg) cells. Th17 cells primarily
fight against extracellular microbial pathogens and mediate autoimmune disease, but they
are also known to be involved in allograft rejection. Treg lymphocytes have an opposite
function compared to Th17; they attend in modifying the immune response, in order to
sustain immune self-tolerance, and prevent autoimmune disease [10–12]. Treg produce
and secrete, among the others, IL-10 and TGF-β, which could regulate the differentiation
and proliferation of lymphocytes and other immune cells [13] suppressing the activation
of the immune system. A lack of Treg leads to autoimmune disorders, and a high ratio of
Treg/Th17 is proved to be associated with cancer incidence [14,15]. Treg and Th17 cells
are dynamically balanced under healthy conditions, but imbalance occurs in inflammatory
and pathological states such as obesity [16].

Some studies demonstrated that peripheral Treg and Th17 cells exhibit increased
imbalance with worsening of glucose metabolic dysfunction in obese adult and pediatric
patients [16,17]. In this narrative review, we considered the role of AT immunomodulation
and the potential role played by Treg/Th17 imbalance on the impaired glucose metabolism
in pediatric obesity.

2. Methods

The aim of this narrative review is to investigate the immunomodulation properties of
AT and the role of Treg/Th17 imbalance on the glucometabolic disorders in overweight and
obese children. To achieve this, each author independently, identified the most relevant
original scientific papers, clinical trials, meta-analyses and reviews in English language,
published in the last 15 years. Case reports or series and letters were excluded.

The following keywords were used to search for papers published in the last 15 years
in each author’s field of expertise: childhood obesity, pediatric obesity; children metabolic
status; adipose tissue-associated inflammation, Th17; Treg; immune system and obesity-
related glucose metabolism disorders. Electronic databases (PubMed, Scopus, EMBASE,
and Web of Science) were used in the research. The contributions were critically reviewed
and collected. The resulting draft was discussed with all co-authors. The final version
was approved by all co-authors. As a narrative review, several statements based on expert
opinions and not evidence-based or supported by appropriate in vitro or in vivo studies
were included.

3. Adipose Tissue Immunomodulation

AT is a functionally pleiotropic tissue of mesodermal origin [18]. It is a type of loose
connective tissue in which the adipose cells (adipocytes) organize themselves into lobules.
It covers different functions, in particular: (i) represents the main reserve of energetic
material, performing an important trophic action; (ii) avoids the dispersion of body heat
through the skin; (iii) exerts a protective and supportive action, contributing to determine
the profile of same tissues/organs. According to the body’s location, AT can be classified
as: adipose covering tissue, present at subcutaneous level, representing about 50% of the
total AT; internal AT, heterogeneously distributed in the abdominal cavity, being about
45% of the total AT, and muscle infiltration fat, which represents the remaining 5% with
the function of assisting the normal muscle performance.

At a functional level, AT could be divided into deposit tissue, that depend to the
nutritional state, and support tissue, that never completely disappears. In mammals, AT
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is differentiated into unilocular AT, commonly known as white fat, critical for energy
storage, endocrine communication, and insulin sensitivity and multilocular AT, also called
brown fat, which uses energy for non-shivering heat production and is critical for body
temperature maintenance [19–23]. Adipocytes are surrounded by connective tissue that
includes macrophages, fibroblasts, preadipocytes, and various other cell types found in
stromavascular tissue [23–25]. The traditional view of AT as a passive reservoir for energy
storage is no longer valid. AT expresses and secretes a variety of bioactive peptides, known
as adipokines, which act at local (autocrine/paracrine) and systemic (endocrine) level [26]
as well as on immune cells [27]. Studies in literature show that AT plays an immune role
due to the presence of immune cells residing in the tissue itself, such as macrophages, mast
cells, neutrophils, T and B lymphocytes, which are the second most represented cytotype
after adipocytes [28], Figure 1. The presence of these cells makes AT an immune organ.
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Figure 1. Innate and adaptive immune system cells in adipose tissue.

Obesity is well known to be associated with chronic low-grade systemic inflammation,
well-defined by modifications of circulating cytokines and acute phase proteins/reactants.
Adipokines are involved in the regulation of energy consumption, insulin sensitivity,
endothelial function, glucose and lipid metabolism [29].

The mechanisms triggering the inflammatory process at the level of AT are not yet
known. In particular, when the caloric intake is higher than daily needs (positive energy
balance), the AT undergoes morphological and metabolic changes leading to the release of
pro-inflammatory cytokines such as interleukin 6 (IL-6) and tumor necrosis alpha (TNF-α),
mediated by the leptin hormone [30]. These conditions are associated with a chronic
inflammatory response characterized by abnormal cytokine production, increased acute-
phase reactants, and activation of inflammatory signalling pathways [31].

AT hypoxia represents one of the most important factors leading to AT dysfunction
along with endoplasmic reticulum stress and oxidative stress as seen in animal and human
models [32–34]. The excess of nutrients determines local high accumulation of fatty acids
with hypertrophic and hyperplastic AT modifications [35]. When tissue mass expands,
clusters of adipocytes start to agglomerate distant from the vasculature, without increased
proportion of the cardiac output and the extent of the blood flow at the AT level. Adipocytes
could be larger than the normal diffusion distance of O2 of 100–200 micron and it has been
noted that in some tissues the levels of partial pressure of oxygen may be close to zero at
only 100 micron from the vasculature [36,37].
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Consequently, the cellular and tissue vasculature becomes insufficient with reduced
oxygen diffusion within cells, creating a hypoxic state. Immunohistochemical staining
of tissue sections demonstrated that hypoxic areas within white AT were colonized by
macrophages, suggesting the presence of a clear correlation between hypoxia and the
inflammatory state in AT [33]. Obesity-related inflammatory process especially results
in the recruitment of neutrophils and pro-inflammatory T cells (Th1 cells) [38]. Th1 cells
secrete pro-inflammatory cytokines that stimulate monocyte differentiation into the pro-
inflammatory macrophage subtype [31].

