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B-4000 Liège, Belgium

(Received 19 November 2008; accepted 8 April 2009)

Abstract – Actinobacillus pleuropneumoniae, the causative agent of porcine pleuropneumonia, produces
Apx toxins that are recognized as major virulence factors. Recently, we showed that ApxIIIA-cytotoxic
activity specifically targets Sus scrofa leukocytes. Since both LtxA from Aggregatibacter actinomycetem-
comitans (aggressive periodontitis in humans) and LktA from Mannheimia haemolytica (pneumonia in
ruminants) share this characteristic, respectively towards human and ruminant leukocytes, and because both
use the CD18 subunit to interact with their respective LFA-1, we hypothesized that ApxIIIA was likely to
bind porcine CD18 to exercise its deleterious effects on pig leukocytes. A b2-integrin-deficient ApxIIIA-
resistant human erythroleukemic cell line was transfected either with homologous or heterologous CD11a/
CD18 heterodimers using a set of plasmids coding for human (ApxIIIA-resistant), bovine (-resistant) and
porcine (-susceptible) CD11a and CD18 subunits. Cell preparations that switched from ApxIIIA-resistance
to -susceptibility were then sought to identify the LFA-1 subunit involved. The results showed that the
ApxIIIA-resistant recipient cell line was rendered susceptible only if the CD18 partner within the LFA-1
heterodimer was that of the pig. It is concluded that porcine CD18 is necessary to mediate
A. pleuropneumoniae ApxIIIA toxin-induced leukolysis.
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1. INTRODUCTION

Actinobacillus pleuropneumoniae is the bac-
terial causative agent of porcine pleuropneumo-
nia, a frequent and highly infectious disease
generating significant economic losses related
to deficits in zootechnical profits and intensive
use of antibiotics [17, 21]. Virulence factors
of A. pleuropneumoniae include Apx exotoxins
(ApxIA, ApxIIA, ApxIIIA and ApxIVA), lipo-
polysaccharides, polysaccharidic capsule, fimb-
riae, iron collecting systems, proteases,
superoxide dismutase, etc. [3]. The Apx toxins
are recognized as major virulence factors and

belong to the Repeats in ToXin (RTX) protein
family [13]. They share the same structural
characteristics which are a series of glycine-
and aspartate-rich nonapeptide repeats which
constitute the main calcium-binding sites of
the protein [16]. Even though the apxIVA gene
is not disrupted by an insertion element [25], all
serotypes are able to synthesize ApxIVA (only
in vivo) whose autocatalytic and cross-linking
activities [22] make it different from other
Apx toxins that are of the pore-forming toxin
(PFT) type. Some of the Apx toxic activities
were already detected in previous studies.
ApxIA exerts a strong hemolytic activity and
a strong cytotoxic activity whereas ApxIIA
possesses a weak hemolytic activity and a* Corresponding author: daniel.desmecht@ulg.ac.be
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moderate cytotoxic activity. ApxIIIA does not
display haemolytic activity but a strong cyto-
toxic activity on porcine neutrophils and pul-
monary alveolar macrophages [3, 4, 12, 13, 23].

Several studies have shown that lymphocyte
function-associated antigen 1 (LFA-1, CD11a/
CD18, aLb2), the most abundant and widespread
b2-integrin, is centrally involved in the patho-
genesis of some diseases caused by RTX
PFT-producing bacteria. The virulence of
A. actinomycetemcomitans (localized aggressive
periodontitis in humans),Mannheimia haemoly-
tica (pneumonia in ruminants), and pathogenic
strains of Escherichia coli (extraintestinal infec-
tions) closely depends on a ligand/receptor inter-
action between their respective toxin (LtxA,
LktA, and HlyA) and LFA-1 [6, 7, 14], which
triggers the synthesis and release of a wide array
of cytokines and chemoattractants that exacer-
bate inflammation and ultimately result in wide-
spread leukolysis [29]. Moreover, LtxA and
LktA were shown to use the CD18 subunit of
human and bovine LFA-1, respectively, to medi-
ate leukolysis [5, 7]. Sincewidespread leukolysis
is also seen in pig lungs during actinobacillosis
and because ApxIIIA (i) resembles HlyA (54%
identity), LktA (49%) and LtxA (45%) and (ii)
specifically lyses porcine leukocytes [28], this
study was designed to examine the hypothesis
thatApxIIIA toxicity similarly reliesona specific
ligand-receptor interaction with pig CD18.

