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Natural killer cells (NK cells) are a crucial constituent of the innate immune system as they mediate immunity against viruses,
bacteria, parasites, and most importantly, tumor cells. The exact mechanism of how the innate immune system and specifically
NK cells interact with cancer cells is complex and is yet to be understood. Several factors that constitute the tumor
microenvironment (TME) such as hypoxia and TGF-f are believed to play a role in the complex physiological reaction of NK
cells to tumor cells. On the other hand, several risk factors are implicated in the development and progression of breast cancer,
most importantly: obesity. Cytokines released from adipose tissue such as adipokines, leptin, and resistin, among others, are also
believed to facilitate tumor progression. In this study, we aimed to build a triad of breast cancer, obesity, and NK cell
dysfunction to elucidate a link between these pillars on a cellular level. Directing efforts towards solidifying the link between
these factors will help in designing a targeted immunotherapy with a low side-effect profile that can revolutionize breast cancer

treatment and improve survival in obese patients.

1. Breast Cancer and Its Microenvironment

Breast cancer is considered the most common type of cancer
among women. The current global burden of breast cancer is
substantial as it affected approximately 2.3 million women in
2020 alone. Moreover, breast cancer accounts for 1 in every 4
cancer cases among females and is the preeminent cause of
death in women. It is estimated that 1 in 6 cancer deaths is
due to breast cancer and the approximate number of deaths
in 2020 was 684,996 [1]. Moreover, a wide range of risk
factors related to breast cancer are reported, including
postponement of childbearing, early menarche, genetic
mutations, and most importantly, physical inactivity and
obesity [2]. Despite the fact that breast cancer has a good
prognosis if discovered at early stages, 50-80% of the cases
are unfortunately discovered in later stages, making the

tumor cells more resistant to therapy, hence favoring a quiet
poor prognosis [3].

A number of factors influence management plans and
decision-making for patients with breast cancer. These fac-
tors include tumor morphology, grade, size, metastases, and
notably the expression of estrogen receptors (ER), progester-
one receptors (PR), and human epidermal growth factor
receptor 2 (HER2) [4-6]. Primarily, several biological sub-
types of breast cancer exist and can be delineated based upon
their genotypic and phenotypic features. This classification is
achieved by a multitude of laboratory techniques including
immunohistochemistry and genetic expression profiling.
Further genetic profiling and molecular analysis of breast
cancer led to its classification into several subtypes including
ER+ luminal A and luminal B, HER2-enriched, and triple-
negative breast cancer [7]. Histologic analysis of breast
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cancer is diagnostic and stratifies breast cancer to its sub-
types. It was identified that the most common subtype is
invasive ductal carcinoma, which makes up 50%-75% of
patients. The second most common subtype is invasive lobu-
lar carcinoma, making up 5%-15% of patients, while mixed
ductal/lobular carcinomas and other rarer histological sub-
types make up the remainder of patients [8].

Interestingly, according to a cohort study conducted in the
UK, a higher body mass index (BMI) in postmenopausal
women was associated with a 20-40% increased risk of breast
cancer development. This led to the development of a concept
known as the “obesity paradox” which implies that while mor-
bidly high BMI was associated with a poorer prognosis, a
moderately high BMI showed a better prognosis and response
to therapy in premenopausal women specifically [9, 10].

An overview of the breast tumor microenvironment
(TME) will help provide a better understanding of the role
of a variety of cell types, their effects on each other, and the
surrounding cells leading to the proliferation and metastasis
of the tumor. There are various cell types in the breast cancer
TME such as breast cancer cells, epithelial mesenchymal cells
(EMTs), and stromal cells which include fibroblasts, adipo-
cytes, endothelial cells, and immune cells. Cell adhesion is
reduced between tumor cells in the TME in comparison to
normal epithelium whereby cells are tightly attached to each
other via cell junctions and cell adhesion molecules (CAMs).
This feature of decreased adherence facilitates its dissociation
and proliferation [11]. Tumor cells divide in an uncontrolla-
ble manner, which mandates different oxygen and nutrient
supplies, needs to the cancerous cells at different locations
resulting in a hypoxic environment that alters protein expres-
sion leading to further mutations in tumor cells and triggers
angiogenesis allowing direct access to blood and lymphatic
fluid for metastasis [12]. Hence, cellular mutations could
result in uncontrollable cell division and hence the develop-
ment of a tumor [13].

