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Abstract

The 3-dimensional fold of an RNA molecule is largely determined by patterns of intramolec-

ular hydrogen bonds between bases. Predicting the base pairing network from the

sequence, also referred to as RNA secondary structure prediction or RNA folding, is a non-

deterministic polynomial-time (NP)-complete computational problem. The structure of the

molecule is strongly predictive of its functions and biochemical properties, and therefore the

ability to accurately predict the structure is a crucial tool for biochemists. Many methods

have been proposed to efficiently sample possible secondary structure patterns. Classic

approaches employ dynamic programming, and recent studies have explored approaches

inspired by evolutionary and machine learning algorithms. This work demonstrates leverag-

ing quantum computing hardware to predict the secondary structure of RNA. A Hamiltonian

written in the form of a Binary Quadratic Model (BQM) is derived to drive the system toward

maximizing the number of consecutive base pairs while jointly maximizing the average

length of the stems. A Quantum Annealer (QA) is compared to a Replica Exchange Monte

Carlo (REMC) algorithm programmed with the same objective function, with the QA being

shown to be highly competitive at rapidly identifying low energy solutions. The method pro-

posed in this study was compared to three algorithms from literature and, despite its simplic-

ity, was found to be competitive on a test set containing known structures with pseudoknots.

Author summary

The recent FDA approval of mRNA-based vaccines has increased public interest in syn-

thetically designed RNA molecules. RNA molecules fold into complex secondary struc-

tures which determine their molecular properties and in part their efficacy. Determining

the folded structure of an RNA molecule is a computationally challenging task with expo-

nential scaling that is intractable to solve exactly, and therefore approximate methods are

used. Quantum computing technology offers a new approach to finding approximate

solutions to problems with exponential scaling. We formulate a simplistic, yet effective,

model of RNA folding that can easily be mapped to quantum computers and we show

that currently available quantum computing hardware is competitive with classical

methods.
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Introduction

RNA molecules fold into complex secondary structures, which determine their molecular

properties such as thermal stability and compactness. In addition, RNA folding has an impact

on RNA function in protein translation, transcriptional regulation, and other vital cellular pro-

cesses [1–3]. Secondary structure is also key to the function of synthetic RNAs which are used

in a variety of applications ranging from protein design and genome editing to mRNA vaccine

development (for example, [4–6]).

Methods for RNA structure determination are therefore of great interest and importance

for basic research, applied biotechnology, and rational drug discovery. Experimental

approaches developed for this purpose are extremely time consuming and expensive, and

therefore their use is limited in practice. Computational methods are an attractive alternative

as they aim to predict the folded structure of an RNA molecule based solely on sequence infor-

mation, which can be readily obtained from high-throughput sequencing experiments. There

are varied approaches to computational RNA structure prediction, ranging from physics-

based methods that assign thermodynamic scores to a pre-defined set of structural features [7–

9], to deep learning models trained on large RNA databases [10–13].

Like proteins, secondary structure of RNA molecules is largely determined by the sequence.

Unlike proteins, where the folding is a global process largely driven by hydrophobic forces, sin-

gle-stranded RNA molecules undergo a hierarchical folding process that is dominated by the

formation of hydrogen bonds between nucleotides. Compared to protein folding, the forma-

tion of RNA tertiary structure is relatively slow. The RNA folding process involves the forma-

tion of strong restrictive local geometries which usually results in well-defined, thermally

stable structures with little flexibility compared to protein structures [14].

The standard RNA hydrogen bonding pairs, (GC and AU) are known as the Watson-Crick

base-pairs. Another common type of interaction that can form, known as the Wobble interac-

tion, is between G and U. A variety of local structures, such as internal loops, hairpin loops,

stacks, bulged loops, and multi-loops, can be formed by Hoogsteen- or CH-edges and Sugar-

edges. Such edges can accommodate types of interactions other than Watson-Crick type edges,

including the formation of base triplets (base-pairs between three bases) that can modulate the

stability of helices all the way to quaternary structures. A set of consecutive base pairs is often

referred to as a stem or a helix, but the particular definitions are not consistent across litera-

ture. RNA structures also undergo formation of long-range interactions such as pseudoknots,

which occur when base pairs cross without overlapping (see Fig A in S1 Text).

RNA structure prediction is a computationally expensive task, particularly when the solu-

tion space includes pseudoknots. Folding algorithms that do not account for pseudoknots tend

to scale polynomially, with the most efficient method having sub-cubic scaling [15]. There also

exist approximate methods that have been shown to have linear scaling [16]. A widely used

minimum free energy (MFE) approach to RNA secondary structure with pseudoknots is an

NP-complete computational problem [17]. For an RNA strand with N possible stems, the total

size of the combinatorial space is 2N. Many of the possible combinations of stems are invalid,

and one of the challenges of the algorithm is to efficiently exclude these invalid regions and

focus on the relevant parts of the search space. For example, the SARS-CoV2 spike glycopro-

tein segment of the Pfizer-BioNTech COVID-19 vaccine [18] contains approximately 486,000

possible stems, so the total combinatorial space contains 2486,000 (~ 10146,440) possible solu-

tions. For reference, the number of atoms in the universe is approximately 1080, inferred from

the cosmological parameters presented in the Planck Collaboration [19]. Although many of

the possible combinatorial solutions likely contain overlapping stems, the majority of the

potential stems cannot be excluded from the set a priori. Therefore, the total number of
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evaluations required to exhaustively sample the solution space grows exponentially with the

number of stems. Since the solution space cannot be exhaustively sampled for many biologi-

cally relevant RNA sequences, either an alternative approach is required to identify an approxi-

mate solution, or pseudoknots must be disregarded. Classic approaches to sampling RNA

secondary structure configurations utilize dynamic programming [9,20,21], while more recent

methods have employed simulated annealing and Monte Carlo methods [22–24]. In this

study, we investigate the viability of utilizing quantum computers (QCs) to efficiently identify

high-quality solutions to RNA secondary structure prediction.

