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Many cancer cells consume glutamine at high rates; counterintu-
itively, they simultaneously excrete glutamate, the first interme-
diate in glutamine metabolism. Glutamine consumption has been
linked to replenishment of tricarboxylic acid cycle (TCA) interme-
diates and synthesis of adenosine triphosphate (ATP), but the
reason for glutamate excretion is unclear. Here, we dynamically
profile the uptake and excretion fluxes of a liver cancer cell line
(HepG2) and use genome-scale metabolic modeling for in-depth
analysis. We find that up to 30% of the glutamine is metabolized
in the cytosol, primarily for nucleotide synthesis, producing cyto-
solic glutamate. We hypothesize that excreting glutamate helps
the cell to increase the nucleotide synthesis rate to sustain growth.
Indeed, we show experimentally that partial inhibition of gluta-
mate excretion reduces cell growth. Our integrative approach thus
links glutamine addiction to glutamate excretion in cancer and
points toward potential drug targets.

genome-scale modeling | flux-balance analysis | systems biology |
metabolic engineering

ancer cell metabolism transcends the hallmark Warburg ef-
fect (1), where glucose consumption is increased and lactate
is excreted under aerobic conditions. Most carbon in cancer cells
originates from amino acids (2) that are either taken up directly
from the environment or synthesized de novo in the case of some
nonessential amino acids. While amino acids are incorporated
into biomass at rates that depend on the amino acid composition
of the cell and the growth rate (3), some amino acids, most
notably glutamine, are consumed at rates markedly exceeding
what is required for protein synthesis (4); simultaneously, several
other amino acids are excreted, e.g., glutamate, proline, alanine,
and glycine (5, 6). It seems puzzling that glutamate excretion,
which has been observed to correlate with growth rate and ag-
gressiveness in xenografts (7), co-occurs with glutamine uptake; a
mere conversion of glutamine to glutamate would only result in
net import of ammonium, and yet cells excrete nitrogen both
directly as ammonium (8) and indirectly as alanine (5). Despite
many studies on the importance of metabolic fluxes for cancer
cell proliferation, we still lack an integrative view of how cells
coordinate acquisition of the diverse nutrients required for
growth (9). A systems-level analysis is required to understand the
interplay between amino acids and growth in cancer cells.
Mathematical models are indispensable to attain a systems-
level understanding of cancer cell metabolism. Many insights
into cancer metabolism have been achieved through such mod-
els, e.g., the importance of glutamine as a free-energy source (10),
the role of one carbon metabolism in reduced nicotinamide-adenine
dinucleotide phosphate (NADPH) balance (11), and how the up-
take of metabolites in excess of biosynthetic demands correlate with
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the excretion of lactate, glutamate, alanine, and glycine (5). How-
ever, a full genome-wide modeling approach is required to expand
our knowledge of how metabolism functions beyond the canonical
pathways and, in particular, to understand the intricate effects of
metabolic compartmentalization and the interplay between ex-
change fluxes and synthesis of biomass. A platform for this type of
analysis are genome-scale metabolic models (GEMs) that are a
mathematical formalization of all known metabolic reactions of an
organism (12). Human cell type-specific models have been de-
veloped based on proteomics or RNA sequencing data to include
only reactions catalyzed by expressed proteins in the studied cell
type and also include information of cellular compartments (13).
Such models provide a comprehensive and quantitative analysis of
metabolism and have been extensively used in the study of metab-
olism in microorganisms (14), as well as in mammals, e.g., metab-
olism in infants (15), muscle cells (16), and Chinese hamster ovary
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cells (17); yet they have not been used to their full potential in the
study of cancer metabolism (18). So far, genome-scale metabolic
models of cancer have either been nonquantitative or relied on
published data that were collected for other purposes. It can be
anticipated that modeling results with better precision can be
obtained when data are collected with a specific purpose in mind.

Quantitative analysis of metabolism requires time-resolved
data. It is important to ensure that the data to be analyzed are
obtained from well-defined steady-state growth phases and that
the metabolite measurements allow a proper estimate of ex-
change fluxes between cells and the growth medium. We have
previously shown that this can be a challenge for metabolic-
profiling studies with limited temporal resolution, due to me-
tabolite depletion (19). To be able to quantify the specific growth
rate, the cultivation time must be sufficiently long to allow de-
tectable changes in cell counts, i.e., one or more doublings.
However, to allow metabolite concentrations to be quantified
over time, the medium cannot be replenished during the culti-
vation. This setup may therefore result in depletion of growth-
enhancing metabolites during the cultivation that sections
growth into multiple growth phases. Since each phase has a
unique flux profile and growth rate, the analysis may be com-
promised if these are not studied independently (19).

Liver cancer is particularly relevant in the study of amino acid
metabolism. The healthy liver is a hub for amino acid metabo-
lism in the human body, and the metabolic capabilities of the
healthy liver are likely carried over to malignant cells since a
strong correlation exists between the molecular signatures of
cancers and their tissues of origin (20, 21). In the healthy liver,
the role of amino acid metabolism is affected by the nutritional
status of the body as the liver also plays an important role in
whole-body glucose homeostasis. As liver cells therefore expe-
rience different levels of glucose, it is also relevant to study
amino acid metabolism under varying concentrations of glucose.
In addition, this may mimic the situation in solid tumors, where
the glucose concentration depends on the distance from disor-
ganized and leaky blood vessels (22).

Here, we measure cell proliferation and medium metabolite
levels of glucose, pyruvate, lactate, and amino acids over time at
different glucose levels and identify a period of steady-state
growth. We use a metabolic model to integrate data and find
that a large share of the glutamine consumed by the cells is
metabolized in the cytosol to support biosynthetic processes, the
synthesis of nucleotides in particular. The model reveals that
this, together with deamination of branched-chain amino acids
(BCAAs), is the major source of cytosolic glutamate, which is
subsequently excreted by the cells. Hypothesizing that glutamate
excretion is linked to biosynthesis, we partially blocked gluta-
mate excretion and observed a reduction in growth. We addi-
tionally performed a sensitivity analysis to identify other
potential drug targets. Altogether, the present study demon-
strates how a genome-scale metabolic model, together with a
rigorous quantitative and time-resolved dataset, can be used to
elucidate connections between fluxes, across compartments and
the cell membrane in mammalian cells.