One of the cell types present in the tumor microenviron-
ment is fibroblasts. Upon tissue insult, fibroblasts are con-
verted into myofibroblasts that could further transform into
tumor-associated fibroblasts (TAFs). TAFs play a major role
in promoting tissue fibrosis, angiogenesis, immunosuppres-
sion, and metastasis. Additionally, cytokines in the TME
facilitate the conversion of adipocytes into tumor-associated
adipocytes (TAAs). TAAs secrete additional cytokines, adi-
pokines, free fatty acids (FFAs), and matrix metalloprotein-
ases (MMPs), enrolling immune cells to the TME and
leading to further inflammation. Other cell types include vas-
cular cells that constitute a monolayer of endothelial cells
(ECs) that are in direct contact with the blood. ECs direct
inflammatory cells towards foreign molecules and the
inflammatory milieu in response to infection or inflamma-
tion [14]. Finally, immune cells are recruited to the TME,
as it represents a highly inflammatory site [15, 16].

2. Natural Killer Cells

The immune system is implied in the defense against patho-
gens and tumor cells. Both branches of the immune system,
namely, the innate and adaptive immune systems with their
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cellular components, soluble molecules, and cellular recep-
tors that have different functions, are ultimately aimed at
eradicating pathogens or tumor cells from the body. The
innate immune system constitutes the initial and early
response of the body and thus acts rapidly and in a nonspe-
cific manner to prevent the spread of the foreign pathogen.
This is achieved by a plethora of factors including but not
limited to complement activation and cytotoxic molecule
release as well as activation of other immune cells [17].

Natural killer cells (NK cells) are large granular lympho-
cytes that represent a crucial constituent of the innate
immune system as they mediate immunity against viruses,
bacteria, parasites, and most importantly, tumor cells [18].
NK cells are defined by the expression of an adhesion mole-
cule CD56 and by the absence of the T cell marker CD3
[19]. Several subdivisions of NK cells exist based on the cellu-
lar expression of CD56 and the Fc (gamma) receptor CD16.
The most common subdivision of NK cells is based on func-
tion, whether they primarily induce cytotoxic activity or
release proinflammatory cytokines. The cytotoxic cells are
mostly CD56%™ CD16""8" and represent about 90% of all
NK cells [20]. Cytotoxicity is mediated against target cells
by the secretion of cytotoxic molecules or death receptor-
mediated apoptosis. Granzymes and perforins are cytotoxic
molecules that result in cell death. Another possible method
is via activation of death cell receptors such as Fas ligand
and TNF-related apoptosis-inducing ligand (TRAIL), which
leads to the classical caspase-mediated apoptosis. The other
subtype includes CD56""8" CD16%™ that has an immuno-
regulatory role and releases many cytokines such as IFN-y
and TNF-« [21-23].

In addition, NK cell functionality is dependent and dis-
mantled by several factors. For instance, aging is a condition
that greatly impairs NK cells’ function [24]. Another major
factor that will be further discussed in this review is obesity.
Several factors are believed to affect NK cell function in obese
patients in comparison to lean patients. This formulates a
triangle of interest: obesity, breast cancer, and NK cell
dysfunction. In this review, we aim to further expand the link
between these factors and their effect on the innate immune
system in fighting breast cancer.

2.1. Mechanism of Natural Killer Cell Activation. NK cell
function is tightly regulated by a repertoire of membrane-
expressed inhibitory and activating receptors, which are the
“nuts and bolts” of NK cell function [25]. Inhibitory recep-
tors recognize normal healthy cells via the self-major histo-
compatibility complex (MHC) class I molecules and thus
play a crucial role in self-tolerance. NK cell inhibitory recep-
tors include members of the C-type lectin-like receptor,
leukocyte immunoglobulin-like receptors (LILRs), and the
killer immunoglobulin-like receptors (KIRs) [26, 27]. NK
cells are activated when they encounter other cells that are
not expressing MHC class I receptors like cancer cells or
viral-infected cells. Such cells are undergoing stress which
downregulates the expression of MHC class I and upregu-
lates the expression of other molecules/ligands that further
activate the NK cells. Upon this interaction, NK cells either
are either directly activated and eliminate the cells by
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cytotoxicity or indirectly release their proinflammatory
cytokines which will eventually result in the death of these
stressed cells. The lack of MHC class I expression is insuffi-
cient for the activation of NK cells, but other NK receptors
contribute to the complete activation of NK cells when
they are stimulated, including NKG2D and NCRs like
NKp30,NKp46, and NKp44 [28].

