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ABSTRACT

Sites that show specific conservation patterns
within subsets of proteins in a protein family are
likely to be involved in the development of functional
specificity. These sites, generally termed specificity
determining sites (SDS), might play a crucial role
in binding to a specific substrate or proteins.
Identification of SDS through experimental tech-
niques is a slow, difficult and tedious job. Hence, it
is very important to develop efficient computational
methods that can more expediently identify SDS.
Herein, we present Specificity prediction using
amino acids’ Properties, Entropy and Evolution
Rate (SPEER)-SERVER, a web server that predicts
SDS by analyzing quantitative measures of the con-
servation patterns of protein sites based on their
physico-chemical properties and the heterogeneity
of evolutionary changes between and within the
protein subfamilies. This web server provides an
improved representation of results, adds useful
input and output options and integrates a wide
range of analysis and data visualization tools when
compared with the original standalone version of
the SPEER algorithm. Extensive benchmarking
finds that SPEER-SERVER exhibits sensitivity and
precision performance that, on average, meets or
exceeds that of other currently available methods.
SPEER-SERVER is available at http://www.hpppi
.iicb.res.in/ss/.

INTRODUCTION

Recognition of sequence variations that lead to functional
diversification within a protein family is not a trivial task.
Functional specificity signals must be separated from

strong background signals resulting from the phylogenetic
differences between the protein subfamilies (subgroups).
Earlier methods to identify protein sites that are important
to functional specificity used algorithms such as principal
component analysis (1) and phylogenetic tree-based
partitioning into protein subgroups (1–4). Entropy or
mutual information (5–17)-based algorithms have also
been widely used to distinguish the distribution of amino
acids within and between protein subfamilies to determine
specificity determining sites (SDS). Divergence at func-
tional sites can be also inferred from the changes in the
evolutionary rates (ERs). Some methods used
evolutionary rate-based approaches (18–24) in which
either ‘Type I’ (sites conserved for one subfamily and
variable in another) or ‘Type II’ (sites where different
types of amino acids are conserved across different
subfamilies) SDS were analyzed to better understand the
evolutionary basis of functional diversification. Other evo-
lutionary conservation-based schemes (25–31) were also
used to distinguish the specific distribution of amino
acids within and across the subfamilies.

The Specificity prediction using amino acids Properties,
Entropy and Evolutionary Rate (SPEER) algorithm (8), a
method that combined contributions computed from
(i) the conservation patterns of amino acid types
as determined by their physico-chemical (PC) properties
and (ii) the heterogeneity of evolutionary changes between
and within the subfamilies, performed reasonably well in
the identification of SDS (8,31,32). However, the
standalone version of the SPEER program has limitations
in terms of its input and output options, and its results
could be difficult to interpret or incorporate into larger
analysis pipelines. To address these issues, we present in
this article a web server (SPEER-SERVER) based on the
original SPEER program, which we have supplemented
with several important and useful new features.
Specifically, in the server we have improved how results
are reported to the user, greatly augmented the input and
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output options and added a collection of important
post-analysis tools to examine the SDS predictions to
tailor it to the broader bioinformatics research commu-
nity. Finally, in this article, we also provide updated
benchmarking results that compare nine of the latest
available methods with SPEER-SERVER.

MATERIALS AND METHODS

SPEER algorithm

The required input to the original SPEER algorithm is a
multiple sequence alignment (MSA) of N sequences that
belong to a protein family, along with a partitioning of the
sequences into M subfamilies. The algorithm that under-
lies SPEER-SERVER is based on our earlier program
SPEER that uses a scoring scheme which combines three
components to identify SDS (8). The first component
calculates the weighted Euclidean distance between
the vectors of physico-chemical properties of any two pos-
itions in the MSA. The average variability in a given sub-
family column (relative to the background variability of
that column within the whole family) is calculated by
summing the Euclidian distances for all residue pairs
within the subfamily and normalizing by the average
Euclidian distance of all residue pairs in the column of
the overall family. The second component of the SPEER
score is the ER of the site as computed by the maximum-
likelihood method implemented in the rate4site program
(33). A low average ER value indicates a slowly evolving
(i.e. more strongly conserved) site in subfamilies. The last
component is a relative entropy term (or Kullback–Leibler
divergence) used to quantitatively distinguish the amino
acid-type distributions of two protein subfamilies.

SPEER-SERVER web interface

The web server is built using CGI scripts written in Perl.
We have implemented various JavaScript routines that
permit the visualization of SPEER-SERVER predictions
and to support a wide range of analysis tools not previ-
ously available to the original SPEER software. Figure 1
provides a snapshot of the SPEER-SERVER input and
output options we discuss in the following sections.

Input options
The server’s submission interface is divided into two main
parts: ‘single submission mode’ and ‘batch submission
mode’. Each submission mode has ‘user-defined sub-
grouping’ and ‘automated subgrouping’ options.