3.1. Innate Immune System Cells in Adipose Tissue

The innate immune system cells are monocytes/macrophages as well as other myeloid
cells including dendritic cells, mast cells, NK cells and granulocytes (neutrophils, basophils,
eosinophils), Figure 1.

A critical role for AT-resident immune cells in the regulation of local and systemic
metabolic homeostasis has been supposed, with a fine regulated crosstalk between CD4+ T
cells and local antigen-presenting cells (APCs), such as macrophages and dendritic cells
(DCs). The inflammatory response is characterized by a complex cascade of both pro-
inflammatory and anti-inflammatory molecules. The primary immune response, where
macrophages play a key role in cooperating with the toll-like receptor family, especially
TLR4, start the inflammatory response pathway [39]. Many important molecules are
produced during these processes, such as nuclear factor kB (NFkB), pro-inflammatory
cytokines like IL-1, IL-6, and TNF-α, serum amyloid A3 (SAA3), α l-acid glycoprotein, the
lipocalin 24p3 and plasminogen activator inhibitor-1 (PAI-1).

It is well known that AT macrophages play key roles in the development of the
chronic inflammatory state along with metabolic dysfunctions. [1,40,41]. They represent
the predominant immune cells in AT, being the main source of inflammatory cytokines,
such as TNF-α, IL-6 and IL-1β. An increase in circulating levels of these macrophage-
derived factors in obesity leads to a chronic low-grade inflammatory state that has been
linked to obesity complications [42].

Macrophages can be divided in two subtypes, differing in membrane antigen expres-
sion and secreted cytokines: M1, classically activated macrophages CD11b(+), F4/80(+)
and CD206(-) with pro-inflammatory role and M2, alternatively activated macrophages
CD11b(+), F4/80(+) and CD206(+) induced by anti-inflammatory molecules (IL-13, IL-10,
IL-4 and macrophage colony-stimulating factor) [43].

M1 macrophages take part as inducer and effector cells in polarized Th1 responses,
mediating resistance against intracellular parasites and tumoral cells, while M2 express
high levels of scavenge and galactose-type receptors, contributing to tissue remodeling,
angiogenesis and tumor progression [44,45]. In AT, adiponectin deficiency contributes
to the shift of macrophages from the anti-inflammatory M2 to the pro-inflammatory M1
phenotype. Through the secretion of pro-inflammatory cytokines, M1 macrophages will
attract peripheral monocytes, which in turn will be polarized into M1 macrophages [46].
The different polarization of macrophages in human AT is dependent on nutritional status,
prevailing the M2 phenotype in normal-weight, and the M1 phenotype in overweight-
obese children. Correction of the M1/M2 ratio is important to improve their function [47].
Zughe et al. investigating the effect of linagliptin, an inhibitor of dipeptidyl peptidase 4
(DPP-4), observed a macrophage migration and polarization in white AT of HFD-induced
obese mice. The study showed a greater number of DPP-4+ macrophages in obese mice
than in lean mice. Furthermore, it emerged that linagliptin attenuates oxidative stress,
inflammation, and insulin resistance (IR), through reduction of M1-polarized macrophage
accumulation and induction of an M2-dominant shift in AT alleviating IR and inflammation
in obesity [48].

Recently, it has been demonstrated in mouse models that an accumulation of choles-
terol by macrophage, led to the atherogenesis, a typical cardiovascular problem related to
obesity [49].
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Ying et al. described that in an obese insulin resistant mouse model, AT macrophages
(ATMs) secrete miRNA-containing exosomes (Exos). The administration of obese mice-Exos
cause glucose intolerance and insulin resistance in lean mice. Conversely, lean mice-Exos
lead to a normalization of glucose tolerance improving systemic insulin sensitivity in
obese mice. The authors suggested that ATMs influence metabolic events by paracrine
signalling and that miR-155 contributes to the insulin resistant, glucose intolerant state
downregulating PPARγ expression, a miR-155 target gene. [50].

Regarding neutrophils, they perform antimicrobial activity through myeloperoxidase
and other proteins contained in granules. In obesity, neutrophil functions are altered with
an oxygen free radical increase production, being already activated at the basal state with
reduced ability to respond to the infectious stimulus [51]. Mature neutrophils will secrete
pro-inflammatory cytokines and chemokines such as TNF-α, IL-1β, IL-8 and MIP-1α
leading to the recruitment of other immune cells at the inflammation sites [52].