Results

Modeling Sectioned the Experiment into Growth Phases. First, we set
up a metabolic model specific for the liver cancer cell line
HepG2. The model was based on the Human Metabolic Re-
action database HMR 2.0, a generic GEM (23), from which re-
actions without support in RNA-sequencing (RNA-seq) count
data had been removed (24). Manual curation of reactions re-
lating to amino acid metabolism was performed and some ad-
ditional reactions were introduced from an online database
(Kyoto Encyclopedia of Genes and Genomes) (25). A biomass
equation was developed for the model (SI Appendix, Supple-
mentary Methods) with the specific amino acid composition of
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HepG2 cells as estimated from protein abundance data for
HepG?2 cells (26) and the amino acid frequency of these proteins
(SI Appendix, Fig. S1).

Time-resolved data were acquired for cells in cultivation.
Metabolite concentrations were quantified to infer the specific
exchange fluxes (in micromoles per time per biomass unit) for
HepG?2 cells under different nutrient conditions (all metabolite
measurements are available in Dataset S1). Cells were cultivated
in a Dulbecco’s modified Eagle medium (DMEM)-based me-
dium with addition of different levels of glucose (0, 6, or 22 mM)
and 10% fetal calf serum (FCS). Cells where cultivated for 6 d,
and samples were taken at multiple time points. An initial set of
measurements were performed to identify a time interval during
which the cells where in steady state, where fluxes can be well
defined and are amenable to genome-scale metabolic modeling.
We measured the amino acid concentrations with a single rep-
licate at 0, 23, 48, 78, and 144 h. At 144 h, most of the cells had
died, and most metabolites were depleted, so this time point was
excluded from further analysis.

The cultivations underwent several growth phases. To clearly
distinguish them, we developed a simplified version of an existing
modeling approach (27), here referred to as piece-wise flux-
balance analysis (pWFBA) (Methods). Using pwFBA, the culti-
vations were found to undergo four distinct metabolic phases
(Fig. 1); the triggering events involved depletion of metabolites,
e.g., glucose and glutamine, but we also found it warranted to
introduce a new phase once glutamine levels dropped below 1.2
mM, as this coincided with a transition to stabilized pyruvate
levels (SI Appendix, Fig. S2). Additionally, we made use of
pwFBA to assess whether vitamins or cofactors could become
limiting during the cultivation, which has been observed in other
studies (19); the analysis suggested that choline and pantothe-
nate were close to depletion toward the end of the cultivation,
based on their initial concentrations in the cultivation medium
and their specific consumption rates (SI Appendix, Fig. S3).

We inspected the phases to select a suitable candidate for in-
depth analysis. The pwFBA approach revealed rapid exchange
fluxes for some metabolites during the first hours of cultivation,
including glutamine, pyruvate, alanine, and glutamate (SI Ap-
pendix, Fig. S2). We decided to not select this phase for further
analysis since it was too short to attain accurate growth esti-
mates, and since some of the exchange fluxes required to close its
carbon balance were tentative, e.g., excretion of proteins (S
Appendix, Supplementary Methods). The pwFBA further showed
that both glutamine and glucose were depleted over the course
of the cultivation, after which the cells continued to grow at a
reduced rate. We found that glutamine depletion, rather than
glucose depletion, was the primary cause of growth reduction,
since a similar reduction in growth was observed also when
glucose was still available in excess (22 mM initial glucose). This
was consistent with the observation that the cells were able to
grow in near-absence of glucose (0 mM initial glucose), albeit
slower compared to cultures with glucose available (Fig. 1). We
noticed that the flux of alanine changed direction from excretion
to consumption after glutamine was depleted, which is in
agreement with flux studies of HepG2 cells grown in the absence
of glutamine, where alanine consumption is also observed (28). It
is likely that alanine substitutes glutamine as a nitrogen source
once it is depleted, as noted by others (29). Taken together, the
balanced phase that followed directly after the initial rapid phase
was found to be most suitable for further in-depth study, as no
metabolites were depleted and it had robust growth at steady
state with well-defined fluxes.

Amino Acids Are Diverted from Protein Synthesis. The fluxes in the
balanced growth phase were characterized with higher precision.
We measured amino acid concentrations in biological triplicates
from samples taken at 23, 30, and 48 h for each condition and
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Fig. 1. Time-resolved exometabolome measurements were combined with metabolic modeling to identify well-defined growth phases. Metabolite con-
centrations were measured under three different conditions (0, 6, and 22 mM initial glucose). The metabolic model was constrained with tentative exchange
fluxes, and the maximum attainable growth rate was predicted using FBA. The exchange fluxes and growth rates were used as input to an ODE system, to
draw simulated metabolite and growth trajectories (blue lines) ensuring that the fitted exchange fluxes would be consistent with the experimental mea-
surements (filled orange circles) of metabolite concentrations and cell counts. The ODE model was configured to take into account the increasing number of
cells, changes in culture medium volume due to sample removal, and spontaneous degradation of glutamine. It was set up to automatically switch to a new
growth phase (indicated by shading) using a new set of exchange fluxes when metabolic events occurred such as metabolite depletion (indicated by arrows in
the growth curves). The exchange fluxes for each phase were manually adjusted until there was agreement between simulations and measurements. Glucose,
lactate, and cell counts were measured in several biological replicates, and each measurement is shown independently. Amino acids were measured as single
replicates, and the error bar shows the technical error, estimated from the SD of six independent measurements at time 0. In the 0 mM glucose condition,
there was some residual glucose from the FCS in medium.

quantified the exchange fluxes and their 95% CI (Fig. 24) using
the maximum log likelihood (mLL) method (30) (Methods and
SI Appendix, Fig. S4). Most fluxes were in quantitative agreement
among the studied conditions and in qualitative agreement with
observations in other cell lines (3, 5). For cultures with 0 mM
initial glucose, alanine was not excreted and the rate of glycine
excretion was markedly increased; the cells also had a higher
estimated glutamine consumption rate. The predicted growth
under this condition was in the lower range of the measurements,
which could indicate that the measured growth rate was over-
estimated, e.g., due to variability in the cell counts; the predicted
growth was underestimated, e.g., due to underestimating some of
the measured uptake fluxes; or that utilization of unmeasured
carbon sources was important under this condition, e.g., me-
tabolism of proteins. For cultures with 6 and 22 mM initial
glucose, the growth predictions were in good agreement with the
measurements, indicating that most fluxes were characterized
with high precision.