‘Single submission mode’ is intended to identify SDS in
a single protein family. The SPEER program requires the
number of subfamilies/subgroups in a protein family,
along with the number of sequences assigned to each sub-
family. When using the ‘user-defined subgrouping’ option,
the user enters number of subgroups in the form. The
input form also accepts a range of weights (from 0.0 to
1.0) for the three scoring components (‘relative entropy’,
‘physico-chemical property distance’ and ‘ER’) used by
the SPEER-SERVER. Users should either upload a
pre-aligned MSA (in FASTA format) or direct
SPEER-SERVER to create a MSA for a specified set of

protein sequences using either MAFFT (34) or
PROBCONS (35).
‘Automated subgrouping mode’ must be used when the

user has no prior information about the subfamilies
present in the query protein family. We have integrated
the SECATOR (36) and SCI-PHY (37) algorithms with
SPEER-SERVER to automatically identify probable sub-
groups for which SDS will be identified.
‘Batch submission mode’ is intended for identifying

SDS within a set of protein families in a single run
(maximum five alignments).

Output options
When the server completes its analysis, the user is given
multiple ways to view their results as described below.

Alignment display. Detailed information is provided
for the identified SDS in the protein alignment, specifically
the SPEER scores along with Z score and P values
associated with SDS and calculated as described in
Chakrabarti et al. (8). Alignment editing and subsequent
adjustments can be performed using the embedded Jalview
applet (38). The predicted type of each SDS is provided on
the alignment results page where ‘Type I’ SDS are defined
as those conserved for one subfamily and variable in
another and ‘Type II’ sites are those where different
types of amino acids are conserved across different
subfamilies. Herein, we consider a site to be conserved
for one subfamily if any amino acid type is represented
>75% of the time. The sites that failed to satisfy the above
criteria are marked as ‘marginally conserved’ or ‘MC’
(none of the amino acids within subfamilies is conserved
in this site). For families with more than two subfamilies,
sites were categorized into different types based on the
category assigned to the majority of subfamily pairs.

Structure display. SPEER-SERVER predicted sites are
projected onto the representative 3D structure uploaded
by the user in PDB format (39) using JMol web applet
(40). Structural display and analysis are provided when
input MSA contains the sequence of that particular
uploaded structure.

Structure versus sequence distance display. Additional
structural analyses were performed. In particular, we
calculated spatial distances between the predicted SDS
and performed clustering of the predicted SDS, which
are represented in the form of distance matrices and den-
drograms, respectively. A sequence versus structural
distance plot has been included to show how the localiza-
tion of the predicted SDS correlates in terms of their
spatial and sequence coordinates.

Coevolutionary display. Our previous study showed that
SDS frequently coevolve with other sites (41). Therefore,
SPEER-SERVER includes a feature that calculates
the coevolutionary connections of predicted SDS. The
results are presented in an interactive network display
using Cytoscape web (42) so that the users can easily
identify those specificity sites that coevolve. We use the
MIp program (43) to calculate the coevolution between
protein sites.
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Benchmarking and validation

Benchmarking of SDS prediction using manually curated
alignments with predetermined subgrouping. Standard
protocols for evaluating the performance of various pre-
diction methods were used in which SDS prediction
methods were applied to 20 manually curated alignments
studied previously (8,32). Each of these 20 families
possesses human-generated annotations that identify their
SDS (total 197; see Supplementary File 1 for details). For
a given alignment, scores for each column were collected
and the sensitivity and error rate were estimated based on
the number of true positives (TPs; correctly predicted
known SDS) and false positives (FPs; incorrectly pre-
dicted known SDS) found above each score cutoff.
Score cutoff list was generated from the output of each
SDS prediction method. The sensitivity (TP/TP + FN)
was defined as the number of TPs found at each score
threshold divided by the sum of TPs and false negatives
(FNs), where FNs were defined as actual specificity sites
below the score threshold. An error rate (FP/FP + TN)
was estimated as the number of FPs divided by the sum of
FPs and true negatives (TNs; non-specificity sites below
the score threshold).

Receiver operating characteristics (ROC) and preci-
sion–recall (PR) plots were generated by (i) averaging
sensitivity and specificity per protein family to provide
an overall performance and/or (ii) concatenating column
scores from all the families and calculating performance
indicators at each score threshold. The former,
‘average-per-family’ approach provides an idea about
the methods’ performance on per-family basis, whereas
the ‘concatenation’ approach estimates the performance
based on the number of sites. Note that the first
approach weighs each family equally in the final results
independent of the number of known SDS in the family,
whereas the second approach attempts to normalize by the
number of SDS in a family but necessarily assumes that
scores produced by each method are comparable across
families. More details regarding the calculation of differ-
ent performance measures can be found in Supplementary
File 2.