In the literature an increase of neutrophil amount in AT has been reported. In lean and
obese mouse models, Talukdar et al. investigated the role of neutrophil elastase (NE), in the
promotion of inflammatory response. The study confirmed the sustained increased in AT of
neutrophils and suggested that NE could be a key effector in obesity related inflammation
by recruiting different immune cells, and influencing their polarization state [53]. In
addition, D’Abbondanza et al. compared the neutrophil extracellular trap (NET) levels, and
their association with anthropometric and glycometabolic parameters, in healthy subjects
and obese patients. Obesity resulted associated with increased neutrophil activation and
NETs. Moreover, a higher blood pressure values and a worse glycol-metabolic profile were
observed in patients than in controls. The concentration of MPO-DNA complexes was
significantly associated to weight, body mass index (BMI), systolic and diastolic blood
pressure, and glycol-metabolic profile [54].

Dendritic cells (DC) are considered the sentinels of the immune system. As antigen-
presenting cells, they can stimulate the differentiation of T lymphocytes into pro-inflammatory
Th1 cells or immunomodulatory Th2 cells [55,56]. DC are defined as CD11c positive cells
and their maturation is modulated by leptin through anti-apoptotic nuclear factor-κB acti-
vation. [57]. As a result, leptin increases the secretion of DC pro-inflammatory cytokines
such as IL-12, IL-6, and IL-1β and decreases anti-inflammatory IL-10 production.

In obesity, it has been reported that the recruitment of DC at the AT level (where
they are not normally present) contribute to the establishment of a chronic inflammatory
state [58]. In particular, Bertola et al. described the presence of a CD11c+/CD1c+ DC
subset that correlated with the BMI and the Th17 increase in obese patients. This DC subset
has been considered as an important regulator of AT inflammation, promoting the switch
toward Th17 response in obesity-associated insulin resistance.

Different studies showed that DC infiltrated in AT may influence the balance Treg/Th17.
In an obese leptin-deficient mouse model, Moraes-Vieira et al. have described that DC
were able to regulate the inflammatory response modulating the Treg proliferation and
differentiation [59]. Recently, Park et al. observed that DCs induced to maturate by IL-33,
inhibited CD4+ T differentiation into Treg by decreasing Foxp3 expression [60].

NK cells are a subset of cytotoxic lymphocytes exerting their cytolytic activity by
producing molecules such as granzymes and perforins. Once activated, they can produce
pro- or anti-inflammatory cytokines (INF-γ, IL-6, TNF-α and IL-10), growth factors (GM-
CSF; G-CSF) and chemokines (CCL-2 and IL-8). By producing INF-γ, NK are reported to
regulate inflammation stimulating DC activation and M1 macrophages differentiation [61].

In obese patients visceral AT (VAT), local proliferation of NK has been reported, due
to an increased expression of NK activating receptor on adipocytes [62]. Different studies
reported an increase of NK in peripheral blood and/or in AT of obese and T2DM patients
compared to healthy subjects [63–65]. Wensveen et al. found that a phenotypically dis-
tinct population of tissue-resident NK represented a crucial link between obesity-induced
adipose stress and VAT inflammation [66].
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In a mouse model, Lee et al. showed that NK regulate AT macrophages to promote
insulin resistance in obesity. HFD also significantly improved the frequencies and the
amount of NK cells in epididymal fat. It was shown that both sorted ATMs and epididymal
fat expressed high amount of IL-15, which is important for NK cell proliferation/activation.
The authors demonstrated that NK play crucial roles in the metabolic derangements
associated with obesity. Moreover, NK depletion improved insulin resistance in liver and
muscle. It has also suggested that obesity increased NK numbers and their activation
in epididymal fat. In particular, NK cell depletion suppressed the expression of pro-
inflammatory genes (e.g., Tnf and Itgax) and promoted the expression of anti-inflammatory
or M2 genes (e.g., Il10 and Arg1) in sorted ATMs [67].

3.2. Adipokine Immunological Properties

AT plays a fundamental role in the regulation of glucose and lipid homeostasis. In
healthy subjects, this tissue acts as an endocrine organ implicated in the production of
several hormones such as leptin, adiponectin, resistin and other cytokines [68]. In a
dysregulated setting, these molecules defined “adipokines” may induce inflammatory state
with subsequent development of metabolic complications.

Leptin is a polypeptide of 167-amino acids, produced predominantly in the AT but
also expressed in a variety of other tissues, including placenta, ovaries, mammary epithe-
lium, bone marrow, and lymphoid tissues. Leptin modifies the action of insulin in isolated
adipocytes [69] and stimulates glucose and fatty acid oxidation and lipolysis [70]. In obese
and lean individuals, it is secreted following a similar pulsatile pattern, but in obesity, it
is proven to have higher pulse amplitudes; therefore, obese children have higher leptin
plasma levels, compared with normal-weight subjects. Leptin has pleiotropic activities.
It acts as an endocrine signal by reducing appetite and stimulating energy expenditure.
The increase in leptin levels in obese patients is associated with the state of leptin re-
sistance [71]. Thus, leptin acts on the immune system by exerting a pro-inflammatory
role. It binds receptors present on monocytes, macrophages, neutrophils, dendritic cells,
NK cells, B and T lymphocytes [72] promoting a pro-inflammatory phenotypes and pro-
inflammatory cytokine secretion, activating chemotaxis, production of reactive oxygen
species (macrophages, neutrophils), cytotoxic activity and phagocytosis. It increases NK
cytotoxic activity [73], stimulating secretion of pro-inflammatory cytokines such as IL-6
and TNF-α.