2.2. Natural Killer Cells and Breast Cancer. Being innate cells,
NK cells can lyse tumor target cells without prior sensitiza-
tion or clonal expansion, unlike T cells. NK cells play a fun-
damental role in cancer immunosurveillance by performing
their antitumor activity [29, 30]. This has been supported
by studies where elimination of NK cells led to increased
malignancy occurrence [31-33]. NK cells perform antitumor
activity when the expression of MHC class I molecules is
downregulated. Additionally, upregulation of stress-induced
molecules such as ligands of the activating receptor C lectin
receptor D (NKG2D) on tumor cells marks them susceptible
to NK cell killing [34]. Moreover, NK cells have been found
to enhance T cell infiltration, thus triggering immune
responses through their cytokines and chemokine secretion
[35, 36]. In addition, NK cells possess antimetastatic activity
by possible elimination of circulating tumor cells [36, 37].

The exact mechanism of how the innate immune system
and specifically NK cells interact with breast cancer cells is
complex and is yet to be understood. However, several fac-
tors that are released by breast cancer cells and constitute
the TME are believed to contribute to this complex physio-
logic reaction to tumor cells. Additionally, the TME is
thought to play a major role in various processes such as
tumor development, progression, growth, and metastasis.
Most importantly, TME mediates immune suppression lead-
ing to tumor progression by inhibiting the immune system
antitumor activities [38, 39].

2.3. Role of Natural Killer Cells in Tumor Microenvironment.
The protective functions of NK cells are hindered by the sup-
pressive cytokines found in the TME. Among the cytokines
released in the TME is tumor growth factor- (TGEF-) 3, which
is released by the tumor cells, Tregs, and other stroma cells.
TGEF-f is responsible for inhibiting the function of NK cells
in both direct and indirect manners. Initially, TGF-f sup-
presses the IFN-y production along with the levels of
NKG2D and NKp30 on the cell surface. Moreover, TGF-3
binds to certain receptors that contain TGFBR1 and TGFBR2
subunits that will propagate the signal transduction of phos-
phorylating SMAD2 and SMAD?3 proteins which will bind to
SMAD4 resulting in a heterotrimeric transcriptional struc-
ture. The SMAD proteins are the main signal transducers
for the receptors of the TGF-f superfamily. The role of
TGF- 3 was not only limited to disabling NK cells but also
to inducing the conversion of NK cells into NK-ILC-1, inter-
mediate cell type (int ILC1s) which is by default a weaker
cytolytic cell compared to NK cells. This will end up with a
poorer cancer surveillance and eventually pave the way for
further cancer evasion [40].

Metabolic derangement is one of the hallmarks charac-
terizing the TME, leading to NK cell dysfunction. For

instance, lactate level is increased in the TME and leads to
suppression of cytotoxic T cells and NK cell proliferation
and reduction of their cytokine production [41]. Further-
more, hypoxic environment such as that in the TME down-
grades the NK cell functions by inhibiting the activating
receptors such as NKG2D, NKp30, and CD16. Addition-
ally, studies demonstrated that the depletion of NK cells
prior to implantation of tumor cells in mice was found to
be associated with a more aggressive picture of tumor
metastasis [42-44].

An emerging role of NK cells in targeting tumor cells is
being recognized by their action on cancer stem cells. Cancer
stem cells (CSCs) are undifferenced cells involved in the
growth of tumors. They are characterized by an expression
profile consisting of low levels of CD54 and PD-1 and high
expression of CD44. This profile increases the susceptibility
of CSC to be targeted by NK cells but conversely induces
their resistance to chemotherapy. NK cells drive the CSCs
to differentiate in a way where the expression of MHC-1,
CD54, and PD-LI is elevated, resulting in stunted tumor
growth and decreased metastasis. This delineates the impor-
tance of NK cells not only in restraining tumors but also in
limiting their growth. On the contrary, other studies demon-
strated that the CSCs in breast tumors are resistant to any NK
cell activity and thus, more research is needed to further elu-
cidate and establish the true link between NK cells and CSCs
of breast cancer [45].