To date state-of-the-art quantum devices are able to outperform classical computers in a

narrow range of tasks [25,26], however, there have not yet been any concrete demonstrations

of quantum advantage for commercial applications primarily due to the fact that QCs are lim-

ited in size and capabilities [27]. It is speculated that the pharmaceutical, chemical, and life sci-

ences industries will be the first fields to benefit from quantum computing technology [28,29].

While applications utilizing quantum mechanical calculations, such as quantum chemistry,

have clear maps to QCs (see, for example, [30–33]) at present these problems require too

many qubits for current hardware to solve industrially relevant problems [29,34]. To date

there are primarily two models of QCs: gate model and quantum annealing. Gate model quan-

tum devices have a broad application range and are the most commonly used for quantum

chemistry and quantum machine learning calculations. An alternative design, pioneered by

the company D-Wave, is the QA. Compared to the multitude of applications of gate model

QCs, QAs have a much narrower range and only focus on optimizing solutions to problems by

minimizing a problem Hamiltonian. To date, QAs containing thousands of qubits have been

built, and these devices are capable of solving sufficiently large discrete combinatorial optimi-

zation problems to permit testing against real world industrial use-cases. Rather than being

programmed by sequences of quantum operators, QAs are designed to anneal quadratic Ham-

iltonians in the form of Eq (1).

H ¼
X

i

hiqi þ
X

j

X

k<j

Jjkqjqk ð1Þ

Here, qi, qj, and qk represent the values of the qubits which can either be {0, 1} or {-1, 1} for

binary or spin representations, respectively, hi are the one-body terms, and Jjk are the two-

body interactions. For the Ising model of a ferromagnet, h represents the magnetic dipole

moments of the atomic spins and J represents the energy of the interactions between the spins.

The D-Wave QA used in this study is an analog device containing approximately 5,000

qubits. The device is programmed by setting values of local magnetic fields and coupling

strengths, and the annealing process works by adiabatically lowering the strength of a trans-

verse magnetic field. This design is similar to simulated annealing of an Ising Hamiltonian,

with the key difference being that the annealing process avoids getting trapped in local minima

via quantum tunneling instead of thermal fluctuations, and the probability of hopping out of a

local minimum is determined by the width of the barrier rather than the height [35]. QAs

therefore provide a compelling strategy for solving combinatorial optimization problems that

can be broken down into one- and two-body interactions, and these types of problems could

offer quantum advantage for practical use-cases in the near term [36]. For example, a recent

study explored the potential for leveraging QAs and gate model devices for codon optimiza-

tion, a crucial process in reagent generation and mRNA vaccine development [37].

In this study we show that the RNA secondary structure prediction problem can be mathe-

matically formulated as a BQM and thus be addressed using quantum computing technology.

This representation requires translating the objective function utilized in classical approaches
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to a polynomial Hamiltonian where the eigenstates represent combinations of secondary

structure elements, and the eigenvalues represent the scores. Implementing this approach on

the D-Wave Advantage 1.1 hybrid solver provides performance competitive with a parallel

replica exchange Monte Carlo (REMC) algorithm utilizing 64 cores programmed with the

same objective function.

Results

RNA secondary structure prediction was implemented as a BQM on a D-Wave QA with a

Hamiltonian designed to optimize the number of non-overlapping, consecutive, intramolecu-

lar base pairs (HB) with penalties imposed for pseudoknots (δp) and additional constraints to

prevent bases from forming more than one base pair (δc) (see Methods for derivations and

mathematical details).

H ¼ cBHBdp þ cLHL þ dc ð2Þ

In this simplified equation, HL is an energetic term that rewards longer stems and cB and cL

are tunable constants. The list of all possible stems is pre-computed classically using the meth-

ods described in [24]. It is important to note that the list of all possible stems is not just the list

of maximal stems, rather, it is an exhaustive list of all possible sub-stems. Fig 1A shows an

example matrix formulation for sequence: GGAAGCAAACAUCCCUGU, and Fig 1B pro-

vides a visualization of the base pairing patterns identified in Fig 1A. The classical data was

encoded onto the quantum device by mapping each possible stem to a qubit (Fig 1C). The

qubits which return “1” upon measurement represent the stems contributing to the secondary

structure. The final secondary structure pattern is determined by recording the values of the

qubits and saving all stems represented by qubits that returned “1”.

Fig 1. (a) Matrix representation of potential base pairs. Stems are highlighted in shades of gray and outlined in black

or blue. The colors serve only to help distinguish the stems. (b) Structural representations of stems. Grey lines indicate

covalent bonds, red lines indicate base pairing, and dashed purple lines represent base pairs in a pseudoknot

configuration. The color of the boxes map to the stems identified in (a). (c) Each possible stem is assigned to a qubit on

the quantum device. If the qubit returns “1”, then the associated stem is included in the RNA secondary structure.