In adaptive immunity, leptin promotes the CD4+ T lymphocytes proliferation and
differentiation toward a pro-inflammatory Th1 phenotype, increasing the production of
pro-inflammatory cytokines such as INF-γ and IL-2 along with a decrease in the secretion
of anti-inflammatory Th2 cytokines such as IL-10 and IL-4 [47,73,74]. It promotes the Th17
proliferation and decreases Treg expansion [47]. Leptin also increases the proliferation of B
lymphocytes [30].

Adiponectin is the most abundant plasma adipokine secreted by healthy AT [75]. It is
a hormone encoded by the ADIPOQ gene. Adiponectin is an anorexigenic peptide that
regulates glucose uptake and fatty acid breakdown in skeletal muscle and AT.

This hormone enhances insulin sensitivity through increased fatty acid oxidation and
inhibition of hepatic glucose production.

Adiponectin also exerts immunomodulatory effects, reducing the secretion of pro-
inflammatory cytokines such as TNF-α, IL-6, monocyte chemoattractant protein 1 (MCP1-
CCL2) and increasing anti-inflammatory cytokines (like IL-10) production [76] by macrophages.

Plasma adiponectin levels are found to be lower in obese than lean subjects. More-
over, remarkable negative correlations between plasma adiponectin levels and BMI have
been shown both in humans and animals [77–79]. This condition leads to an increased
production of pro-inflammatory cytokines such as TNF-α and IL-6 [80].

Resistin is an adipokine also known as AT-specific secretory factor (ADSF), primitively
discovered in mice and named for its ability to interfere (resist) with insulin action [81]. It
is a cysteine-rich peptide hormone derived from AT encoded by the RETN gene, that is
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expressed in several cell types including adipocytes and mononuclear white blood cells. It
has been described in humans that resistin alone can promote inflammation [82,83] and
although its role needs to be elucidated, it seems to be involved in a pathway inducing
the differentiation towards pro-inflammatory macrophages [84]. It is known that resistin
suppresses the ability of insulin to stimulate cellular glucose uptake, playing a role in
obesity, insulin resistance and diabetes.

4. CD4+ T Cell Subpopulations

CD4+ T lymphocytes represent a functionally heterogeneous cell subpopulation [85].
CD4+ cells could be divided into different T helper (Th) subsets based on: (i) the expression
of surface markers, (ii) the type of secreted cytokines and iii) the different cellular targets.
In general, the main role of CD4+ cells is to activate, enhance and regulate the action of
other immune system cells. Th cells include effector cells, such as Th1, Th2 and Th17, that
protect from pathogens, and regulatory T cells (Treg) that can inhibit the effector cells in
same particular conditions such as autoimmune responses.

The CD4+ cell differentiation into the different subpopulations is driven by the mi-
croenvironment in which the activated antigen-presenting cell resides [86]. In particular,
T cell maturation is promoted by lineage-specific transcriptional factors that regulate the
expression of specific surface receptors and the secretion of pro- or anti-inflammatory
cytokines (Figure 2).
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. Figure 2. CD4+ T cell subpopulations.

In the presence of an inflammatory state, such as the obesity-dependent inflammation
present in AT, different studies have observed an increase of circulating Th17 and Treg [87]
and a correlation with dysregulation of CD4+ subset [88]. As describe above, obesity
is actually considered a pathological condition, characterized by a chronic low-grade
inflammation in AT. The local obesity related inflammation is principally due to the release
of pro-inflammatory cytokines, chemokines and adipokines (IL-6, IFN-γ, TNF-α, IL-1β,
RANTES, MCP-1 and SDF-1α) which in turn promote the recruitment of immune cells into
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the AT. The infiltrating immune cells include macrophages M1 and M2, NK and different
subtype of CD8+ and CD4+ cells [89]. In particular, it has been reported an increased
number of CD4+ cells and a diminished amount of Treg [87]. The protective effect of Treg
in obesity and in metabolic dysfunctions has been widely explored [90–92]. It is assumed
that in obese patients, lipotoxicity has a fundamental role and leads to the Treg/Th17
imbalance of cells and to the development of obesity-related T2DM.

4.1. T Helpher 17 Lymphocytes (Th17)

The differentiation of naive T lymphocytes toward Th17 is driven by several cytokines
secreted by antigen-presenting cells (APCs), including IL-6, IL-1-β, IL-21, TGF-β and
IL-23 that activate the expression of the lineage specific transcription factor RORγt [93].
It was assumed that during the RORγt expression, autocrine and paracrine TGF-β acts
in synergy with IL-6 amplifying the Th17 maturation and with IL-21 enhancing Th17
differentiation [94]. Moreover, TGF-β induces the surface expression of IL-23 receptor on
differentiated Th17 making cells responsive to IL-23 action, that plays a key role in the
differentiation, expansion and maintenance of the Th17 [95].

The maturation process requires the activation of the T cell specific surface receptors
CD28 and CTLA-4. Recently, the presence of the ligand ICOS (CD278), an inducible co-
stimulatory molecule important for the efficient development of normal and pathological
immune reactions, on activated T cell surfaces has been also described. Th17, subset of
CD4+ effector cells, play a role in adaptive immunity, contrasting infections caused by
extracellular pathogens (fungi and bacteria). Of interest, in association with the soluble
factor CXCL-13, they closely interact also with B cells recruited at the site of infection.