In this perspective, a b2-integrin-deficient
ApxIIIA-resistant erythroleukemic cell line
was transfected either with homologous or with
heterologous CD11a/CD18 heterodimers using
a set of plasmids coding for human (ApxIIIA-
resistant), bovine (-resistant) and porcine
(-susceptible) CD11a and CD18 subunits. Cell
preparations that switched from ApxIIIA-
resistance to -susceptibility were then sought
to identify the subunit involved.

2. MATERIALS AND METHODS

2.1. Reagents, cell line and antibodies

RPMI-1640 with 25 mM Hepes and 0.3 mg/mL
L-glutamine, Dulbecco Modified Eagle Medium
(DMEM) with 4.5 mg/mL glucose and 0.58 mg/mL

L-glutamine, and Dulbecco phosphate buffered saline
(DPBS) with calcium and magnesium were pur-
chased from Lonza BioWhittaker. Both culture media
were supplemented with 10% [v/v] heat-
inactivated fetal bovine serum along with amphoteri-
cin-B 250 lg/mL (Gibco, Merelbeke, Belgium) and
penicillin-streptomycin 10 000 U/mL. The K-562
cell line was obtained from American Type Culture
Collection (#CCL-243) and was maintained in
DMEMmedium at 37 �C in a humidified atmosphere
of 5% CO2. MAbs MCA1972 (anti-pig CD18) and
MCA2308 (anti-pig CD11a) were purchased from
Abd Serotec (Düsseldorf, Germany), mAb BAQ30A
(anti-bovine CD18) from VMRD (Pullman, USA),
mAb 555382 (anti-human/bovine CD11a) from
BD Biosciences (Erembodegem, Belgium) and
AlexaFluor� 488-conjugated goat anti-mouse IgG
from Invitrogen (Carlsbad, CA, USA).

2.2. Preparation of ApxIIIA toxin

Plasmid pJFF1003, containing the apxIIIA gene,
was kindly provided byDr P. Kuhnert and Prof. J. Frey
(Institute of Veterinary Bacteriology, University of
Bern, Switzerland) and recombinant ApxIIIA toxin
was produced following Maier et al. protocol [18].
This plasmid contains, inserted in the pET14b vector,
theapxIIICABDoperon controlledby a strong constitu-
tive endogenous promoter. Transformed E. coli
RosettaTM (Novagen, Leuven, Belgium) were seeded
on Luria-Bertani (LB) agar plates with ampicillin
(50 lg/mL) and incubated overnight at 37 �C. Several
clones were then cultivated, each in 200 mL LB broth
with ampicillin (50 lg/mL) and the Complete� prote-
ase inhibitor cocktail (Roche, Brussels, Belgium), one
tablet for 50 mL culture with shaking (200 rpm) at
37 �C until an optical density of 1.2 at 600 nm was
reached. No isopropyl-b-D-thiogalactopyranoside
(IPTG) was added since apxIIICABD genes are effi-
ciently expressed from their own promoter [18]. Next,
toxin-containing supernatant was recovered by
centrifugation for 20 min at 10 000 g and filtrated on
amembranewith 0.2lmsizing pores (Nalgen,Leuven,
Belgium). Thereafter, the toxin precipitation from the
cell-free supernatant was achieved by adding 22 g of
solid polyethylene glycol 4 000 (Sigma, Bornem,
Belgium) per 100 mL of supernatant and stirring for
45 min at 4 �C. Finally, ApxIIIAwas pelleted by cen-
trifugation for 1 h at 10 000 g and dissolved in sterile
DPBS (1 mL for 200 mL of starting culture). The
ImageJ 1.37c software1 gave an estimation of

1 http://rsb.info.nih.gov/ij/
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�100 lg/mL (�0.83 lM, �5.1014 toxins/mL) Ap-
xIIIA (120 kDa) after electrophoresis on Coomassie
blue-stained sodium dodecyl sulfate gels (Invitrogen)
after using 1 lg of BSA (Sigma) as the standard.