Otherwise, the stem is excluded.

https://doi.org/10.1371/journal.pcbi.1010032.g001
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Directly programming the Quantum Processing Unit (QPU) with the BQM yields noisy

data. Fig B in S1 Text shows the distribution of scores for systems requiring up to 45 physical

qubits while Table D in S1 Text provides a tabulated version of the results. There are a multi-

tude of factors that contribute to the noise, such as thermal fluctuations, and in general the

noise is exacerbated by increasing the number of qubits. However, D-Wave offers a hybrid

solver which uses a classical device to break down the problem into smaller pieces that are han-

dled by the QPU. The following sections compare the performance of the hybrid solver against

a REMC algorithm programmed with the same objective function and exact enumeration of

the solution space where possible.

Exact enumeration (< = 45 stems)

Problems with sufficiently small solution spaces can be solved exactly. An MPI-enabled solver was

written (see Methods) to exhaustively solve systems using massively parallel resources. Using this

method, systems containing up to 45 qubits (245 (~1013) possible solutions) can be solved in

under 24 hours using 7,900 CPU cores. Comparing the lowest energy solution to the experimen-

tally determined solution (referred to as the known solution) is used to assess the suitability of the

objective function. The structure predicted by the algorithm is compared to the known solution

by computing the sensitivity and the specificity. The sensitivity reflects the fraction of experimen-

tally determined base pairs that were correctly identified. A high sensitivity score (maximum

score is 1) means the algorithm predicted every experimentally determined base pair and a low

sensitivity score (minimum score is 0) means the algorithm did not predict many of the experi-

mentally determined base pairs. The specificity reflects the fraction of predicted base pairs that

map to the experimentally determined structure in the correct order. A specificity score of 1 indi-

cates that the algorithm only predicted base pairs that match the known structure, and a low score

indicates that the algorithm predicted many base pairs that do not map to the known structure.

A test set was derived by scraping PseudoBase for examples of RNA sequences with experi-

mentally confirmed structures containing pseudoknots [38–40]. Redundant sequences,

defined as sequences with higher than 95% similarity, were removed from the set. The number

of possible stems was computed for the remaining sequences in the database, and it was found

that most sequences yielded too many possible stems for exact enumeration. To reduce the

total number of possible stems down to a set small enough for exact enumeration, the length

of the smallest possible stem was increased to 4. This restriction excludes stems of lengths 2

and 3 from the sets, thereby reducing the size of the combinatorial solution space. Imposing

this constraint resulted in a test set containing 27 sequences. Fig 2A shows an example pseudo-

knotted structure from the test set. Fig 2B shows the sensitivity of the objective function was

calculated to be 0.97 and the specificity was found to be 0.93, indicating that 97% of the experi-

mentally determined base pairs were recapitulated by the algorithm, and 93% of the base pairs

predicted by the algorithm correctly map to the experimentally determined structures. The full

list of results can be found in Table A in S1 Text.

The same analysis was performed using the REMC and QC methods. The average results

are shown in Fig 2B, and the full list of results are shown in Table A in S1 Text. Each system

was run 1 time through each algorithm, and in every case the result obtained matched the

result from exact enumeration. Therefore, both methods are able to rapidly identify the mini-

mum energy solution with high probability for systems containing fewer than 45 stems.

Simulated annealing vs. quantum computing (>45 stems)

Scaling the system size beyond 45 stems requires tremendous computational resources for

exact enumeration therefore these systems are only evaluated against approximate methods.
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Systems containing 45–881 stems were evaluated using both the REMC and QC methods. Simi-

lar to the previous section, the test sequences derive from PseudoBase. However, the minimum

stem length was set to 3 and the minimum loop length was set to 2, allowing for significantly

larger problem sizes. Each sequence was run through both algorithms 10 times to estimate the

variance of the results. The sensitivity and specificity in these cases are less indicative of the fit-

ness of the objective function since it is unlikely that the true minimum energy solution will be

found each time. Fig 3A compares the scores of the REMC and QC methods. Points that fall on

the dashed line indicate that the same exact score was found for both methods. Points that fall

below the line indicate that the QC method found a lower energy solution, and similarly points

above the line indicate the REMC method found a better solution. On average, the methods

produce results of similar quality. Fig 3B shows the ensemble average sensitivity and specificity

for each method. The REMC method reported slightly higher sensitivity and specificity than the

QC method. The full list of results can be found in Table B in S1 Text.

Comparison to existing methods

The results presented in the previous sections were compared to three algorithms found in the

literature. Two of the methods, SPOT-RNA [11] and ProbKnot [41], are capable of predicting

pseudoknots while the other method, ViennaRNA [42], is not. The algorithms were tested on

the same datasets as the previous sections. Fig 4 shows a summary of the overall sensitivity and

specificity for each method applied to each dataset, listed in descending order. The method

presented in this study had the best overall performance on both datasets. All methods per-

formed worse on the dataset containing larger systems (> = 45 stems) compared to the dataset

containing smaller systems (<45 stems).