Th17 are characterized by the production of IL-17, specifically the two isoforms A and
F [96]. IL-17A and IL-17F, binding to IL-17 receptor on epithelial and innate immunity cells,
stimulate the production of G-CSF and IL-8 (CXCL-8), leading to neutrophil recruitment.
Moreover, during their expansion in the site of inflammation, IL-17 can stimulate the
release of several other pro-inflammatory molecules, such as IL-6, IL-21, IL-22, chemokines,
metalloproteases (MMPs), TNF-α and GM-CSF, inducing the IL-23 receptor expression on
Th17 surface [97].

The involvement of Th17 in the induction and progression of several inflammatory
and autoimmune diseases has been demonstrated [98]. For example, it has been shown
that the IL-17A, as marker of Th17, plays a role in the onset of atherosclerosis, which is a
complication of the obese state [99,100].

4.2. Regulatory T Lymphocytes (Treg)

Treg play an essential role in the regulation of the immune response. They act modu-
lating effector T and B cells in order to maintain proper immune homeostasis [101]. It has
been reported that Treg lymphocytes promote tolerance to self-antigens and prevent the
onset of autoimmune diseases and allergies [102].

Treg are responsible for the secretion of several inhibitory cytokines, such as TGF-β,
IL-10 and IL-35 and the production of granzyme B. It has been described that IL-10 exert an
important immunosuppressive action blocking the release of pro-inflammatory cytokines
and the co-stimulation by CD28 and ICOS [103]. Additionally, granzyme B may induce
effector cell apoptosis and may exert immunosuppressive effect through interactions with
two inhibitory receptors express on Treg: lymphocyte-activation gene function 3 (LAG3)
and TIGIT receptors [104]. Moreover, granzyme B blocks the co-stimulation necessary for
the activation of effector T cells [105].

Treg differentiation is driven by TCR signalling, in presence of TGF-β, IL-2 and other
costimulatory molecules. Mature Treg are defined by the expression of CD4+ (T helper
lymphocytes), high levels of CD25 (interleukin IL-2 receptor), low levels of CD127 (inter-
leukin IL-7 receptor) and high levels of the forkhead box P3 (FoxP3, suppressor of IL-2
transcription) [106].



Children 2021, 8, 554 9 of 21

It is well known that Treg levels increase in the presence of an inflammatory state
in different tissues. In AT, Treg prevent metabolic disorders by a direct interaction with
macrophages, reducing the local inflammation. In particular, it has been reported that
in AT macrophages inhibit T effector cell activation acting on APCs. Moreover, Treg and
pro-inflammatory macrophages antagonize each other functions [107,108]. As result, the
imbalance of the number and the function of Treg/macrophage has been considered a
crucial factor in obesity with IR. In line with these observations, Zhong et al. described a
previously unrecognized homeostatic role for CD80 and CD86, costimulatory B7 molecules,
which may reduce adipose inflammation by maintaining Treg numbers in AT. In humans
and mouse model, CD80 and CD86 levels were negatively correlated with the degree of IR
and the infiltration of macrophages in AT. In obese condition, reduction of B7 expression
appeared to directly decrease Treg proliferation and function, leading to excessive amount
of pro-inflammatory macrophages and the development of IR. CD80/CD86 double knock-
out (KO) mice had enhanced adipose macrophage inflammation and IR under both high-fat
and normal diet conditions, accompanied by reduced Treg development and proliferation.
Interesting, the authors reported that an adoptive transfer of Treg could reversed IR and
adipose inflammation in double KO mice [109].

4.3. Treg/Th17 Balance

Recently, a mechanism for the maintenance of Treg/Th17 balance during immune
response, thanks to cytokines that influence the differentiation of one subpopulation and
antagonize the development of the other cell type, has been hypothesized [110]. For
example: (i) TGF-β supports the survival and function of Th17 and Treg, (ii) IL-2, important
for Treg proliferation and function, inhibits the development of Th17; (iii) IL-21, which
plays a role in the differentiation of Th17, suppresses the generation of Treg [88]. Moreover,
it has been reported that FoxP3, expressed by Treg, and RORγt, present on Th17, inhibit
each other’s functions [98]. Based on these observations, it has been hypothesized that the
production of Treg and Th17 are inversely correlated.

The balance between Treg and Th17 is important in regulating the inflammatory
response, in particular, an increase of Th17 and/or a decrease of Treg can cause local and
systemic inflammation or autoimmune disease. In line with this observation, it has been
reported a correlation between elevated IL-6 level and the presence of elevated number of
Th17. In fact, IL-6 could be an important factor in the activation of the subset differentiation,
while Foxp3 can directly interact with RORγt and inhibits Th17 differentiation, influencing
the Treg/Th17 balance [111].

Altered Treg quality and quantity have been described in autoimmune disease such
as type I diabetes, multiple sclerosis, systemic lupus erythematosus, rheumatoid arthri-
tis [112–114]. The importance of Treg/Th17 balance in primary biliary cirrhosis has been
demonstrated in mouse model knockout for CD25. The loss of Treg function leading to an
increase of Th17, caused the development of autoantibodies [113]. Th17 dysregulation has
been described in different models of autoimmune diseases such as chronic colitis [115],
autoimmune encephalitis [116] and psoriasis [117].

In AT, several efforts have been performed to understand the maintenance of Treg/
Th17 balance. Fabrizi et al. investigated the possible role of IL-21 in an IL-21 knockout (KO)
mouse model and, in parallel, in AT from subcutaneous and visceral depots [118]. The
finding of a significant increase in the number of Treg in animal model and the correlation
between IL-21R and TNF-α both in visceral and in subcutaneous AT, indicated a possible
involvement of IL-21 signalling in the development of T cell subset dysregulation. All these
evaluations led to the hypothesis that IL-21 exerts negative regulation on Treg activity,
favoring the development and maintenance of the obesity-induced inflammatory state.