To map out which amino acids required further attention, we
compared their exchange fluxes to their abundance in biomass,
which was calculated from the amino acid content in protein (S
Appendix, Fig. S1) and the concentration of free amino acids.
The uptake of glutamine greatly exceeded the requirements, and
there was also higher-than-required consumption of branched
chain amino acids, phenylalanine, arginine, and cystine (Fig. 2B).
Simultaneously, glutamate, alanine, and proline were excreted to

the medium, implying that production of these metabolites was
higher than required for growth. The uptake of serine was in
reasonable agreement with the demand for protein synthesis
(Fig. 2B), which is in contrast to observations in many other cell
lines, where it is overconsumed (3). We were interested to find
the connections between amino acids that were overconsumed
and the ones that were produced through the highly inter-
connected metabolic network. To find metabolic connections
between the amino acids, we developed an algorithm termed
GEMpress (SI Appendix, Fig. S5) that compresses the metabolic
network to only include metabolites that are at branch points.
We could then find connections between consumed and pro-
duced amino acids using a shortest path algorithm.

Using GEMpress, we found that most metabolites were
interconnected via glutamate, with some noteworthy exceptions.
Glutamate was a hub metabolite for glutamine, the branched
chain amino acids, alanine, proline, as well as aspartate and as-
paragine (SI Appendix, Fig. S5). One exception was consumption
of phenylalanine that was directly connected to tyrosine pro-
duction via the liver-specific enzyme phenylalanine-4-hydroxy-
lase (PAH). This reaction potentially supports the cancer
through recharging the electron transmitter tetrahydrobiopterin,
which is linked to liver cancer in mice (31). Another exception
was synthesis of glycine; while glycine can be synthesized from
serine, the uptake of serine was well-balanced, and de novo
synthesis of serine would be required. Simulations (SI Appendix,
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Estimation and analysis of exchange fluxes in the balanced growth phase. (A) mLL estimates of specific growth rates and fluxes and their 95% Cls.

Fluxes were estimated from metabolite concentrations in biological triplicates at 23, 30, and 48 h. Growth was estimated from cell counts in duplicates at 23
and 48 h, counts from the 6 and 22 mM condition were pooled to improve power, and the counts at 48 and 55 h were pooled for the 0 mM condition. The FBA
prediction of specific growth rate used the estimated fluxes as input; the upper and lower bounds were calculated using the upper and lower bound of the
fluxes, respectively; fluxes were omitted if their Cl overlapped zero. (B) The requirement of amino acids for growth depends on the growth rate (gray line,
95% Cl as shaded area) and the amino acid abundance in biomass (protein bound amino acids + the free amino acid pool). If the uptake rate is higher than the
incorporation rate, then the amino acid is metabolized; if the uptake rate is lower, then the amino acid must be produced by some other process to meet the
biosynthetic demand. Essential amino acids (orange circles) cannot be produced and must be consumed at rates at least as high as the requirement for
growth. For cystine, the amino acid abundance in biomass has been divided by two since cysteine (cyc) participates in biomass, while cystine (a cyc-cyc
conjugate) is provided in the medium. Data are from the 22 mM glucose condition.

Fig. S5) suggested that glycine may instead be synthesized
through the enzyme alanine-glyoxylate aminotransferase (AGTX),
a protein that is particularly abundant in HepG2 cells (32). This
may, via glyoxalate, support cancer growth through metabolic con-
nections to NADPH, which is a role previously shown for synthesis
of glycine through other pathways (11).

Glutamate Excretion Is Linked to Biosynthetic Processes. We ana-
lyzed the intracellular fluxes surrounding the hub metabolite
glutamate. To obtain a quantitative understanding of its in-
terconversion to other amino acids, the intracellular fluxes were
investigated, taking metabolic compartmentalization into ac-
count. To analyze how the certainty of these fluxes were affected
by experimental uncertainty and pathway redundancy, we ap-
plied flux-variability analysis (FVA) and found substantial un-
certainty for most fluxes (predicted fluxes and variability
estimates are provided in Dataset S2). We were able to partially
circumvent this by constraining the uptake fluxes strictly to their
best fit values, and the specific growth rate to the predicted
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maximum rate, which prevented adenosine triphosphate (ATP)-
expending futile cycles, although this could potentially result in
underestimated variability for reactions where such cycles do
occur. The variability from cycles was further reduced by ana-
lyzing the net flux of groups of reactions with the same biological
function, e.g., transport of glutamate into the mitochondria by
multiple reactions. Relaxing the constraints of the exchange
fluxes to cover the 95% CI of the fluxes resulted in almost
complete uncertainty for most fluxes, except for those involved in
biosynthesis and BCAA metabolism, which remained robust (S
Appendix, Fig. S6).

More than 60% of the glutamine is metabolized in the mito-
chondria (Fig. 34). There it is converted to glutamate by the
mitochondrial enzyme glutaminase (GLS). It is then further
metabolized to alpha-ketoglutarate (AKG) through trans-
amination reactions forming alanine and aspartate. The synthesis
of these amino acids covers their biosynthetic requirement, and
in the case of alanine, the production largely exceeded it,
resulting in excretion. As the alanine flux is reversed in the

PNAS | May 12,2020 | vol. 117 | no.19 | 10297

BIOPHYSICS AND

COMPUTATIONAL BIOLOGY


https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1919250117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1919250117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1919250117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1919250117/-/DCSupplemental

A b
(0 sLczan
19 9 0.034
30 12 94 Biosynthesis CYs? _
> ASP _ ASN nucleotides GAG  Blomass
— GLC v 27 6 19/ 3J/ /E)rotem
(27,28) w' y (18, 19) 33 =
ALA ASP PRO  GLN g » GLU—T"" (13,13
2
h b (2, 2)
PPP «— metabolite
46 28 29 21 |
(44, 49) (25,29)| (29,30) | (20,22) pPoo
ASP
16
ALA \.{F‘Shs, 16)
v (23, Inf) GSH
74 I
. » PY mal-asp ALA
PYR 204 shuttle
(197, 205)
AGTX
32
837 LAC (30, 37)
—
(0, 111) GLY
) 20
130 (15, 20)
-nf, inf) - SUC . 130
(23%324) (129,131) . .
Mitochondria AC-COA < : AC-CoA— lipids
OAA Cytosol
60
B 7] 60
S 2
- (20
% < 40 - Biosynthesis o< 40 l - Biomass
Q7 -
g 'E%» - Deamination of BCAA % _§’ - Excretion
g > Deamination of other AA % 35 Serine synthesis
E) g 20 o g_ 20 - Exchange Mitochondria
2 8
g g
) 0 0