ViennaRNA yielded the poorest agreement with both datasets. Given that the method is

not advertised to predict pseudoknots, this was the expected outcome. SPOT-RNA, a recently

Fig 2. (a) Example RNA sequence from simian retrovirus type-1 (SRV-1) with structure containing pseudoknot

correctly predicted by algorithm (PDB code: 1E95). The phosphate backbone is colored white for unpaired bases. (b)

Exact Enumeration (EE) was used to compute the sensitivity and specificity of the proposed Hamiltonian (Eq 13) for

systems containing 45 stems or fewer. Replica Exchange Monte Carlo (REMC) and quantum computing (QC)

methods were tested on the same sequences and were found to exactly recapitulate the lowest energy solutions found

by exact enumeration.

https://doi.org/10.1371/journal.pcbi.1010032.g002
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proposed method using an ensemble of deep neural networks, performed almost as well as the

QC on the dataset containing sequences with more than 45 stems and had overall the most

consistent performance between the two datasets. A tabulated comparison of the three algo-

rithms can be found in Table C in S1 Text.

Discussion

Quantum computers have the potential to drive an exponential leap in computational power

and, thus, the ability to provide faster and more accurate solutions to certain types of problems

—particularly those involving an intractably large space of possible solutions. In silico RNA

folding is an important task that falls into this category given a huge number of secondary

structures that can be found for a given RNA sequence. The purpose of this study was to pres-

ent a model that enables RNA structure prediction using existing quantum hardware.

Fig 3. Replica Exchange Monte Carlo (REMC) and Quantum Computing algorithms were tested on systems

containing more than 45 stems, which exceeds the practical limit of what can be solved with exact enumeration.

The eigenvalues of the lowest energy systems are compared in (a). The dashed line represents y = x.

https://doi.org/10.1371/journal.pcbi.1010032.g003

Fig 4. Comparison of methods on the datasets described in previous sections. Exact Enumeration (EE) is not

computed for systems containing more than 45 stems.

https://doi.org/10.1371/journal.pcbi.1010032.g004
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QAs were chosen to demonstrate the viability of the method due to the relative maturity of

the technology, but BQM’s are readily implementable on all types of QCs. A recent study com-

pared the performance and accuracy of QAs and gate models for a BQM describing a biologi-

cal system and showed that the gate model platforms lack the qubits and physical connectivity

required to test realistically large systems [37]. However, there are proposals to build gate

model error corrected devices with up to 1,000,000 qubits by 2025 [43]. Such a device would

be capable of encoding the 10146,440 possible solutions to the RNA structure of the SARS-CoV2

spike glycoprotein. Existing solutions based on conventional hardware have employed several

strategies to deal with the dauntingly large space of possible solutions. For example, some

methods only consider base pairs formed by nucleotides not further than N positions apart,

whilst others disregard pseudoknots. Although these strategies make the problem more feasi-

ble, long-range structures and pseudoknots are known to have important molecular functions.

Therefore, the ability to find better approximations to massive combinatorial problems like

this could have a tremendous impact on vaccine design and drug discovery. The objective

function used in this study is designed to jointly maximize the number of base pairs and the

average length of the stems. There are cases where the sampling methods identify patterns of

base pairs that score higher in our metric than what is observed in nature, indicating that the

scoring function does not perfectly recapitulate the physics driving RNA folding. However,

despite the simplicity of the scoring function, it was shown that the algorithm correctly identi-

fied the natural base pairs with 97% sensitivity and 93% specificity in smaller cases where exact

enumeration was possible. There were 4 cases where either the sensitivity or the specificity was

below 0.75. In one of the cases, the algorithm preferred a configuration containing four stems

of length five instead of two stems, one of length five and one of length six. In the other 3 cases

the algorithm found solutions containing more base pairs with at least 70% specificity.

In larger cases where exact enumeration is impossible, both the quantum and the REMC

methods yielded results of similar quality using similar amounts of execution time. Without

knowing details about the classical hardware used by D-Wave’s hybrid algorithm, it is difficult

to make concrete performance comparisons between the QA and REMC approaches. In gen-

eral, larger systems tended to have poorer agreement with experimentally determined struc-

tures. Overall, the method presented in this study outperformed the three comparator

methods in terms of sensitivity and specificity. However, the datasets used in this study only

included structures containing pseudoknots, but there are many classes of RNAs and many

other types of secondary structure that need to be tested for a more thorough understanding of

where the method is applicable.

The model and the objective function used in this study were designed to be simple and inter-

pretable, but there is significant room for improvement. The model is restricted to Watson-Crick

pairs (A-U, G-C) and wobble pairs (G-U) which accounts for the majority of observed base pairs,

but it is known that other non-Watson-Crick pairs can also form, such as G-G, G-A, A-A, etc.

(see [44] for a thorough discussion about non-Watson-Crick base pairs). Furthermore, it has been

shown that bases can pair with more than one other base (see [45] for examples and discussion).

Expanding the model to include more types of base-pairs and the possibility of pairing more than

two bases incurs an exponential cost to the size of the combinatorial space.