2.3. Ectopic expression of diverse LFA-1
on b2-integrin-deficient human cells

Engineering of plasmid driving expression of
bovine [9, 10] and human [10] LFA-1 subunits,
and porcine CD11a [26, 27] was previously
described. To retrieve full-length porcine PoCD18
cDNA, total RNA from the spleen of freshly slaugh-
tered pigs (Sus scrofa domesticus) was first extracted
with TRIzol (Invitrogen) as described by the manu-
facturer, and reverse transcribed using Improm II
(Promega, Leiden, Netherlands). PoCD18 cDNA
was then generated by long distance PCR using High
Fidelity PCR Enzyme Mix (Fermentas, St. Leon-Rot,
Germany) with primers designed from the proximal
and distal UTR of the published PoCD18 cDNA
(GenBank U13941): 50-gcaggacatgctgtgccg-30 (for-
ward) and 50-ttcaccaagcacccctag-30 (reverse). The fol-
lowing cycling parameters were applied: 5 min at
94 �C, then 35 cycles including: (i) 30 s at 94 �C,
(ii) 30 s at 60 �C, and (iii) 2 min 30 s at 72 �C, fol-
lowed by a final extension at 72 �C for 10 min.
Resulting PCR products were then gel-purified using
the Qiaquick Gel Extraction Kit (Qiagen, Venlo,
Netherlands), TA-cloned into pCRII-TOPO vector
(Invitrogen), and seeded on ampicillin plates
(50 lg/mL). Minipreps were obtained from colonies
grown in 5 mL LB-ampicillin (50 lg/mL) broth and
clones were sequenced on an ABI-3100 Genetic Ana-
lyzer using Big Dye terminator chemistry (Applied
Biosystems, Foster, USA). PoCD18 cDNA was
deduced from sequences obtained from nine indepen-
dent clones and then subcloned into pcDNA5 expres-
sion vector (Invitrogen). Next, the vector was
amplified and purified with Nucleo Bond� Xtra Midi
PlusEF (Macherey-Nagel,Belgium) and its concentra-
tion was measured by a NanoDrop� spectrophotome-
ter ND-1000 (Thermo Fischer Scientific, Zellik,
Belgium).

The K-562 cell line was electroporated with 7
plasmid pairs that were presumed to drive cell-
surface expression of 3 homologous LFA-1 heterodi-
mers, PoCD11a/PoCD18, BoCD11a/BoCD18 and
HuCD11a/HuCD18 and 4 heterologous LFA-1,
BoCD11a/PoCD18, HuCD11a/PoCD18, PoCD11a/
BoCD18 andPoCD11a/HuCD18. For electroporation,
the NucleofectorTM technology (Amaxa Biosystems,

Koeln, Germany) was used for LFA-1 transfection in
the K-562 cell line, using the T-16 optimized protocol
recommended by the manufacturer. Briefly, cells were
passaged two days before nucleofection in order to
reach a cell density of 5 to 6 · 105 cells/mL. Prior to
nucleofection, 106 K-562 cells were centrifuged and
the supernatant was completely discarded so that no
visible residual medium covered the pellet. Then,
2.5 lg of each plasmid in 1 to 5 lL H2O were added
to the pellet which was resuspended in NucleofectorTM

Solution V (at room temperature) to a final con-
centration of 106 cells/100 lL. Thereafter, the solution
was transferred into an Amaxa-certified cuvette to run
the T-16 program. Next, 500 lL of pre-warmed
RPMI-1640 were added to the cuvette and the
solution was transferred into a 15 mL tube and
incubated 10 min at 37 �C. Nucleofected cells were
then placed into the well of a six well plate con-
taining 1.5 mL of prewarmed DMEM and incu-
bated for 24 h at 37 �C. Transfected K-562 were
then washed with DPBS and rescued into 500 lL
of RPMI-1640.

2.4. Probing of ectopic expression of CD11a/
CD18 heterodimers at the cell surface

The success of each of the 7 double electropora-
tion procedures to drive subsequent K-562 membrane
expression of the LFA-1 intended was evaluated by
flow cytometric detection of CD18 and CD11a-posi-
tive cells. Briefly, approximately 105 transfectants
were washed three times in 1 mL DPBS/BSA1%,
blocked further in ice-cold DPBS/BSA1% for
20 min, and successively exposed to relevant primary
(for 20 min on ice) and AlexaFluor� 488-conjugated
secondary (goat anti-mouse IgG for 20 min on ice)
antibodies. Effective transfectants were identified
using the BD FACSCantoTM flow cytometry system
and associated BD FACSDiva software for detecting
and counting fluorescent cells. For each experiment,
the membrane expression rate obtained was defined
as the mean between CD11a and CD18 positive cells.
Positive and negative control cells for porcine LFA-1
cell-surface expression consisted in similarly pro-
cessed porcine peripheral blood mononucleated cells
(PBMC) extracted from fresh blood by the Accu-
spinTM System-Histopaque� 1077 (Sigma) [28] and
human b2-integrin free K-562 cells respectively.
The autofluorescence area (negative cells) was deter-
mined using K-562 cells similarly processed except
that the primary antibody was replaced by an iso-
type-matched nonpertinent mAb.
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2.5. Assaying toxin activity