0 6 22
condition [mM initial glucose]

0 6 22
condition [mM initial glucose]

Fig.3. Separation of glutamine (GLN) metabolism into a cytosolic and mitochondrial pool. (A) The major carbon fluxes (umol gdw™" h™") during the balanced
phase with 22 mM initial glucose. The fluxes are pwFBA predictions from constraining the exchange fluxes to their mLL estimates and constraining growth to
the predicted maximum growth rate. Values in parenthesis correspond to the lower and upper bound using FVA. For several linear pathways, the reactions
have been lumped from input to end product, e.g., metabolism of branched chain amino acids, and for metabolites that participate in cycles several reactions
have been grouped to only show the net flux, e.g., the transport of glutamate into the mitochondria does not include the cycling of glutamate due to the
malate-aspartate cycle. The flux to biomass from cytosolic amino acids is only indicated in the case of GLU and cytosolic ALA is shown in two locations to avoid
overlapping lines. (B) The flux balance of the sources and sinks of cytosolic glutamate shows that deamination of BCAA is the quantitatively most significant
source. AC-CoA, acetyl-coenzyme A; ASN, asparagine; ASP, aspartate; CYS, cysteine; CYS2, cystine; GAG, glycosaminoglycan; GLC, glucose; GLU, glutamate;
GLY, glycine; ILE, isoleucine; LAC, lactate; LEU, leucine; MAL, malate; OAA, oxaloacetate; PPP, pentose phosphate pathway; PRO, proline; PYR, pyruvate; SER,

serine; SUC, succinate; VAL, valine.

absence of glucose (Fig. 24), this suggests that the alanine ex-
cretion is a byproduct of mitochondrial AKG production in the
presence of excess pyruvate. Requirements for mitochondrial
AKG can thus explain the metabolic benefit of these fluxes. The
benefit of proline synthesis from glutamine remains intriguing,
although it may be linked to its role in mitochondrial NADPH
oxidation, which has been proposed as an explanation by pre-
vious studies (33).

Nearly 30% of the glutamine is metabolized in the cytosol
besides the 8% that goes into biomass. There it donates one
nitrogen in the biosynthesis of nucleotides to form glutamate.
This also occurs in the formation of asparagine from aspartate
and in synthesis of glycosaminoglycans. Taken together, these
biosynthetic reactions are the source of roughly half of the cy-
tosolic glutamate (Fig. 3B). Deamination of BCAAs is the
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second major source, which has been confirmed in other cell
lines, where 40% of the glutamate became labeled from
!>N-labeled BCAA (34). The metabolism of BCAA is also linked
to growth, as knocking down the BCAA aminotransferase
(BCAT) has been shown to reduce growth markedly (34). We
were, however, unable to find a direct metabolic explanation for
this effect (SI Appendix, Supplementary Methods), and it is pos-
sible that the growth reduction acts via a role of BCAAs in sig-
naling. It has been hypothesized that the consumption of AKG
by the transamination of BCAA may lower cytosolic AKG levels
and stabilize the transcription factor HIF-1a through substrate
depletion (34). However, in our simulations, the AKG required
for BCAA metabolism mostly originated from mitochondrial
citrate (Fig. 34) that was transported to the cytosol and con-
verted into AKG through isocitrate dehydrogenase (IDHI1).
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Therefore, an alternative possibility may be that increased flux
through IDH1 increases byproduction of 2-hydroxyglutarate, a
metabolite that is linked to cancer (35).

We find a connection between the synthesis and excretion rate
of cytosolic glutamate. The net flux of carbon between the cy-
tosolic and the mitochondrial glutamate pool is comparably low
(Fig. 3B), and the observed excretion rate of glutamate corresponds
well to the surplus of glutamate formed by transamination activities,
including nucleotide synthesis, in the cytosol. This suggests that cells
excrete glutamate that is formed in excess in the cytosol. This is in
agreement with observations in other cell lines, where glutamate
production is reduced from knocking down BCAT (36). It should be
noted that even though there is significant mixing of the cytosolic
and mitochondrial glutamate pool due to the aspartate-malate
shuttle, the net flux of glutamate between cytosol and mitochon-
drion is low. The reason is that the shuttle functions to transport
cytosolic reduced nicotinamide-adenine dinucleotide (NADH) to
the mitochondria but, importantly, does not transport carbon when
fully balanced. Only an imbalanced shuttle allows the export of
aspartate from the mitochondria for biosynthetic purposes in ex-
change for cytosolic glutamate. The metabolic benefit of glutamate
excretion is thus that it allows for continuous transamination ac-
tivities in the cytosol: without this sink, glutamate would accumulate
and block further flux.

Inhibition of Glutamate Excretion Reduces Growth. We hypothesized
that cellular excretion of glutamate is essential for the cells to
ensure high-level supply of nucleotides that is required for high
specific growth rate and flux through BCAT that has been
demonstrated (34) to support growth. We thus expected that
growth would decrease in response to inhibited glutamate ex-
cretion since the flux through these reactions would have to be
reduced in the absence of glutamate excretion as a sink to bal-
ance the flux. This would be in agreement with literature studies
that show attenuated growth in xenograft models when the glu-
tamate transporter is knocked out (37). Since excretion consti-
tutes around 45% of the total sink of cytosolic glutamate
(Fig. 3B), complete inhibition could be expected to cause a
corresponding 45% reduction in growth, but this would also
depend on the effects on BCAT and mitochondrial exchange.
Because our simulations rely on measured exchange fluxes,
they cannot readily be extended to investigate counterfactual
conditions such as glutamate inhibition. In an attempt to ex-
trapolate the simulations, we constrained the fluxes to not sur-
pass the predicted optimal level and investigated the effect of
glutamate inhibition in this scenario (SI Appendix, Fig. S9).
Under the assumption that the predicted flux is close to the ef-
fective capacity of the enzymes, this can be viewed as emulating

>
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enzyme capacity constraints, which have been shown to be pre-
dictive of metabolic phenotypes in cancer in previous studies
(38). The extrapolated simulations suggested that inhibited glu-
tamate excretion would reduce growth through reduced nucle-
otide synthesis, conditioned that mitochondrial exchange does
not increase and flux through BCAT is unaffected. The extrap-
olation further suggests that there would be no synergistic effects
from inhibiting both glutamine uptake and glutamate excretion,
and that it would be infeasible to sustain high levels of glutamate
excretion in the absence of glutamine, which is in agreement with
experimental observations (29).