The objective function was found to recapitulate many base pairing patterns in the test set,

but there are many ways it could be improved. For example, the force field could consider the

number of hydrogen bonds formed by each type of interaction which could potentially reduce

the number of degenerate low-lying states. Furthermore, base pairs involved in pseudoknots

are penalized by scaling back their energetic contribution to the Hamiltonian. The energy con-

tribution for such base pairs is expected to be smaller because the formation of the knot

requires the backbone to bend which puts stress on the hydrogen bonded base pairs. For

PLOS COMPUTATIONAL BIOLOGY RNA folding using quantum computers

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010032 April 11, 2022 8 / 17

https://doi.org/10.1371/journal.pcbi.1010032


simplicity, this effect was accounted for as a constant, but a systematic structural study could

be performed to derive a more realistic model.

It should be noted that the purpose of this work was not to develop a higher fidelity RNA fold-

ing potential but rather to show how one could develop a classical folding potential that can be eas-

ily mapped to quantum hardware. If one sticks to a discrete polynomial formalism more complex

potentials can be mapped to existing and future QCs with ease. Hence in conclusion QCs are very

promising for RNA folding. They can rapidly find minimum energy solutions for large combinato-

rial search spaces and have the flexibility to employ more complex potentials which should deliver

higher specificity and sensitivity with limited impact on computational time. As the capabilities of

QCs improve, in terms of qubit count, connectivity and signal to noise ratios it will become feasible

to fold very large RNA sequences that would be intractable using classical methods.

Methods

RNA secondary structure prediction algorithm

For a given RNA sequence containing N bases, an NxN matrix in constructed where rows and col-

umns represent the bases. The upper diagonal elements of the matrix are populated with 1’s for

combinations of bases that form base pairs (A-U, G-C, G-U) and 0’s for combinations that do not

form base pairs. For a reasonably strong interaction to persist in an RNA structure, a minimum of

3 consecutive base pairs are required. The simplest way to identify consecutive base pairs, called

stems, stems, or helices is to scan the matrix for repeated 1’s in a diagonal perpendicular to the diag-

onal of the matrix. Fig 1A shows the matrix construction and corresponding base pairing patterns

for an example sequence, GGAAGCAAACAUCCCUGU, with the base pairs represented by dots

to simplify the graphic. Consecutive base pairs (with three or more bonds in a row) are highlighted

in varying shades of gray, and representations of RNA folds subjected to these bonding patterns are

displayed in Fig 1B. The stem finding algorithm, inspired by [24], executes in quadratic time.

Implementation of objective function

The goal of the optimization algorithm is to identify the combination of non-overlapping

stems that jointly maximizes the number of consecutive base pairs along with the average

length of the chosen set of stems. There are three parts to the global objective function; the first

term reflects the number of base pairs with an adjustable penalty accounting for pseudoknots,

the second term adds a penalty for adding short stems, and finally a constraint which adds an

infinite penalty to combinations of overlapping stems.

Scoring consecutive base pairs

The base pair scoring function is inspired by the fitness function from Kai et al [24] which

takes into consideration the number of consecutive base pairs and the number of pseudoknots.

While there are many approaches to scoring base pairing networks, this approach was chosen

due to its simplicity. Each possible stem is parameterized by the index of the first base, i, the

index of the last base, j, and the length of the stem, k. This is compactly written as mn = (in, jn,

kn) for stem n. For a set of stems M = {m0, m1, . . ., mN}, the number of consecutive base pairs,

b, is computed by summing over the lengths of the chosen subset of stems divided by the total

number of possible stems:

bðMÞ ¼
XN

i¼1

ki ð3Þ
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To prioritize base pairing configurations with longer stems, the Hamiltonian incorporates

Eq (3) squared.

bðMÞ2 ¼
XN

i¼1

ki

 !2

¼
XN

i

XN

j

kikj ð4Þ

Eq (4) can be formulated as the Hamiltonian of a quantum system by taking the inner prod-

uct with the vector of qubits comprising the quantum state, q = (q0, q1, . . ., qN), where qi 2

{0,1}, and cB is a tunable constant (set to 1.0 for all calculations reported in this manuscript):

HB ¼ cB

XN

i

XN

j

kikjqiqj ð5Þ

This representation maps each possible stem to a labeled qubit, and the values of the binary

values of the qubits determine which stems from the set contribute to the overall sum.

The matrix represented in the double sum needs to be restricted to a sum over the upper tri-

angular elements, consistent with Eq (1). By decomposing the sum into the trace and a term

that sums the contributions of the off-diagonal elements, the sum can be restricted to the

upper triangular elements. The trace requires a single summation over ki
2. Since qubits map to

binary values, they are idempotent with themselves and therefore qi
2 = qi.

Tr
XN

i

XN

j

kikjqiqj

" #

�
XN

i

k2

i qi ð6Þ

Since the matrix is symmetric, all off-diagonal terms are accounted for in an upper triangu-

lar form by multiplying by 2. Thus,

HB ¼ � cB

XN

i

k2

i qi � 2cB

XN

j

XN

k<j

kjkkqjqk ð7Þ

Incorporating pseudoknot penalties

A pseudoknot is defined as two non-overlapping stems, ma = (ia, ja, ka) and mb = (ib, jb, kb)

where ia< ib< ja< jb or ib< ia< jb< ja. Pseudoknots require the molecule to fold back onto

itself, and in some cases, this introduces tension on the backbone and strain on the base pairs

involved in the structural element. Therefore, penalties are often utilized to reduce the ener-

getic contribution of base pairs involved these types of structures. Pseudoknots are detected by

a delta function,

dij ¼
cP if pseudoknot between stems i and j

1 if no pseudoknots
; 0 � cP � 1 ð8Þ

(

Where cP is a tunable parameter set by the user. This penalty is designed to reduce the con-

tribution of base pairs from pseudoknots. When cP is set to 1, base pairs from pseudoknots are

not penalized. Conversely, when cP is set below 0, pseudoknots will not exist in the global min-

imum and can be avoided altogether. If cP is set to zero, the global minimum could be degener-

ate with structures containing pseudoknots and the same structures with the pseudoknots

removed. Incorporating this factor into the Hamiltonian yields Eq (9).