ApxIIIA-induced cytotoxicity was probed by
measuring the relative proportion of the target cell
population that underwent cell death within 1 h after
toxin addition to the medium. Sensitive cells were
defined as those showing propidium iodide (PI)
incorporation and their counting was made by flow
cytometry. A typical experiment consisted of addition
of 50 lL of the toxin stock solution in 50 lL of the
control (see below) or principal (K-562 transfectants)
cell suspensions in RPMI (2.106 cells/mL). After 1 h
incubation at 37 �C, the ongoing processes were
stopped by addition of 1 mL ice-cold DPBS. The cell
pellet then retrieved from a 5 min duration centrifu-
gation at 200 g was resuspended into 500 lL of a
DPBS (495 lL) and PI (5 lL, 250 lg/mL, from
Invitrogen) mixture and was analyzed within
10 min. Target cells treated with 10% paraformalde-
hyde were used as positive controls of necrosis. Posi-
tive and negative controls for toxin susceptibility
consisted of porcine PBMC and human b2-integrin-
deficient K-562 cells, respectively.

2.6. Statistical analysis

Statistical analysis was carried out using Student
paired t-test2. P values were calculated and the term
‘‘significant’’ corresponds to a P value less than 0.05.

3. RESULTS

3.1. Ectopic expression of CD11a/CD18
heterodimers by K-562 cells

Flow cytometric profiling of nontransfected
K-562 cell populations revealed that the distri-
bution of autofluorescence values emitted in
the 530/30 nm window was nearly identical
whatever the primary mAb (anti-CD18, anti-
CD11a or nonpertinent) used in combination
with Alexa 488-conjugated secondary antibod-
ies (Fig. 1). This set of control measurements
allowed objective definition of the spectra
typical of autofluorescence. By comparison,
double electroporation experiments consistently
resulted in a dramatic shift to the right of
fluorescence values, thus demonstrating the

presence of LFA-1-expressing subpopulations
(Fig. 1). Within the series of experiments
reported here, the ranges of membrane
expression obtained were the following: �30
to 60% (PoCD11a/PoCD18), �60 to 80%
(BoCD11a/PoCD18), �60 to 75% (HuCD11a/
PoCD18), �40 to 60% (PoCD11a/BoCD18),
�55 to 75% (PoCD11a/HuCD18), �60 to
80% (BoCD11a/BoCD18) and �65 to 80%
(HuCD11a/HuCD18). Distributions of PI-
specific fluorescence emitted by mock- or
ApxIIIA-exposed nontransfected K-562 cell
populations were also established (Fig. 1). By
doing so, the autofluorescence spectrum corre-
sponding to the highly predominant PI-negative
cell population was objectively defined along
with the rate of spontaneous cell death (< 5%).

3.2. Only K-562 cells expressing PoCD18-
containing LFA-1s become ApxIIIA-
susceptible

K-562 cell populations obtained after double
electroporation were exposed to the toxin and
the rate of cytotoxicity was found to be
dramatically increased in cell preparations
expressing the PoCD11a/PoCD18, BoCD11a/
PoCD18 and HuCD11a/PoCD18 heterodimers
(Fig. 1). Conversely, cytotoxicity rate recorded
among PoCD11a/BoCD18, PoCD11a/HuCD18,
BoCD11a/BoCD18 and HuCD11a/HuCD18
expressing preparations remained within the
range displayed by control K-562 cells (Fig. 1).
When the PI/forward scatter (FSC) dot plots pro-
file displayed by these latter four cell preparations
and by nontransfected K-562 cells upon exposi-
tion to ApxIIIA were retrieved, only a single
low-PI/high-FSC cell population was detected
(data not shown). Inversely, in PoCD11a/
PoCD18, BoCD11a/PoCD18 and HuCD11a/
PoCD18expressingcell preparations,PI accumu-
lation consistently correlated with a dramatic
decrease in FSC (size reduction), which is com-
patible with ongoing cell death (Fig. 2). For each
double transfection experiment, assessment of
LFA-1 expression rate and measurement of PI
incorporation upon ApxIIIA exposition was
made in three different cell subfractions. Each
double transfection experiment was also carried
out several times, thus generating a spectrum of

2 http://www.graphpad.com/quickcalcs/ttest1.cfm
(GraphPad Software).
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expression rates for each LFA-1 species tested.
When all the experiments were gathered, a clear
linear relationshipwas detected between densities
of PoCD11a/PoCD18, BoCD11a/PoCD18 and
HuCD11a/PoCD18 expressing cells and suscep-
tibility to ApxIIIA-induced cell death (Fig. 3).
Such a relationship was totally absent when data
from PoCD11a/BoCD18, PoCD11a/HuCD18,
BoCD11a/BoCD18 and HuCD11a/HuCD18
expressing cells were gathered (Fig. 3). Finally,
ApxIIIA-induced cytotoxicity in BoCD11a/

PoCD18-expressing K-562 cell preparations
was toxin concentration-dependent (Fig. 4).