3. Obesity

Obesity can be defined as the excessive and abnormal accu-
mulation of adipose tissue and is commonly classified based
on the body mass index (BMI). The BMI of an individual
can be calculated by dividing the body weight in kilograms
by the height in meters squared (kg/m?) [46, 47].

Obesity has come to light as a major public health prob-
lem that leads to approximately 4 million deaths and 120 mil-
lion disability-adjusted life-years (DALY). According to the
WHO, obesity has tripled on a global scale since 1975. In
2016, 1.9 billion people at 18 or more were overweight or
obese. Unluckily, obesity rates in the MENA region are not
updated, but the indices show that the number of obese peo-
ple is escalating. This could be attributed to the higher levels
of urbanization and technical advancements in the MENA
region that contribute to a sedentary lifestyle and unhealthy
food options [48]. Most of the subsequent complications
caused by obesity share a common feature which is a state
of subclinical chronic inflammation that is a crucial compo-
nent of tumor development and progression [49].

Being obese or overweight is a well-known risk factor for
the development of several chronic health disorders such as
type 2 diabetes and cardiovascular diseases, among many
others. Along with obesity comes an increased susceptibility
to infection and decreased ability to fight off infections effi-
ciently. Most importantly, there is an increase in the incidence
of several types of cancers, e.g., colorectal, endometrial, pan-
creatic, and breast cancer, with an increased incidence and
poorer prognosis in obese patients. In fact, 14-20% of the
cancers have been attributed to obesity [50].



Consequently, obesity results in the increase in the accu-
mulation of adipose tissue mass. Adipose tissue, in lean state,
acts as an energy-storage reservoir and the largest endocrine
organ that is thought to secrete a multitude of adipokines
including but not limited to leptin, adiponectin, resistin,
and estrogens as well as interleukin-6 (IL-6), all of which
orchestrate a variety of reactions in the body. On the con-
trary, examples of anti-inflammatory and adipose-resident
immune cells are Tregs, eosinophils, T-helper 2 cells, and
M2 macrophages [51]. Adipocytes are the prominent pro-
ducers of leptin in the body, where leptin acts a stimulator
of multiple proinflammatory reactions and the production
of IL-1, IL-6, IL-12, TNF-«, COX2, and nitric oxide (NO).
Leptin levels are found to be higher in obese patients in com-
parison with lean patients contributing to the chronic inflam-
mation that occurs in obesity. In fact, a study suggested that
levels of leptin could be used to predict type, grade, progno-
sis, and recurrence in breast cancer based on its immunohis-
tochemical staining [15, 52]. It is worth mentioning that the
expansion of adipocytes to meet the increased energy storage
demands could eventually cause these cells to become apo-
ptotic, thus attracting proinflammatory macrophages and
forming crown-like structures: a hallmark of the inflamma-
tory environment in adipose tissue [53].

3.1. Breast Cancer and Obesity. Even though inherited genetic
factors such as BRCA1/2 mutations result in 5-10% of cases
of breast cancer, lifestyle is now considered as an increasingly
contributing factor to the etiology of breast cancer [54]. The
incidence of breast cancer recurrence and mortality rate
increases with obesity due to the dysregulation of a variety
of biological and nonbiological factors. These factors include
advanced stages of breast cancer presentation, increased risk
of second primary cancer (i.e., primary cancer in other tis-
sues), and the use of a suboptimal level of chemotherapeutic
agents compared to the relative body size [55].

There is an aberration involving multiple molecular
pathways involving adipokines, endogenous sexual hor-
monal levels, and most importantly, inflammation [56].
Out of these molecular pathways, there is an abnormal regu-
lation in the levels of estrogen due to the aromatization of the
adipose tissue. Inflammatory cytokines are thus recruited
such as TNF-q, IL-6, and prostaglandin E2 adipokines, not
to mention oxidative stress, which contributes to carcinogene-
sis. The molecular factors induce intracellular interference
which activate mitogen protein kinase (MAPK) and phospha-
tidylilinositol-3-phosphate/mammalian target of rapamycin
(mTOR pathway), which play a role in the progression of cell
cycle and protein synthesis. In breast cancer, the associated
genes of obesity collectively lead to an increase in fat mass
and production of cytokines such as leptin, which has been
associated with a higher risk of cancer development [56].