HB ¼ � cB

XN

i

k2

i qi � cB

XN

j

XN

k<j

kjkkqjqkdjk ð9Þ
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The delta-function is omitted from the single summation since a stem cannot be in a pseu-

doknot with itself, and therefore the function will always evaluate as 1.

Maximize average length of stem

One of the distinguishing features of the objective function introduced in [24] is an energetic pref-

erence for longer stems. Longer stems are assigned lower energetic values in Eq (9), but this term

does not distinguish between multiple short stems and one long stem. For example, two stems of

length three would yield a score of (3+3)2 = 36, whereas a single stem of length six would yield a

score of 62 = 36. A single stem of length 6 would be preferred in most cases to two separate stems

of lengths three because a penalty is incurred for interrupting the contiguous pi-pi interactions

between bases. Since there are exceptions (see Results), this feature is incorporated into the Hamil-

tonian as a tunable parameter cL (set to 10.0 for all calculations reported in this manuscript).

The average stem length can be maximized by minimizing the difference between the

length of each possible stem in the set, ki, with the length of the largest stem in the set of all pos-

sible stems, μ.

DL ¼
XN

i

ðki � mÞ
2

ð10Þ

Eq 10 is rewritten as a Hamiltonian by expanding the product and projecting with the vec-

tor representing the qubits, q.

HL ¼ cL

XN

i

ðk2

i � 2kimþ m
2Þqi ð11Þ

Hamiltonian with constraints

Bases are only able to form bonds with exactly one other base, so combinations of stems that

require more than one bond for any given base must be excluded from the solution space. A

delta-function is introduced to detect such combinations:

d0ij ¼
1 if stems i and j overlap

0 if stems i and j do not overlap
ð12Þ

(

The total Hamiltonian is thus constructed by adding the Hamiltonian defined in Eq (9)

with the constraint defined in Eq (12):

H ¼
XN

i

ðcLðk
2

i � 2kimþ m
2Þ � cBk

2

i Þqi �
XN

j

XN

k<j

½cBkjkkdjk þ d
0

jk�qjqk ð13Þ

Algorithm implementations

The current approach to performing calculations on quantum devices requires the interaction

terms to be precomputed on classical devices and read into the quantum devices via specialized

APIs. The interaction parameters from Eq (13) were precomputed in python 3.7 using stan-

dard libraries and numpy arrays [46]. The numpy arrays were converted to dictionaries in

accordance with the expected input for the D-Wave libraries. The execution of the BQM was

carried out using libraries described in the following sections. Each calculation was run 10

times. The pseudoknot penalty, cP, was set to 0.5 for all calculations.
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D-wave advantage 1.1. The RNA secondary structure BQM was implemented on the

D-Wave Advantage System 1.1 utilizing the Leap Hybrid Solver. This quantum annealing

device contains more than 5,000 superconducting qubits. Each qubit is connected to 15 others

described by a Pegasus P16 graph [47]. The Advantage system was accessed through the

D-Wave Leap web interface, which serves as an access point to QPU hardware as well as an

integrated developer environment with built-in support for the full D-Wave API.

The program was constructed and executed using python libraries provided by D-Wave

systems. The BinaryQuadraticModel class in the dimod 0.9.10 python library was used to con-

struct the model from the classically prepared data and convert it to a data structure compati-

ble with the quantum device. The one- and two-body interaction terms were precomputed,

stored in numpy arrays, and passed into the BinaryQuadraticModel instance along with an off-

set of 0.0 as a dimod.BINARY representation. The model was executed using the LeapHybrid-

Sampler classes in the dwave.system python library. The solver was allotted 3 s of execution

time. The eigenstate with the lowest associated eigenvalue was chosen to represent the result of

the simulation.

Replica exchange Monte Carlo. Replica exchange Monte Carlo (REMC) is a well-estab-

lished and widely used method for identifying global minima on high complexity objective

surfaces that contain many local minima [48–50]. Here, a very basic REMC search algorithm

was implemented to explore the folding landscape with the following steps: 1. An initial state is

created composed of up to 5 randomly selected stems from the set of all stems. 2. The objective

function is evaluated for this initial state. 3. A Monte Carlo move is performed in which three

changes to the state are possible, each with equal probability: a) a stem is added, b) a stem is

removed, or c) a stem is swapped for another from the set of all stems. In each case, if the

move improves the objective function, the state is accepted, otherwise the state is accepted sub-

ject to the Metropolis-Hastings criteria [51] with a probability proportional to the Boltzmann

distribution at a particular temperature. Subsequent Monte Carlo moves are then performed a

fixed number of times, after which the final state of the system is returned. The Monte Carlo

search when combined with simulated annealing and exponential cooling was found to be

effective in identifying the global minimum of the objective for systems having fewer than 45

stems. However, as the complexity of the objective surface grows with increasing numbers of

stems and possible states, obtaining effective sampling of the landscape becomes challenging

with simulated annealing, often requiring increasingly complex cooling schedules, continuous

tuning of the initial sampling temperature, or drastically increasing the number of sampling

steps [52].