4. DISCUSSION

In order to demonstrate that porcine CD18
mediates ApxIIIA-induced leukolysis, we
cotransfected the ApxIIIA-resistant, b2-integrin-
deficient human erythroleukemic K-562 cell
line with pairs of cDNA that were presumed

Figure 2. K-562 cells accumulate PI upon ApxIIIA exposition when expressing porcine CD18-containing
LFA-1s. PI versus forward scatter (FSC) dot plot from flow cytometric analysis of ApxIIIA-exposed control
(top, left) and double transfected K-562 cells. Only the P2 populations expressed the intended LFA-1.
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to drive cell-surface expression of a set
of 3 homologous and 4 heterologous LFA-1
heterodimers. After a 1 h incubation at 37 �C
with the crude ApxIIIA preparation, nontrans-
fected K-562 cells and cotransfectants express-
ing homologous bovine and human LFA-1
showed levels of PI incorporation similar to
those recorded for mock-exposed K-562 cells,
thus proving their ApxIIIA-resistant status. Co-
transfectants expressing homologous pig LFA-1
accumulated PI and showed a reduction in size,
both characteristics being compatible with the
development of cell death (Figs. 1 and 2). This
interpretation fits with most current mechanistic
assumptions about PFT RTX toxins standing
that hydrophilic membrane pores are created
following molecule insertion in the lipid bilayer
which leads to calcium influx and potassium
efflux [1, 2, 18, 19]. The created pore diameter
is estimated to be approximately 2 nm which is
sufficiently small to prevent leakage of large
cytoplasmic molecules such as proteins [18].
Since intracellular osmotic pressure is higher
than that of extracellular fluid, there would be
a passively entering flow causing an initial fast
and irreversible swelling followed by bursting
and ultimately necrosis and size reduction [24].

When K-562 cotransfectants expressing het-
erologous CD11a/CD18 heterodimers were
exposed to ApxIIIA, two profiles were readily
seen depending on the porcine partner involved.
With PoCD11a, distributions of PI-related fluo-
rescence values upon exposition to ApxIIIA
mimicked those recorded in mock-exposed
K-562 cells, thus suggesting that the pig
CD11a subunit is not directly enrolled in the
ApxIIIA-PoLFA-1 ligand/receptor interaction.
Conversely, ectopic expression of heterologous
LFA-1s made of the PoCD18 subunit partner-
ing with either the human or bovine CD11a
resulted in the K-562 cell population switching
from ApxIIIA-resistance to susceptibility.
Moreover, the cytotoxicity rate recorded upon
toxin incorporation was directly proportional
to the rate of PoCD18-containing homologous
and heterologous LFA-1 expression (Fig. 3)
and a clear correlation was shown between
ApxIIIA concentration and rate of cell death in
K-562 cotransfectants expressing heterologous
BoCD11a/PoCD18 (Fig. 4). Taken together,

the results unambiguously suggest that PoCD18
is necessary to mediate A. pleuropneumoniae
ApxIIIA toxin-induced leukolysis.

This is thus the third example (after LtxA
and LktA) of a species-specific and leukocyte-
specific RTX cytotoxin using the CD18 sub-
unit. Since LktA from M. haemolytica was
recently shown to bind ruminant b2-integrin
Mac-1 (CD11b/CD18) too, which, again,
results in ruminant leukocyte necrosis [15], it
might be that ApxIIIA binds porcine Mac-1
as well, which could also contribute to the path-
ogenesis of actinobacillosis. Pushing the paral-
lelism further, the CD18 domain critically
enrolled in ApxIIIA-CD18 ligand/receptor
interaction could be one of its constitutive
EGF modules as recently demonstrated for
LtxA/HuCD18 [7] and LktA/BoCD18 [8],
although this is still disputed [11]. Binding
and killing of target cells by RTX toxins
were also shown to depend on the recognition
of N-linked oligosaccharide chains linked to
b2-integrin receptors [20], which could also
apply to ApxIIIA.
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