To further corroborate our hypothesis, we inhibited glutamate
export experimentally. The export of glutamate can be inhibited
by the drug sulfasalazine (SSZ), which targets the glutamate/
cystine antiporter SLC7A11 (37, 39) (cystine is a cysteine—
cysteine conjugate). We cultivated cells with 0, 0.1, and 0.2 mM
SSZ, and both uptake of cystine (Fig. 44), release of glutamate
(Fig. 4B), and the specific growth rate (Fig. 4C) were decreased
in a dose-dependent manner. We were unable to completely
inhibit the glutamate excretion due to solubility constraints of
the drug. Besides, since more than twice as much glutamate is
released compared to cystine consumed (Fig. 24), there may also
be other transporters engaged in glutamate export that we were
unable to target. Overall, the reduction in flux was around 50%
at the highest dose, while the reduction in specific growth rate
was around 20%. This was in line with the expectation that a
100% reduction in glutamate excretion would result in a 45%
growth reduction.

Most research on SLC7A11 focuses on its role in uptake of
cystine (37, 39). Cystine can be converted to cysteine that plays a
role in de novo synthesis of glutathione (GSH), which is an es-
sential metabolite for management of oxidative stress. However,
the GSH synthesis rate at 0.3 micromoles per gram dry weight
(gdw) per hour (pmol gdw™" h™") only accounted for around 2%
of the cystine flux observed in this study, based on an in-
tracellular GSH concentration of 3.7 mM (40) that is consistent
with targeted measurements of GSH in HepG2 cells at 3 mM
(41). This suggests that the demand of GSH is not driving the
flux through SLC7A11, and in our simulations most cysteine was
degraded into alanine that was excreted (Fig. 34). It should be
noted that this occurred through a pathway that was introduced
in the curation step because there was no apparent sink for
cysteine in the draft model (SI Appendix, Supplementary Meth-
ods). The pathway involved cysteine desulfurase (NFS1) and
persulfide dioxygenase (ETHE1) that are both over overex-
pressed in HepG2 compared to liver (SI Appendix, Fig. S7). It
should further be noted that HepG2 cells have been reported to
export intracellular GSH at rates corresponding to around 5% of
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Fig. 4.

Inhibition of glutamate excretion and reduction of growth by SSZ. Linear regression showed a dose-dependent decrease in cystine uptake (A),

glutamate excretion (B), and specific growth rate (C) with increasing SSZ concentrations: 0 mM (blue), 0.1 mM (red), and 0.2 mM (yellow). There was no significant
effect on other metabolites than cystine and glutamate, with the exception of a quantitatively small increase in asparagine excretion (S/ Appendix, Fig. S8).
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the total pool per hour (42) thls would correspond to a flux in
the order of 0.2 pmol gdw™" h™, corresponding to around 1% of
the total cysteine flux. This was not included in the model.

Growth Is Sensitive to Perturbations in Many Metabolic Reactions.
We used the metabolic model to identify other reactions that are
essential for growth and thus can be potential drug targets. This
has previously been done for liver cancer cells (13) and cell lines
(24), but those studies relied on network topology and could only
provide qualitative results (essential or nonessential). With our
parametrized model, i.e., a model that describes a specific, well-
defined steady state, we could give a more quantitative estimate
of the sensitivity of growth in these states to a small reduction in
flux through each reaction (Fig. 5). The analysis showed that
reactions from pathways previously identified as essential also
have high sensitivity. These reactions belong to linear pathways
toward synthesis of biomass components, including nucleotide
synthesis, and are often known targets of anticancer drugs, such
as methotrexate (for pyridine metabolism) and statins (for cho-
lesterol metabolism). De novo fatty acid synthesis is also an es-
sential linear pathway that has previously been recognized as a
therapeutic target (43). Our experimentally constrained meta-
bolic model now points to additional metabolic pathways that
should be further investigated for liver cancer drug targets.

Discussion

In this study, we used a combination of experimental measure-
ments and computer simulations to gain insight into the meta-
bolic behavior of liver cancer cells during in vitro growth.
Previous simulations of cancer metabolism have used reduced
networks with all reactions in a single cell compartment (5, 11,
44). Here, we used a full genome-scale reconstruction of human
metabolism and, instead, reduced the results to human readable
form postsimulation. This allowed us to explore the full meta-
bolic flexibility of the cells and allowed insights into operation of
noncanonical pathways and the importance of compartmentali-
zation. The separation of glutamine metabolism into its cytosolic
and mitochondrial compartments, resolved the paradoxical ob-
servation that cells take up glutamine at high rates, transform it
into glutamate, of which a large fraction is excreted; the model
showed that glutamate is metabolized when formed in the mi-
tochondria but excreted when formed in excess in the cytosol.
Because all glutamine must pass through glutamate before being
metabolized, this analysis illuminates an important aspect of
glutamine addiction in cancer cells. The formation of cytosolic
glutamate is coupled to biosynthetic reactions and metabolism of

sensitivity
o
(9]

BCAA, which are both involved with growth, and may therefore
explain the observed correlation between growth rate and glu-
tamate excretion across different cancers (7). More research is,
however, required to elucidate in which way metabolism of
BCAAs contributes to growth.