The MC method was modified to allow for the simultaneous evolution of N replicas, each at

a fixed effective temperature. Replicas sample states with probabilities proportional to the

Boltzmann distribution at that replica’s temperature. The stochastic nature of the algorithm

and the initial random configuration of the system necessitates that the replicas be able to

exchange states with those at neighboring temperatures. Without exchange, replicas at lower

temperatures may become stuck in the numerous local minima of the objective function,

while those at higher temperatures will never sample the desired higher probability states.

Thus, by allowing swapping of states of neighboring temperatures, lower probability states are

sampled in replicas at higher temperatures, which are then exchanged with replicas at lower

temperatures to sample the desired higher probability states [48–50].

In this implementation, exchanging states between replicas is performed according to the

Metropolis-Hastings criteria [51], with a probability proportional to the difference in the

objective’s value between the two states and their temperatures. Exchange attempts are per-

formed every fixed number of steps, allowing for independent MC sampling to occur in each

replica between exchange attempts, ensuring detailed balance. The replica temperature range,
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as well as their spacing are selected such that exchanges between neighboring replicas occurs

roughly twenty percent of the time. The final state of the system is chosen from the best scoring

state from the collection of replicas following the final step.

Using this REMC approach, hundreds of potential stems could be efficiently sampled using

only 64 replicas, with values of β (1/kT, where k is the Boltzmann constant and T is the effec-

tive temperature) in arbitrary units ranging from 1 to 30, 106 total steps, and exchange

attempts every 103 steps. The total time to identify the global minimum for a system composed

of 400 stems is roughly twelve seconds.

The REMC method was implemented in pure Python and takes advantage of NumPy [46],

and Python’s Random and Copy libraries. Replica parallelization, including synchronization

and swapping of replica states was implemented using MPI for Python [53–55].

Comparator methods

Three additional, previously published methods were run using the same datasets and the

same criteria for comparing to known structures as the method proposed in this study. RNAs-

tructure ProbKnot 6.3 [41], SPOT-RNA [11], and ViennaRNA RNAfold 2.4.12 [42] were all

run locally on an HPC cluster using command line defaults. The iterations parameter required

by ProbKnot was set to 1000. The base pairs were extracted by mining the output PostScript

(ps) file (ViennaRNA) or Connectivity Table (ct) file (ProbKnot and SPOT-RNA).

Metrics for comparing stems

The predicted secondary structure was compared to the experimentally determined structure

by computing the sensitivity and specificity. The sensitivity, σSN, is computed by comparing

the number of correctly identified base pairs, C, to the number of predicted base pairs missing

from the known structure, M, with the following formula:

sSN ¼
C

C þM
ð14Þ

The specificity, σSP, is computed by comparing C to the number of predicted base pairs that

are not represented in the known structure, I.

sSP ¼
C

C þ I
ð15Þ

Supporting information

S1 Text. Fig A. (a) 2-dimensional representation of pseudoknot structure. Dark grey lines rep-

resent base pairing. Green and orange boxes highlight the paired bases. b) 1-dimensional dia-

gram showing the base pairing patterns. Green and orange arcs map to the boxes from (a). Fig

B. (left) Minimum QPU score vs hybrid score for systems containing <60 stems. Points that

fall on the line y = x indicate that the best score from the QPU is equal to the best score from

the hybrid solver. (right) Average QPU score vs hybrid score. Standard deviation in the QPU

scores is represented by blue bars. Positive scores indicate no suitable solution was found.

Table A. Sensitivity and specificity scores for each sequence in the small test set (sequences

containing 45 or fewer stems) using exact enumeration, REMC, and QC methods. Each

method was run one time. Names derive from Pseudobase. Bolded numbers at the bottom of

each column represent the mean. There are several cases where the exact solution does not

have a sensitivity or a specificity of 1.0 which calls to attention limitations in the scoring func-

tion. These are cases where the lowest energy configuration found by the scoring function dif-

fers from the configuration found in nature. Table B. Sensitivity and specificity scores for each
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sequence in the large test set (sequences containing more than 45 stems) using REMC and QC

methods. Each method was run ten times. Names derive from PseudoBase. Bolded numbers at

the bottom of each column represent the mean. Table C. Sensitivity and specificity scores for

each sequence in the large test set (sequences containing more than 45 stems) using three

methods found in literature. Bolded numbers at the bottom of each column represent the

mean. Table D in S1 Text. Direct programming QPU vs Hybrid solver.

(DOCX)

Acknowledgments

We would like to thank Kim Branson, Deborah Loughney, Laura Zupko, and Lee Tremblay of

GSK for evaluation and suggested refinements.

Author Contributions

Conceptualization: Dillion M. Fox.

Data curation: Dillion M. Fox, Andrea M. A. Schreij.

Formal analysis: Dillion M. Fox, Christopher M. MacDermaid, Magdalena Zwierzyna.