5. Th17 and Treg Dysregulation in Obesity-Induced Inflammation

The relationship between immunity and metabolism plays an important role in obesity
and related diseases. Indeed, there are evidences of an increase in inflammatory indices
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and alterations in immune homeostasis [8,9]. It is well known that the VAT presents higher
levels of acute phase proteins compared to the subcutaneous one. Moreover, due to its
vascularization, VAT is characterized by the presence of several immune cells, representing
the source of the pro-inflammatory cytokines traced in different studies [119]. Specifi-
cally, it was demonstrated the presence of inflammatory macrophages M2, secreting large
amount of pro-inflammatory chemotactic proteins, such as IL-12 and IL-1β, in VAT of obese
subjects [87]. It has been reported that in obese subjects high levels of pro-inflammatory
cytokines positively correlate with the development of IR and the onset of T2DM [120].
In addition, other soluble factors such as Irsin, OX40 and IGF1, are described in obesity
and diabetic-related complications [121–123]. In the last decades, several studies defined
a fundamental role of Th17 and Treg imbalance in obesity-dependent inflammation. The
close relationship between obesity and Th17 and Treg has been firstly demonstrated in
animal models, where Th17 increase and Treg reduction was observed in VAT [124]. The
finding that the imbalance of Treg/Th17 can mediate the occurrence of obesity-related
inflammation and metabolic disorder has been also supported by a study in obese mice
where the overexpression of protein tyrosine phosphatase N2 (PTPN2) was suggested
to inhibit the differentiation of Th17 while promoting Treg differentiation [125]. Inter-
estingly, in a diet-induced obese C57BL/6 mouse model, Jhun et al. demonstrated that
genes associated with retinoid-interferon-induced mortality 19 (GRIM19) could attenuate
obesity. The results showed that in GRIM+ transgenic mice, IL-17 and pSTAT3 levels were
down-regulated, while Treg and pSTAT5 expression was up-regulated. The conclusions
of this study suggested that the inflammatory state obesity-dependent can be counteract
by regulating Treg/Th17 balance through the suppression of STAT3 and the induction
of STAT5 [126]. Furthermore it is known that lipotoxicity alters the Treg/Th17 ratio not
only in AT but also in the gut and liver [127,128]. Moreover in obese subjects, it is shown
that an IL-17 decrease promotes adipogenesis [93]. Th17 cells connect innate and adaptive
immunity and play multiple roles: protective at the level of mucous membranes and
pro-inflammatory in several inflammatory diseases including obesity [129–131]. Indeed,
Th1 cells play a key role in the development of obesity by producing IFN-γ both in adult
and children population [132,133]. Several studies have shown that the total number of
CD3+, CD4+, and CD8+ T cells is increased in the AT of obese subjects; in addition, there
appears to be a positive correlation between adiposity levels, BMI, and total T-cell num-
bers [134,135]. This condition correlates with a switch of pro-inflammatory phenotype of
CD4+ cells and a decrease in peripheral T lymphocytes. In addition, leptin promotes T-cell
proliferation and Th1/Th17 cytokine secretion such as IFN-γ, and prevents their apoptosis
through the mTOR signalling pathway after antigen stimulation [136,137], maintaining
chronic, obesity-related low-grade inflammation. Treg act positively by suppressing inflam-
mation through the production of immunosuppressive cytokines such as IL-10 and TGF-β,
which appear to regulate the differentiation and proliferation of lymphocytes and other
immune cells in a manner that promotes immune tolerance [13]. Th17, on the other hand,
produce several types of pro-inflammatory cytokines such as IL-17A, IL-17F, IL-21, and
IL-22 [138]. Therefore, it is possible to say that the two subsets play opposite roles. Studies
in the literature have remarkably demonstrated that in healthy conditions their percentage
is kept in balance, but this proportion appears to be altered in pathological condition such
as obesity, which involves a marked Treg reduction and an increase in Th17 in AT [139]. In
addition, high frequency of Th17 and high level of RORC2 are reported in VAT of obese
patients with metabolic abnormalities [139]. Very recently, Vega-Cardenas et al. defined
an association between RORC2 and miR-326, one of the critical miRNAs involved in the
Th17 production and IL-17A secretion [140]. However, not all studies are concordant
today [141,142]. Wen J et al. showed that the percentage of Treg and the Treg/Th17 ratio
tend to decrease in overweight, obese and dysmetabolic patients [17]. At the intestinal
level, healthy microflora induces and promotes the development of non-pathogenic Th17
that enhance the protection of mucous membranes from pathogens [143]. However, obesity
leads to the disruption of the homeostasis of the intestinal microflora, promoting the devel-
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opment of pathogenic flora [144]. Hypercaloric diets cause a reduction in IL-17 production
in the gut and a switch to the “pathogenic” Th17 phenotype [93]. In conclusion, the excess
of weight alters immune and metabolic homeostasis. The development of systemic inflam-
mation induces reprogramming of Th17 that acquire new properties. The heterogeneity
of Th17 cells, associated with changes in microenvironmental factors, contributes to the
development of severe inflammatory/autoimmune disorders [145].