We found that treating HepG2 cells with an inhibitor of the
cystine—glutamate antiporter, SLC7A11, reduces their specific
growth rate. This transporter is overexpressed in liver tumors
compared to matched control tissue, and its expression is prog-
nostic of survival (45). It is also overexpressed in several other
cancers (46). It is commonly assumed that inhibition affects cells
through decreased uptake of cystine (37, 47-49), which is
thought to upset synthesis of GSH, rendering the cells vulnerable
to oxidative stress. This is corroborated by observations that loss
of viability at high inhibitor concentrations is rescued by addition
of N-acetyl-cysteine or 2-mercaptoethanol (48, 49), which en-
ables uptake of cysteine by the cells. However, at low inhibitor
concentrations (<0.2 mM), such as the ones used in the present
study, these studies show limited effect on viability, and it ap-
pears that strong inhibition is required to affect GSH levels to a
degree where viability is compromised. This is consistent with
our quantitative analysis of cystine flux, where we find that
around 3% of the measured cystine uptake is sufficient to sup-
port both GSH efflux and to maintain GSH levels in the growing
cells, suggesting that near-complete inhibition is required to af-
fect GSH levels. Our results suggest that reduced glutamate
excretion may be of importance at intermediary levels of in-
hibition. Increased concentrations of glutamate in serum has
been found in metabolic-profiling studies of liver cancer patients
(50), consistent with studies in several other cancers (51, 52),
although this may partially be due to systemic effects (53).

The inhibitor used in this study, SSZ, is known to inhibit
several other targets, including nuclear factor kappa B signaling
(54) and tetrahydrobiopterin biosynthesis (55). While we clearly
demonstrate that it affects cystine uptake and glutamate excre-
tion, we cannot exclude that the observed effects on growth also
may be influenced by interactions with other targets. While the
partial inhibition of the transporter attained in the present study
did not completely abolish growth, also small reductions in ex-
ponential growth rate can potentially be of therapeutic value, but
the usefulness would depend on how well healthy liver cells cope
with inhibited glutamate export and/or cystine import. The in-
hibitor has recently been tested against tumors in mice and found
particularly efficient as an adjuvant of other treatments (56, 57).

Other transporters than SLC7A11 must also be involved in
glutamate excretion from the cell. This is apparent from the
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Fig. 5. Sensitivity of growth to perturbations in flux. The average sensitivity in different pathways (blue bars) to a small perturbation in flux for each reaction

in the pathway (orange circles). Only reactions with detectable sensitivity (>0.01) were included in the analysis, and different reactions with the same gene
associations were only counted once; the total number of reactions analyzed for each pathway is given in parenthesis. A total of 59 reactions had a strong
effect (sensitivity > 0.5), and 36 reactions had modest effects (sensitivity between 0.01 and 0.5).
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observed 2:1 ratio of exchange fluxes for glutamate and cystine
compared with the 1:1 stoichiometry of the antiporter. Two of
the excitatory amino acid transporters that are involved with
glutamate transport (EAAT2 are EAAT3) are expressed in liver;
however, these are ion-coupled importers that are not expected
to excrete glutamate (58). One of the vesicular glutamate
transporters (VGLUT3) is also expressed in liver, and it has been
speculated that it may have a role in excretion of glutamate (59).
However, a study that applied a VGLUT inhibitor to multiple
cell lines found no significant reduction in extracellular gluta-
mate levels, while inhibition with SSZ reduced glutamate
markedly (60). It is therefore possible that glutamate is excreted
through some heretofore unknown mechanism or transporter.
The mitochondrial transporters are of great importance to un-
derstand cellular compartmentalization, but they are generally
poorly characterized. Indeed, while mitochondrial uptake of
glutamine is evident, the mitochondrial glutamine transporter
has yet not been identified (61). The glutamate transporter, on
the other hand, is known (62), and it has been speculated that
instead of transporting glutamine directly, cells degrade it to
glutamate in the intermembrane space by a glutaminase attached
to the outside of the mitochondrial matrix, and then pump glu-
tamate into the mitochondria (61). It would then be unclear why
the mitochondria would not also take up cytosolic glutamate as
the uptake of glutamate into the mitochondria—rather than
excretion to the medium—would reduce the cells’ demand for
glutamine. One reason that this does not occur could be the
aspartate—glutamate antiporter; in isolated mitochondria, gluta-
mate uptake is accompanied by simultaneous release of aspar-
tate (63), and accumulation of cytosolic aspartate may
potentially prevent this option in living cells.

During the first hours of the experiment, amino acids
appeared to be consumed at rates markedly higher than at later
time points. Protein secretion is known to occur in liver cells (64,
65), and the addition of protein secretion provided our model
with a sink for this. While it is possible that rapid protein se-
cretion is a liver-specific phenotype, other cell lines may exhibit
the same behavior, and this could potentially explain some of the
divergence between observed amino acid uptake rates and the
requirements for growth seen in other studies (3, 5). The analysis
would have been compromised if the rapid and balanced phase
were not studied in isolation, illustrating the importance of time-
resolved metabolite measurements.

The pwFBA method that enabled identification of the growth
phases constitutes a simplified form of a previous method (6)
that was developed to study dioxic shifts in microbes, dynamic
FBA (dFBA). Unlike dFBA, which divides time into thousands
of slices, solving one FBA problem for each slice, the pwFBA
method operates under the assumption that specific growth rate
and exchange fluxes remain constant between each metabolic
event and only solves a single FBA problem per growth phase.
Unlike dFBA, it does not use rate of change of flux constraints or
other forms of kinetic constraints. It is therefore well suited to
for mapping out different growth phases with automatic calcu-
lation of growth rate, providing sanity checks on the estimated
fluxes. However, for quantifying fluxes within an identified
growth phase, the mLL method is preferred over pwFBA, as it
allows estimation of fluxes and their confidence intervals directly
from the data.

The fluxes calculated in this paper assumed that cells grow
exponentially with constant specific exchange rates during each
growth phase. The observed metabolite concentrations could
potentially be consistent with cells growing with constantly de-
creasing specific growth rates and specific exchange fluxes, e.g.,
linear growth. However, for most conditions, this is not consis-
tent with the measured cell counts. Despite substantial variability
in internal fluxes, the major fluxes contributing to cytosolic glu-
tamate metabolism are well characterized. Most of the biosynthetic

Nilsson et al.

fluxes had limited variability, which is expected since they depend
linearly on the specific growth rate. There was also no variability for
the predicted BCAA fluxes since BCAT is the only enzyme that
degrades BCAAs, and its flux is thus directly linked to the mea-
surements. Taken together, this translates to a high degree of cer-
tainty about the fluxes surrounding cytosolic glutamate pool.
Another limitation was the fixed biomass composition that could
not account for adaptations of the biomass to changes in growth
conditions. It is, however, unlikely that biomass composition
changes drastically; while in liver, one may expect glycogen content
to be highly dynamic, less variability is expected for nucleotide and
protein pools, which are important for the fate of glutamate.