Globally conserved sites are less likely to be involved
in determining subgroup-specific functions. Hence, to dis-
tinguish SDS from globally conserved sites in our bench-
marking, we do not consider those sites that are highly
conserved in the overall family alignment; ‘highly

Figure 1. Snapshots of the SPEER-SERVER web interface, displaying its various input options (Panels A and B) and output analysis tools, such as
alignment display (Panel C), coevolutionary network display (Panel E), structure display (Panel F) and structure distance matrix display (Panel D).
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conserved’ columns have a single amino acid type in
>80% of the sequences. We also ignore sites that have
gaps in >20% sequences. Similar filters regarding conser-
vation and gap content for alignment columns were
applied for other SDS prediction methods as well.
However, exclusion of highly conserved and invariant pos-
itions within the alignment does not impact the perform-
ance of SDS prediction significantly (Table SM3 in
Supplementary File 2).

The performance of SPEER-SERVER was compared
against nine other SDS prediction methods: GroupSim
(26), MultiRELIEF (31), MultiRELIEF-3D (31),
SDPpred v1.0 (9), XDet (unsupervised and supervised)
(7), SPEL (23), SDPfox (44), Multi-Harmony (45) and
ProteinKeys (16). For SPEER-SERVER, all the bench-
marking data were obtained using weights of 1.0, 1.0
and 1.0 for ‘relative entropy’, ‘PC property distance’ and
‘ER’ components, respectively. Performance results for
SPEER-SERVER using few other weight combinations
of three components are provided in Supplementary
File 2 (Table SM4). All other SDS prediction programs
were used with default parameters. In the case of
XDet supervised program, we used functional similarity
(invoked by –M option of the program) option to provide
pre-determined subgrouping information using a binary
similarity matrix (1 for the same subfamily sequence pair
and 0 for different subfamily sequence pair) for each input
alignment. In the case of MultiRELIEF-3D, we used a
representative protein structure for the 19 families for
which at least one representative protein structure was
available (one was not available for the CNmyc family;
see Supplementary File 1). SPEL did not produce the
results for CNmyc family; hence, the ROC and PR
results of SPEL were obtained from scores of 19
families. Inconsistencies in the Multi-Harmony (MR) Z
scores were found in the case of nucleotidyl cyclase
family; hence, ROC and PR results for Multi-Harmony
(MR) Z score approach were provided using the data
from rest of the 19 families.

Benchmarking of SDS prediction using alignments
generated by automated methods. SPEER-SERVER
was run for each alignment generated by MAFFT
(34) and PROBCONS (35). To establish the TP set in
the case of alignments generated by automated methods,
annotated SDS from the manually generated alignment
were mapped onto the common representative sequence
in the automatically generated alignments. Otherwise,
benchmarking of the SDS prediction using these align-
ments proceeded as described above.

Benchmarking of SDS prediction using automated
subgrouping methods. The performance of SPEER-
SERVER was also benchmarked when using the auto-
mated subgrouping option with manually curated family
alignments. SECATOR (36) and SCI-PHY (37) algo-
rithms were separately used to automatically identify
probable subgroups. Sequences that were not grouped
(unclustered and/or singletons) with any of the automat-
ically generated subgroups were filtered from the MSA
before submission to SPEER-SERVER.

RESULTS

Performance evaluation using manually curated
alignments

197 SDS from 20 families (Supplementary File 1) comprise
the set of TPs for our evaluation of different specificity
site prediction methods. The prediction accuracies of these
methods are shown as ROC curves (Figure 2A) and table
(Table SM1 in Supplementary File 2) suggesting better
sensitivity (per family) for SPEER-SERVER, especially
at low error rate (�10%), whereas the PR statistics
exhibit precision (per family) for SPEER-SERVER that
is as good or better than most of the SDS detection
methods over the range of recall values (Figure SM1
and Table SM2 in Supplementary File 2). Performance
measures calculated on per-site basis using the ‘concaten-
ation’ approach suggest that SPEER-SERVER’s perform-
ance remains better relative to many other programs,
although GroupSim (26) and MultiRELIEF (31) appear
to perform better than SPEER-SERVER by this metric
(Figures SM2 and SM3 in Supplementary File 2).

Dependence of performance on the quality of MSAs

In SPEER-SERVER, two different MSA programs
(MAFFT and PROBCONS) are provided to compute a
sequence alignment from a set of protein sequences
specified by the user. The performance of SDS prediction
by the SPEER-SERVERusing the alignments generated by
these MSA programs has slightly negative impact on sen-
sitivity and precision compared with that achieved using
the manually curated alignments (Figure 2B and Figure
SM4 in Supplementary File 2, respectively). For example,
at 1, 5 and 15% error rates, the sensitivities of
SPEER-SERVER using manually curated alignments
with predetermined subgroupings are 21, 51 and 72%,
respectively, when compared with 18, 45 and 67% for
MAFFT-derived alignments and 16, 42 and 66 for
PROBCONS-derived alignments, respectively (Figure 2B).