Investigation: Dillion M. Fox, Christopher M. MacDermaid, Magdalena Zwierzyna.

Methodology: Dillion M. Fox, Christopher M. MacDermaid.

Project administration: Dillion M. Fox, Andrea M. A. Schreij, Ross C. Walker.

Supervision: Dillion M. Fox, Ross C. Walker.

Validation: Dillion M. Fox, Magdalena Zwierzyna, Ross C. Walker.

Visualization: Dillion M. Fox, Andrea M. A. Schreij.

Writing – original draft: Dillion M. Fox, Christopher M. MacDermaid, Magdalena

Zwierzyna.

Writing – review & editing: Dillion M. Fox, Andrea M. A. Schreij, Magdalena Zwierzyna,

Ross C. Walker.

References
1. Cooper GM. The Cell: A Molecular Approach. 2nd edition. Sinauer Associates 2000; 2000.

2. Amaral PP, Dinger ME, Mercer TR, Mattick JS. The eukaryotic genome as an RNA machine. Science.

2008; 319: 1787–1789. https://doi.org/10.1126/science.1155472 PMID: 18369136

3. Serganov A, Patel DJ. Ribozymes, riboswitches and beyond: Regulation of gene expression without

proteins. Nature Reviews Genetics. 2007; 8: 776–790. https://doi.org/10.1038/nrg2172 PMID:

17846637

4. Chemla Y, Peeri M, Heltberg ML, Eichler J, Jensen MH, Tuller T, et al. A possible universal role for

mRNA secondary structure in bacterial translation revealed using a synthetic operon. Nature Communi-

cations. 2020; 11: 1–11. https://doi.org/10.1038/s41467-019-13993-7 PMID: 31911652

5. Gorochowski TE, Ignatova Z, Bovenberg RAL, Roubos JA. Trade-offs between tRNA abundance and

mRNA secondary structure support smoothing of translation elongation rate. Nucleic Acids Research.

2015; 43: 3022–3032. https://doi.org/10.1093/nar/gkv199 PMID: 25765653

6. Cambray G, Guimaraes JC, Arkin AP. Evaluation of 244,000 synthetic sequences reveals design princi-

ples to optimize translation in escherichia coli. Nature Biotechnology. 2018; 36: 1005. https://doi.org/10.

1038/nbt.4238 PMID: 30247489

7. Bellaousov S, Reuter JS, Seetin MG, Mathews DH. RNAstructure: Web servers for RNA secondary

structure prediction and analysis. Nucleic acids research. 2013; 41. https://doi.org/10.1093/nar/gkt290

PMID: 23620284

PLOS COMPUTATIONAL BIOLOGY RNA folding using quantum computers

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010032 April 11, 2022 14 / 17

https://doi.org/10.1126/science.1155472
http://www.ncbi.nlm.nih.gov/pubmed/18369136
https://doi.org/10.1038/nrg2172
http://www.ncbi.nlm.nih.gov/pubmed/17846637
https://doi.org/10.1038/s41467-019-13993-7
http://www.ncbi.nlm.nih.gov/pubmed/31911652
https://doi.org/10.1093/nar/gkv199
http://www.ncbi.nlm.nih.gov/pubmed/25765653
https://doi.org/10.1038/nbt.4238
https://doi.org/10.1038/nbt.4238
http://www.ncbi.nlm.nih.gov/pubmed/30247489
https://doi.org/10.1093/nar/gkt290
http://www.ncbi.nlm.nih.gov/pubmed/23620284
https://doi.org/10.1371/journal.pcbi.1010032


8. Andronescu M, Condon A, Hoos HH, Mathews DH, Murphy KP. Efficient parameter estimation for RNA

secondary structure prediction. Bioinformatics. 2007; 23: 19–28. https://doi.org/10.1093/bioinformatics/

btm223 PMID: 17646296

9. Zuker M, Stiegler P. Optimal computer folding of large RNA sequences using thermodynamics and aux-

iliary information. Nucleic Acids Research. 1981; 9: 133–148. https://doi.org/10.1093/nar/9.1.133

PMID: 6163133

10. Senior AW, Evans R, Jumper J, Kirkpatrick J, Sifre L, Green T, et al. Improved protein structure predic-

tion using potentials from deep learning. Nature. 2020; 577: 706–710. https://doi.org/10.1038/s41586-

019-1923-7 PMID: 31942072

11. Singh J, Hanson J, Paliwal K, Zhou Y. RNA secondary structure prediction using an ensemble of two-

dimensional deep neural networks and transfer learning. Nature Communications. 2019; 10. https://doi.

org/10.1038/s41467-019-13395-9 PMID: 31776342

12. Zhang H, Zhang C, Li Z, Li C, Wei X, Zhang B, et al. A new method of RNA secondary structure predic-

tion based on convolutional neural network and dynamic programming. Frontiers in Genetics. 2019; 10:

1–12. https://doi.org/10.3389/fgene.2019.00001 PMID: 30804975

13. Lu W, Tang Y, Wu H, Huang H, Fu Q, Qiu J, et al. Predicting RNA secondary structure via adaptive

deep recurrent neural networks with energy-based filter. BMC Bioinformatics. 2019; 20: 1–10. https://

doi.org/10.1186/s12859-018-2565-8 PMID: 30606105
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