The interaction of gut microbiome with immune cells and adipose tissue is also
considered an additional mechanism responsible for inflammatory condition in childhood
obesity [146]. The impact of gut microbiota have been extensively studied in order to
understand the host-gut microbiota interactions. The human digestive tract microbiota
influences the integrity of the intestinal barrier. In healthy subjects, the gut microbiota
is in homeostasis. The alteration of intestinal microbiota is reported to be linked to the
development of inflammation present in different pathological conditions such as chronic
intestinal disease, inflammatory bowel disease, asthma, diabetes mellitus, and metabolic
syndrome [147–152]. The dysregulation in nutrient absorption and metabolism has been
associated to obesity [153,154]. It has been described that obese patients have a reduced
diversity of intestinal bacteria compared to healthy subjects [155], with lower levels of
Bacteroides, known as lean microbiota, and higher levels of Firmicutes, called obese
microbiota, compared to normal weight subjects [156]. It has been reported that gut
microbiome interacts with immune cells and adipocytes and at the same time, immune
cells and adipocytes regulate its functions. Recently, in HDF-fed obese people, Luck et al.
showed that the intestinal dysbiosis promote the secretion of gamma IFN-γ by T cells and
the reduction of Tregs, Th17 and IL-22 reducing homeostasis [157].

6. Treg/Th17 Dysregulation and Gluco-Metabolic Abnormalities

It is well known that metabolic reprogramming is critically important for lymphocytes.
Manipulating metabolic pathways can shape the differentiation and function of these
cells [158]. Metabolism furnishes T cells with energy and precursors for many biological
processes. Some primary metabolic pathways, such as oxidative phosphorylation, fatty
acid oxidation and glycolysis, are considered to play fundamental roles in T cell activation
and differentiation.

Functional IL-6 and TGF-β signalling are the initial events needed to start Th17 differ-
entiation. IL-23 and IL-21 play a fundamental role in the maintenance of the Th17 progeny
by increasing the transcription of IL-17 and other cytokines. STAT3 (signal transducer
and activator of transcription 3), which is critical for the effects of IL-6, IL-21, and IL-23 is
required for Th17 differentiation while, on the other hand, the same cytokines are funda-
mental to initiate the signalling pathways [159,160]. Th17 were identified as a new progeny
of CD4+ T helper cells after the finding that experimental autoimmune encephalomyelitis
in animal models was caused by high levels of IL-23 rather than IL-12 and Th1 cells [161].
Consequently, it became evident that the function of IL-23 was to promote differentiation
and proliferation of the IL-17 secreting cells, classified as Th17. Nevertheless, IL-23 alone
has been found to be unable to make naïve T cells differentiate into Th17; some studies
showed that polarization of Th17 can be appropriately induced by IL-6 and TGF-β1, which
activate STAT3 and Smad family proteins, respectively [162,163]. Dormant naive T cells
have relatively small energetic demands, generally supported by glucose oxidation via the
Krebs cycle and the oxidation of lipids with low levels of glycolysis, in order to maintain
cellular homeostasis [164]. After stimulation, they start to proliferate and differentiate into
Th cells. This requires metabolic reprogramming to support their rapid expansion and
further functions, such as synthesis of macromolecules, intracellular mediators and cy-
tokines. First, glucose transporter (GLUT) and alanine–serine–cysteine transporter (ASCT2)
become highly expressed, then glycolysis fatty acid metabolism, along with OXPHOS, PPP,
hexosamine pathway all become active [165].

Aerobic glycolysis and glutamine catabolism become the main pathways, along with
a down-regulation of the metabolic characteristic processes of resting cells. The T-cell
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receptor starts the signalling cascade, along with MAPK (mitogen-activated proteinkinase)
ERK (extracellular signal-regulated kinase), PI3K (phosphoinositol-3 kinase), mTOR (mam-
malian target of rapamycin) and NfκB (nuclear factor-κB). These costimulatory molecules
are necessary to induce the Myc and HIF-1α transcription factors, known to induce various
gene expression implicated in glycolysis and glutaminolysis [166,167]. If this upregulation
of glucose metabolism is not achieved, T-cell differentiation, both in vitro and in vivo, is
inhibited [168].

Cellular crosstalk plays a critical role in regulating T-helper maturation and differ-
entiation. As described above, specific cytokines, for the so-called antagonism effect,
while drive the generation and function of the specific subset, work to reduce alternative
pathways [169].

Treg/Th17 imbalance has been associated with metabolic dysregulation in diabetic
patients. A study conducted in HDF-fed transgenic animal models revealed that Treg
expansion determined a significant reduction in blood glucose, insulin resistance, and
increase in glucose tolerance [93]. In addition, different researches showed a Treg decrease
in VAT or in peripheral blood derived from obese and diabetic adults [170,171]. In a recent
study, Wen et al. observed Treg/Th17 imbalance in obese and overweight subjects with
or without metabolic dysfunctions. The authors reported a severe decrease in Treg/Th17
ratio in peripheral blood of overweight/obese patients with impaired glucose regulation
or T2DM compared to healthy subjects or overweight/obese patients with normal glucose
tolerance. Moreover, the authors observed that the degree of the imbalance was positively
correlated with the exacerbation of metabolic alterations. Furthermore, the serum IL-6 level
in patients with metabolic compliance was higher than in controls while the Treg/Th17
ratio was negatively correlated with HbA1c [17].