Dependence of performance on the quality of subgrouping

De novo subfamily identification using automated methods
enables improved understanding of functional inference
and facilitates prediction of functional diversification.
Sensitivities and accuracies of SPEER-SERVER in iden-
tifying SDS using automated subgrouping methods were
calculated using ‘average-per-family’ approach (Figure 3).
Prediction of SDS using the SECATOR (36)-derived sub-
grouping tends to perform better than SCI-PHY (37) at
lower error rates (<12%), whereas at moderate error
rates (12–40%) SCI-PHY-derived subgroupings yield
better sensitivity (Figure 3). Overall, the prediction
sensitivities of SPEER-SERVER using automated sub-
grouping of manually curated alignments are slightly
lower than those observed for predetermined subgroupings
on the same alignments. However, they are quite compar-
able to that achieved using predetermined subgrouping on
automatically derived alignments (MAFFT and
PROBCONS alignments). For example, at 1, 5 and 15%
error rates, the sensitivities of SPEER-SERVER using
SECATOR-derived subgroupings are 18, 37 and 56%,
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respectively (Figure 3), and 16, 40 and 60%, respectively,
for SCI-PHY-derived subgrouping. Two other programs,
GroupSim (26) and MultiRELIEF (31), that performed
very well in predicting SDS using pre-determined sub-
grouping were also tested for automated subgrouping-
based SDS prediction. However, GroupSim (26) and
MultiRELIEF (31) perform comparatively lower than
SPEER-SERVER when automated subgrouping was
used (Figure 3), indicating the dependency of different al-
gorithms on the quality of subfamily division. Sensitivity
and precision values for individual families using auto-
mated subgrouping are provided in Supplementary File 3.

DISCUSSION

Recognition of the structural and functional differences
that lead to functional diversification in proteins is diffi-
cult, especially when only sequence-derived information is

used. SPEER-SERVER provides a user-friendly,
web-based platform for SDS identification that is built
around an enhanced version of our previously reported
algorithm SPEER (8). New features such as the projection
of predicted SDS onto the alignment, visualizing the SDS
in their molecular context using a representative 3D struc-
ture and flexible input options enable the SPEER-
SERVER to be useful to a broad biological audience.
Calculations of structural distances and coevolutionary
networks of predicted SDS are other valuable new
analysis tools which SPEER-SERVER makes available.
Thorough benchmarking and validation tests performed
in this study confirm better performance of SPEER-
SERVER relative to most of the existing SDS prediction
methods at lower error rates (�10%) and it exhibits
similar performance to other methods at higher error
rates.

The performance of any SDS-predicting method may
depend on the quality of the input protein sequence align-
ment as suggested by slightly lower performance of
SPEER-SERVER using automatically generated align-
ments. Unfortunately, for general, non-specialist users a
manually curated alignment may not be always at hand.
Therefore, SPEER-SERVER addresses this issue by incor-
porating successful MSA programs, such as MAFFT (34)
and PROBCONS (35), that users can leverage to create a
reliable starting MSA for analysis.

In addition, two tools to perform automated subgroup-
ing of a protein family, SECATOR (36) and SCI-PHY
(37), allow users to access SPEER-SERVER for SDS pre-
diction. Both methods are widely used and effectively
identify probable subgroups that exist within protein
families. However, one concern is that the automated sub-
grouping of sequences based on phylogeny and alignment
could be in disagreement with the subsequent functional

Figure 2. Comparison of prediction performance. ROC curves (A) for
SDS prediction as performed by various SDS prediction programs.
ROC curves (B) for the prediction of SDS based on manually
curated input alignments and input alignments derived by the
MAFFT (35) and PROBCONS (36) programs. Error rate and sensitiv-
ity values were calculated by averaging the equivalent error rate and
sensitivity values using the ‘average-per-family’ approach.

Figure 3. Comparison of performance on specificity site prediction.
ROC curves for SPEER-SERVER, GroupSim (26) and
MultiRELIEF (31) using manual, predetermined subgrouping and sub-
groupings computed using the automated methods, SECATOR (36)
and SCI-PHY (37). Error rate and sensitivity values were calculated
by averaging the equivalent error rate and sensitivity values using the
‘average-per-family’ approach.
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classification. This disagreement could arise for a subset of
highly specific families, but in general sequence-based clus-
tering agrees with functional annotations and has been the
foundation of many widely used methods and techniques
for the functional annotation of proteins. Indeed, we have
shown that the sensitivities for SDS prediction using an
automated subgrouping are on average good, even if they
are suboptimal when compared with the situation when a
predetermined subgrouping is available.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Files 1–3.
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