In addition, the association of breast cancer with adipos-
ity has been linked to higher energy states that may enhance
tumor growth by providing an increased level of ATP for
inducing cell growth and replication. There is evidence for
a “metabolic threshold” in promoting breast cancer, which
was supported by the development of targeted metabolic
inhibitors as cancer therapeutics [57, 58].
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3.2. Natural Killer Cells and Obesity. There is evidence that
points towards a decrease in the number of NK cells in the
blood and tissues of obese individuals. Furthermore, there
is a decrease in the number of NK cells in the blood and
organs of obese rats [59-62]. Other data reveal no change
in the number of NK cells or even an increase in the NK cells
present in the blood and tissues of obese individuals [60-66].
This can be attributed to several various factors including but
not limited to metabolic differences between species and
strains as well as discrepancies between the development
and migration processes of NK cells in different species
[67]. In addition, such discrepancies could be due to several
reasons including the choice of markers and quantitative
methods used for NK cells as well as differences in the study
population such as BMI, gender, ethnicity, body composi-
tion, and variance [68, 69].

From a functional prospective, data in obese individuals
revealed a clear decrease in the activating receptors on NK
cells, namely, NKp46, as well as TRAIL, functional markers
of NK cells [60]. On the other hand, other studies revealed
a highly activated status of NK cells in obese individuals, as
highlighted by an increase in the expression of CD69 and
NKp46 as well as PD-1, while there was a decline in the inhi-
biting complex NKG2A/CD94, thus indicating an activated
status of NK cells [70]. While NK cells seemed to be increas-
ingly activated, their functionality was greatly impaired as
evidenced by a decreased secretion of mediators necessarily
for their function such as granzyme B, perforin, and macro-
phage inflammatory protein f. This decline in functionality
could be attributed to exhaustion of NK cells which occurs
faster in obese individuals compared to normal-weight indi-
viduals [71, 72]. To further confirm findings on the effect of
obesity on NK cell function, some studies interestingly dem-
onstrated that the impaired NK cell function can be restored
and normalized following the loss of body weight and fat
mass in obese individuals. This includes an increase in the
CD69 levels and granzyme B secretion as well as a decrease
in IFN-y production [73]. On the other hand, several studies
associated the caloric restriction with improved NK cell cyto-
toxicity and elevated expression of activation markers CD69,
TNF-a, and GM-CSE. However, few studies showed a
decrease in NK cell numbers and cytotoxicity upon weight
reduction [59].

Interestingly, chronic low-grade inflammation of fat tis-
sue can be appreciated by an increase in immune cells such
as macrophages, T cells, and NK cells [74]. Studies show
varying data with regard to NK cells in adipose tissue. Some
studies reported an increase in NK cells in adipose tissue of
obese individuals, while others demonstrate a decreased or
no change in the number of NK cells between obese and lean
individuals [74-78]. However, a shift from the cytotoxic
CD56%™ subpopulation of NK cells to the CD56°¢" cyto-
kine secreting subset was observed in obese individuals,
which serves to explain the reason for increased cytokine
secretion in obese individuals [79]. In mice, an increased level
of activating receptor NKp46 on adipose tissues seemed to
increase the proliferation of NK cells that secrete IFN-y,
which eventually leads to a polarization in macrophages to
the M1 proinflammatory macrophages [74]. A decreased
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expression of NK cells activating receptors such as NKp30
and NKp44 was observed in adipose tissue of obese individ-
uals, which might be a contributing factor to the increased
risk of cancer development in obese individuals as well as
increased susceptibility to infection [79].