Our analysis has been limited to in vitro grown liver cancer
cells. This has the advantages that all metabolite changes can be
attributed to the liver cancer cells. Of course, the nutritional
context in vivo is more dynamic—supply of nutrients will be
dependent on cancer tissue perfusion and the metabolism of
neighboring cells. By using 6 mM glucose, instead of the 25 mM
often used in cell culture, our cells experienced blood-like glu-
cose levels. In addition, the depletion of nutrients in the medium
may reflect some of the dynamics when cancer tissue perfusion
is low.

The present study demonstrates how genome-scale metabolic
models, together with a rigorous quantitative and time-resolved
dataset, can provide an integrative view of metabolism of
mammalian cells. The automatic compression and visualization
of metabolic pathways using GEMpress has made the genome-
wide scope manageable for interpretation. With these tools and
methods, we have uncovered a mechanistic basis for the ob-
served relation between glutamine uptake, glutamate excretion,
and growth that allowed us to estimate the expected effect of
several drug targets. We are therefore confident that this ap-
proach can be used more widely for hypothesis generation and
testing concerning cancer metabolism in the future.

Methods

Cell Lines and Culture Conditions. The human hepatocellular carcinoma cell
line HepG2 was purchased from the ATTC were grown in culture medium
consisting of the glucose-free version of DMEM (no. A14430; Gibco) sup-
plemented with 10% FCS (article no. 10270106, batch 42F7565K), 6 mM
glucose (or other levels as indicated in the text), 1.8 mM L-glutamine (25030-
123; Gibco), and 100 U/mL penicillin and 100 pg/mL streptomycin (Gibco).
Cells were kept at 5% CO,, 37 °C, and 95% humidity. Cells were passaged to
a maximum of 25 passages.

Cell Counting. To count the cells, cells were washed in phosphate-buffered
saline (PBS) and were detached from the dish by adding 0.05% preheated
trypsin-EDTA solution (Gibco). FCS-containing medium was added, and the
cell suspension centrifuged at 1000 x g for 2 min. The supernatant was re-
moved, and cells were resuspended in growth medium. The solution was
passed several times through a pipet tip, to get a solution of single cells. Cell
densities of cell suspensions were determined using a Burker cell chamber
(0.0025 mm?%; depth of chamber: 0.1 mm; Marienfeld Superior). Each cell
suspension was counted twice.

Protein Quantification. The pellet obtained after centrifugation was taken up
in a defined volume of medium, and a counting sample was taken. The
remainder of the solution was then washed twice with PBS to remove residual
proteins from the FCS and resuspended in PBS. Protein content was de-
termined with a Pierce BCA Protein Assay Kit (ThermoScientific) according to
the manufacturer’s instructions.

Medium Samples. Samples were taken from the culture medium, aliquoted,
instantly frozen in N, (liquid), and stored at —80 °C awaiting further analyses.

Determination of Glucose and Pyruvate Concentrations. Glucose and pyruvate
concentrations were determined by high-performance liquid chromatogra-
phy (HPLC). Medium samples were thawed on ice and underwent a
perchloric acid (PCA)/potassium hydroxide (KOH) extraction and filtration to
remove proteins: PCA was added to a final concentration of 3.5% (vol/vol),
and samples were incubated on ice for 10 min. Then, 1/10 of volume of 5 M
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KOH in 0.2 M 3-(N-morpholino)propanesulfonic acid was added, and sam-
ples were again incubated on ice for 10 min. Samples were centrifuged at
maximum speed, and supernatant was filtered through a 0.22-pm Millex-GV
polyvinylidene fluoride filter (Millipore); 50 pL of sample was injected on a
Shimadzu HPLC with a Rezex ROA Organic Acid column and thermostated at
55 °C, and 5 mM H,SO,4 was used as eluent. Glucose was detected by a re-
fractive index detector, and pyruvate was detected by a ultraviolet detector.
Concentrations were calculated based on a calibration curve and corrected
for dilution by the PCA/KOH extraction.

Determination of Amino Acid Concentrations. Amino acid concentrations in
the supernatant were determined according to the technique developed by
Stein and Moore (66), involving derivatization with ninhydrine on a Bio-
chrom 30+ amino acid analyser (Biochrom Ltd., Cambridge, UK). Amino acid
concentrations were determined by comparison to calibration curves
established using the same method.

Enzymatic Determination of Lactate Concentrations. Medium samples were
thawed on ice. .-Lactate was measured by adding 20 pL of sample to 225 puL
of buffer containing 440 mM glycine, 360 mM hydrazine, and 2.8 mM oxi-
dized nicotinamide adenine dinucleotide (NAD™"). Baseline absorbance was
recorded in a microplate spectrophotometer (Multiskan Go; Thermo-
Scientific) at 340 nm and 37 °C. The reaction was started by adding 5 pL
L-LDH (25 mg/5 mL; no. 101127876001; Roche). The increase in absorbance
through formation of NADH was followed until the reaction had finished.
AAsz4 between end and baseline was calculated for each incubation. After
subtraction of the AAszy4, of the blanks, concentrations were calculated based
on a calibration curve that was run in the same plate.

SSZ Experiment. SSZ was purchased from Sigma and dissolved in sterile 1 M
NH4OH. The final concentration of NH,OH was 2 mM. Cells were grown in
different concentrations of SSZ (0, 0.1, and 0.2 mM); 0 mM cultures were
grown in the presence of the NH4OH solvent. Cells were counted at four
time points (0, 24, 45, and 68 h), but the last time point was excluded from
the analysis since it occurred after glucose depletion. A linear function of
time (t) with growth () and dose (d) as parameters was fitted to the loga-
rithmized cell counts (y), y = t-(uo — pg-d) + intercept. For metabolites, a linear
function was fitted to the metabolite concentrations. The P values for the
terms were calculated using the linear model fitting (fitim function) in a
scientific programming platform (MATLAB; MathWorks, Inc.); only the P
value for the dose term is reported in Fig. 4.