In the last decades, several studies showed that functional defects of Treg are correlated
with the development of IR [172–174] (Figure 3). In fact, the IR is known to be linked to the
promotion of T cell activation in obese subjects [175]. Recently, Gilleron et al. observed that
adipocyte hypertrophy and IR in obese mice were driven by an increase in adipose Th17
and a decrease in adipose Treg. In particular, it has been also described that Treg/Th17
imbalance reduced adipogenesis [176]. In another study, the effects of OX40 has been
associated to Th cell differentiation, proliferation and reduction of Treg regulatory activity.
The authors underlined how Treg/Th17 balance was crucial for the development of AT
inflammation and IR [122]. A lot of studies have shown that pro-inflammatory cytokines
such as IL-6, IL-1β, TNF-α, NF-κB can lead to IR and consequently to the development of
related diseases like metabolic syndrome and/or diabetes [177,178].

Inflammation activates macrophages, along with the release and activation of inflam-
matory molecules. TNF-α also induces MCP-1 production, which ultimately activates
the chemotactic migration of macrophages. These mechanisms result in the inhibition
of insulin signalling and sensitivity. Inflammatory molecules also increase peripheral
free fatty acid levels through lipolysis, which further aggravates insulin resistance. This
determines a perpetual cycle, in which altered values of blood sugar and lipids lead to
many related complications [179]. The specific therapeutic treatments for obesity and/or
metabolic dysfunctions have been implicated in the regulation of Th17 and Treg balance.
Of interest, Martinez-Sanchez et al. showed that high levels of insulin increased the differ-
entiation toward Th17 and decreased Treg maturation in vitro, supporting the hypothesis
that Treg/Th17 imbalance could be a mechanism for the onset of metabolic disorders in
obesity [124]. Moreover, several data suggest that high insulin levels in obesity cause an
inflammatory state by impairing Treg-induced suppression. It has been demonstrated
that insulin affects Treg receptors, decreasing IL-10 release through activation of the AKT
protein signalling pathway and mTOR [180].
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Metformin is a recommended drug for T2DM treatment that improves insulin sensi-
tivity and prevents hyperglycemia by reducing chronic inflammation. It has been reported
that the treatment of T2DM patients with metformin induced a decrease in Th17 [181–183].
Similarly, in a recent study, Borzouei et al. investigated the expression of immune factors
related to Th17 such as RORγt, STAT3, and IL-17, and Treg such as FoxP3, STAT5, and
IL-10 in T2DM patients before and after empagliflozin plus metformin and gliclazide. After
six months of treatment, a significantly reduction in RORγt and a significantly increase in
FoxP3 and STAT5 were reported; IL-17 level was decreased while IL-10 level was enhanced
compared to patients treated with only metformin and gliclazide. Empagliflozin showed
anti-proliferative and anti-inflammatory effects reducing Th17 and increasing at the same
time Treg levels [184].

Han et al. investigated the possible influence of IL-33 on Treg in VAT of four-week-
old male mice. They observed that in HFD obese mice, Treg levels diminished but the
treatment with IL-33 reversed this condition and counteracted VAT inflammation, leading
to a reduction in hyperinsulinemia and IR [185].

Recently, the effect of different molecules on Treg/Th17 ratio has been investigated
in animal models. For example, Wei et al. described a possible amelioration in obesity-
dependent IR by acacetin in a mouse model. Acacetin seems to down-regulate IL-17
and up-regulate Foxp3 expression, promoting Treg/Th17 balance via targeting miR-23b-
3p/NEU1 axis [186]. Finally, a therapeutic effect of epigallocatechin-3-gallate, has been
observed in obese mice, showing a significant reduction in weight, LDL-cholesterol and
triglyceride levels. Moreover, a higher Treg/Th17 ratio was reported [187].

Recently, data investigating the role of Th17 and Treg in metabolic derangement in
pediatric patients are reported. Calcaterra et al. [16] evaluated the Treg/Th17 balance in
obese children, in relation with their metabolic status. A correlation between Th17 and
systolic hypertension, Treg/Th17 ratio and HOMA-IR was noted. The Treg/Th17 balance
appeared to be involved in glycemic homeostasis and blood pressure control [16]. In
pediatric patients with chronic inflammation associated-obesity, it has been reported a
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Th17 involvement, evaluating the frequency of this T cell subset in the peripheral blood.
Children with central obesity were characterized by higher percentages of Th17 compared
to normal weight children. Moreover, Treg/Th17 ratio positively correlated with total
plasma cholesterol concentration [188]. Still referring to paediatric patients, Schindler
et al. observed a correlation between overweight and elevated frequency of circulating
Th17, IL-17A mRNA levels and RORC. Moreover, Th17 frequency positively correlated
with BMI [189]. Of interest, in contrast to previous studies reporting elevated IL-17 levels
in obese adults, Jung et al. observed a significant decrease in IL-17 levels in overweight
adolescents compared to lean controls. The authors suggested as a possible explanation
that the disease conditions associated with obesity such as hypertension and vascular
pathologies were not yet present in overweight teenagers [190].

7. Conclusions

Children and adolescents with obesity have a high risk of developing impaired glu-
cose metabolism. Adipose tissue appears to be involved in T cell regulation of tissue
inflammatory and in Treg/Th17 imbalance influencing metabolic responses. In the patient
care, immune monitoring could play an important role to define preventive strategies of
pediatric metabolic disease treatments.
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