In obesity, there are higher levels of free fatty acids
(FFAs) circulating freely all over the body. NK cells have
shown to absorb these FFAs and accumulate lipid droplets.
Interestingly, NK cells that accumulated more lipid droplets
had merely zero perforin and granzyme levels as detected
by flow cytometry, resulting in impaired NK cell cytotoxicity
against cancer cells and hence helping the tumor cells to fur-
ther grow and metastasize. Lipid-rich environment was
proven to disturb the mTORCI pathway in NK cells, a path-
way that plays a prominent role in the NK cell function and
IFN-y production [80]. On the other hand, obesity could be
a stimulator of the peroxisome proliferator-activated recep-
tor PPARa/0 target genes in NK cells that encourage the
NK cells to further accumulate more lipids and hence hinder
the cytotoxicity of NK cells [81]. NK cells residing in the vis-
ceral adipose tissue (VAT) are activated due to the increased
stimulation of NCR-1 signaling by the surrounding adipo-
cytes. As a result, IFN-y production is elevated which elicits
M1 polarization in the macrophages residing in the adipose
tissue. Moreover, M1 macrophages have a pivotal role in
inducing further inflammation, further contributing to insu-
lin resistance and obesity. This was further proved by a study
where the total number of macrophages and specifically M1
macrophages was lower in NK-depleted mice compared to
normal mice fed with a high-fat diet (HFD) [74].

Moreover, NK cell functions and cytotoxicity were seen
to improve following restriction of energy intake and low-
fat diet [82-84]. Most studies demonstrate a stimulating
effect of caloric restriction on NK cell function, while others
have demonstrated opposite findings with reduced killing
and impaired maturation of NK cells as well as decreased
cytokine production [85, 86]. Lack of weight cycling was
associated with higher NK cell activity, demonstrating
improved NK cell function with lack of weight gain and
weight loss [87]. Similar findings were seen with bariatric
surgery effects with contradicting findings [88, 89].

Another possible link between NK cells, obesity, and can-
cer was highlighted in the study by Mariani et al. This study
showed a reduced NK cell number in the colon tissue of
obese patients in comparison to normal-weight patients.
Hence, this could be a contributing factor to the increased
risk of colon cancer in obese individuals [84].

4. Natural Killer Cell-Mediated
Immunotherapeutics in Breast Cancer

As noted from the previous sections, NK cells are unique
in exerting an innate immune activity that is antigen
independent. They represent an excellent companion to
immunotherapy in clinical settings by having the ability
to distinguish “self” from “missing-self.” Over the last few
years, many studies showed NK cells as promising effectors
in tumor therapy [90]. There is mounting evidence of

the potential use of NK cells as a therapeutic tool in
clinical practice.

There are still many open research questions related to
NK cell metabolism modification in a trial to enhance the
survival and activity of those key promising cells in the
TME of solid tumors, including breast cancer. Several meta-
bolic modulation strategies were investigated to support the
NK cell survival and activity in the TME. Naturally, NK cells
survive for 2 weeks [18, 20], but the infusion of IL-2 and/or
IL-15 showed advantageous effects on the NK cell survival
(as in the context of adoptive transfer therapy in patients
with acute myeloid leukemia) [91]. Another study by Liu
et al. showed that IL-15 production by transduced cord blood
NK cells critically improved their function [92]. These strat-
egies are likely to improve delivering this therapy in the clin-
ical setting and to overcome a major limitation to current
CAR-T cell therapies. It should be noted that defining a met-
abolic pathway for the NK cells is a step towards identifying a
therapeutic target that addresses this pathway and specifi-
cally activates the cytotoxic activity of the NK cells. Produc-
tion of certain metabolites limits the survival and function
of NK cells, including pyruvate dehydrogenase kinase 1, lac-
tate dehydrogenase A (LDHA), and adenosine (ADO) [93].
Interestingly, lipid-lowering drugs represent a potential ther-
apy for patients with ER-positive breast cancer. In contrast, a
recent study by Qin et al. on liver-tumor-bearing murine
model suggested that cholesterol accumulation in NK cells
enhances their antitumor ability through increasing the for-
mation of lipid rafts [94]. The results of the latter study reflect
the diverse function of lipid metabolism in different cancers.
In addition, direct activation of the citrate-malate shuttle was
demonstrated to enhance glucose metabolism and hence NK
cell cytotoxicity and may have a role in their persistence/sur-
vival [95]. Additionally, a study on CD8+ T cells reported
that cell activation under the effect of 2-deoxy-glucose
(2DG) inhibitor enhanced the generation of memory cells
and antitumor functionality, which could be applied to NK
cells as well [96].