Genome-Scale Metabolic Model. The model was based on the Human Meta-
bolic Reaction database HMR 2.0, a generic genome-scale metabolic model
(23), from which reactions without support in RNA-seq data from HepG2
cells (67) were removed, based on a previous analysis (24). The biomass
equation was updated (S/ Appendix, Supplementary Methods and Tables
S1-54) and included the amino acid composition, which was estimated from
a proteomics dataset of HepG2 cells (26) and the amino acid frequency of
the proteins from an online database (68). Around 10% of the biomass
consists of metabolites, and the concentrations of these were taken from a
metabolomics study on iBMK cells (40). The maintenance energy expendi-
ture (1 mmol ATP h~' gdw™") and growth-associated energy expenditure (48
mmol ATP/gdw) were estimated from a literature survey of reported values
from various mammalian cell types (SI Appendix, Supplementary Methods
and Table S5) and was consistent with ATP expenditure estimated from
protein turnover (S/ Appendix, Fig. $10). Additional manual curation of the
model was performed (SI Appendix, Supplementary Methods and Tables
S6-59).

FBA. FBA was carried out using the RAVEN Toolbox (69). When indicated,
unique flux solutions were identified using the parsimonious FBA method
(70). Briefly, the list of reactions included in the model are transformed into
a stoichiometric matrix (S) with columns corresponding to reactions with
stoichiometric coefficients of the participating metabolites (rows). Under the
assumption of steady state, a flux distribution (v), expressed in millimoles
per gram dry cell weight per hour, is sought that maximizes flux through the

biomass synthesis reaction, which is expressed as a weighted (c)
maximization problem,

Sv=0

max c'v

min|v|

When indicated, a second optimization, i.e., pwFBA, is run to remove loops
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and reduce large fluxes. The absolute value of all fluxes is minimized, while
preserving the maximum flux through the objective function.

FVA. To find the range of possible metabolic fluxes, each flux is minimized and
maximized in turn, as previously described (71). For the FVA used in Fig. 3A,
the variability was reported for groups of reactions with the same function,
e.g., transport of glutamate; this was calculated by maximizing/minimizing
the sum of flux, taking stoichiometry into account; additionally, the growth
rate was constrained to the observed level with a 1% tolerance to account
for uncertainties.

pwWFBA. A set of ordinary differential equations (ODEs) were set up to describe
how cell dry weight (X) and metabolite concentrations (S) changes over time
(t), as a function of the specific growth rate (u), the specific exchange fluxes
(f), and spontaneous degradation rates (r),

dx
dt
ds

m:fX—rS.

=uX
[1]

All metabolites were assumed to be stable (r = 0), apart from glutamine,
which is known to undergo spontaneous degradation forming ammonia and
5-oxoproline (72), which was modeled by first-order kinetics (r = 0.0023 h™").
The experimentally observed cell dry weight and metabolite concentrations
at time 0 were used as boundary condition. FBA was used to calculate the
maximum attainable p from f. The ODE problem was solved for the time
intervals between each experimental sampling point after which the me-
dium volume was adjusted for the amount removed for the sample. When
metabolite concentrations reached predefined thresholds a new set of
specific exchange fluxes (f) was used, and p was recalculated using FBA. A
typical threshold was 0 mM, signifying metabolite depletion. The exchange
fluxes were manually fitted until there was agreement between predicted
and experimentally determined cell counts and metabolite concentrations.
To semiautomate this task, tentative timepoints for the growth phase
transitions were identified by piecewise linear regression of the log-
transformed cell count data. Tentative fluxes were estimated and fine-
tuned using least squares fitting to the metabolite concentration data using
an analytical solution of the ODE system. However, since these fits did not
take all of the constraints used by the ODE formulation into consideration,
e.g., the growth-effects of the fluxes, the estimated fluxes were manually
adjusted for agreement with the data.

mLL Estimates of Fluxes under Steady-State Conditions. To quantify the fluxes
under the identified steady state condition, parameter values were fitted to
the analytical solution of Eq. 1 (model),

X(t) = Xoet

S(t) = So + fxo(ef" -1
u

assuming exponential growth (u) and constant specific flux (f), and
neglecting spontaneous degradation, which was estimated to consti-
tute <5% of the glutamine flux at this time (S/ Appendix, Fig. S3). Changes in
medium volume due to repeated sampling were accounted for by seg-
menting the model into time intervals where volume was constant. The
estimates of initial concentrations, fluxes, and specific growth rate, as well as
the SD (o) for each observable, were estimated using the mLL formalism, as

e = model — data

In2z Ine® 1/e
mLL:Z_T‘T‘E(?)
maxmLL.

The 95% Cl was estimated by identifying parameter values with mLL esti-
mates equal to the optimum plus the inverse 2 distribution with one degree
of freedom and 95% probability. Each flux was fitted independently using
this method, resulting in multiple growth estimates with corresponding Cls.
The mean of the growth estimates and minimum and maximum of the Cls
were reported. To improve power the cell count, data from 6 and 22 mM
conditions were pooled, as there was no apparent difference in growth rate
between these conditions, and data from 55 and 48 h were pooled for the
0 mM condition, as there was no apparent increase in growth after 48 h. The
concentration of asparagine was below the detection limit and was ex-
cluded from the analysis.
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GEMpress and Shortest-Path Method. GEMpress takes a flux distribution as
input and lumps fluxes in such a way that all metabolites that are not branch
points in the metabolic network are canceled out (S/ Appendix, Supple-
mentary Methods). In brief, the shortest path between sets of metabolites
was calculated with a breadth-first search algorithm using the bipartite
graph of the GEMpress-reduced metabolic network as input. The weight for
cofactors was set to zero to avoid shortcuts through metabolites such as ATP.
The algorithm returns a list of metabolites and reactions that are involved in
the shortest path.

Sensitivity Analysis. The sensitivity of metabolic fluxes was investigated by
calculating their elasticities (E), i.e., percentage change in maximum growth rate
(Au) from percentage change in flux (Af): E = %. To prevent infeasible changes
in flux, the uptake fluxes were relaxed to allow lower than observed values.
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