On the other hand, activation of the transcription factor
SREBP (sterol regulatory element-binding protein) and its
control of glucose and lipid metabolism were found to be
essential for the function of NK cells. Furthermore, SREBP
was reported to be essential for activated NK cells, as it pro-
vides metabolic reprogramming [97]. A study by Wu et al.
showed that SREBP inhibitors such as 27-hydroxycholesterol
(27HC), accumulating in the TME, partly affect SREBP-
related glycolysis in ER-positive BC [98]. Interestingly,
Baek et al. reported that treating mice submitted to high-
cholesterol feed with an inhibitor of CYP27A1, an enzyme
important in 27HC biosynthesis, clearly decreases the
number of metastases in mice and reverses the immune
suppressive environment [99].

5. The Triad: Effect of Obesity on Natural Killer
Cell Functions in Breast Cancer

Glucose and lipid metabolism is generally highly activated in
breast cancer. This was demonstrated by several metabolo-
mic studies of breast cancer specifically revealing enhanced
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FiGure 1: Triad of obesity, natural killer cells, and breast cancer. Typically, natural killer (NK) cells release perforin and granzyme B,
molecules that cause cytotoxicity and induce apoptosis of breast cancer (BC) cells. Additionally, NK cells stimulate the expression of
CD54, PD-L1, and MHC class I molecules on cancer stem cells, which inhibit the metastasis and proliferation of breast cancer cells. In
turn, hypoxic environment of breast cancer cells and secreted TGF-f8 by stromal cells in the tumor microenvironment (TME) cause a
reduction in the activating receptors (NKG2D and NKp30) as well as the NK cell function: IFN-y production and cytotoxicity via perforin
and granzyme B release. Similarly, adipose tissue causes a reduction in TRAIL, NKp30, and NKG2D expression in obese patients. Lipid
droplet accumulation in NK cells leads to a reduction in cytokine release such as IFN-y. Controversial data were reported regarding the
count and status of NK cells in obese individuals. On the other arm, adipose tissue secretes IL-6, PGE2, TNF-a, and adipokines such as
leptin which trigger the proliferation of breast cancer cells via the MAPK and mTOR pathways.

fatty acid synthase and glycolysis. Obesity exerts a status of NK
cell immune paralysis by affecting the NK cell metabolism and
trafficking in the TME [81]. Previous reports showed that met-
abolic reprogramming of NK cells in obesity limits the antitu-
mor responses through different mechanisms, mainly through
PPAR«/S pathway and inhibition of mTOR-mediated glycol-
ysis [81]. Michelet et al. showed a plausible mechanistic
effect of obesity that enhances lipid accumulation in NK cells
through a peroxisome proliferator-activated receptor (PPAR),
leading to inhibition of the mechanistic target of rapamycin-
(mTOR-) mediated glycolysis in NK cells. In obesity, PPAR«/§
target genes are highly upregulated, thus causing inhibition of
IFN-y production as well as the downstream transcription of
other cytotoxic granules in adipose tissue NK cells [81]. This
illustrates the inhibitory effect of obesity on NK cell function,
which in turn contributes to further growth and metastasis of
tumor cells. It is important to note, however, that NK cell
function can also be impeded by breast cancer cells through
the aforementioned factors such as hypoxia and increased
production of TGF-f which lead to decreased perforin and
granzyme B secretion from NK cells, hence reducing its antitu-
mor activity (Figure 1). Collectively, both breast cancer and
obesity lead to enhanced breast cancer proliferation through
distinct but directly related pathways, thus promoting tumor
growth and metastasis.

6. Conclusions

In this review, we aimed to investigate the triad: obesity,
breast cancer, and NK cells, to aid in the understanding of
the various effects of these players in breast cancer develop-
ment and progression. Extensive research is still ongoing to
pin down the biomarkers associated with various types of

breast cancer that impede NK cell function. Targeting these
factors will help in designing targeted immunotherapy with
a low side-effect profile [100]. Despite the fact that NK cells
are short-lived and targeting them might not help in having
a prolonged anti-inflammatory reaction against tumor cells,
ongoing research is still trying to obtain features of immuno-
logical memory which result in increased NK cell survival
and efficacy [101, 102]. More studies are required to solidify
the link between obesity, breast cancer, and NK cells and to
identify other factors that may play a role in their interaction.
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