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Abstract: The process of encoding the structure of chemicals by molecular descriptors is a crucial
step in quantitative structure-activity/property relationships (QSAR/QSPR) modeling. Since ionic
liquids (ILs) are disconnected structures, various ways of representing their structure are used in
the QSAR studies: the models can be based on descriptors either derived for particular ions or for
the whole ionic pair. We have examined the influence of the type of IL representation (separate
ions vs. ionic pairs) on the model’s quality, the process of the automated descriptors selection and
reliability of the applicability domain (AD) assessment. The result of the benchmark study showed
that a less precise description of ionic liquid, based on the 2D descriptors calculated for ionic pairs, is
sufficient to develop a reliable QSAR/QSPR model with the highest accuracy in terms of calibration
as well as validation. Moreover, the process of a descriptors’ selection is more effective when the
possible number of variables can be decreased at the beginning of model development. Additionally,
2D descriptors usually demand less effort in mechanistic interpretation and are more convenient for
virtual screening studies.
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1. Introduction

Ionic liquids (ILs) create a wide group of chemicals built of varied types of cations and anions.
Their characteristic properties (e.g., melting point less than 100 °C; low vapor pressure; stability at wide
range of temperatures; ability to serve as good solvents for various compounds) that can be precisely
adjusted by structural modifications of particular ions make them a promising group of chemical
materials [1]. They have found applications in different fields such as electrochemistry, separation and
extraction techniques, synthesis, catalysis and biomass processing. However, since there is around
a billion (10'?) of potential binary (anions/cations) combinations, experimental optimization of ILs
properties would be expensive and time consuming. Nevertheless, the selection of an ionic liquid
having the optimal combination of the required properties is achievable by applying computational
techniques such as the quantitative structure-activity/property relationship (QSAR/QSPR) approach [2].
QSAR/QSPR provides an opportunity to predict the property of interest for a number of empirically
untested ILs based on the previously defined relationship between the variation in their chemical
structures (encoded by a series of numerical values, so-called ‘descriptors’, e.g., the number of double
bonds in the molecule) and the property (e.g., density, viscosity, octanol-water partition coefficient).
The same applies for predicting biological activity, including toxicity (e.g., toxicity to Vibrio fisheri,
Daphnia magna and Danio rerio), which is important from the human and environmental safety point
of view [3-6]. By exploring the predictions coming from QSAR/QSPR models one is able to perform
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virtual screening of a vast number of ionic liquids to find ones with the preferred physicochemical
properties and low toxicity to human and to the environment.

In general, the process of building a QSAR/QSPR model is based on five steps (Figure 1). However,
in the case of ionic liquids, the way of representing the chemical structure by appropriately calculated
molecular descriptors (the second step in Figure 1) is critical for the further model development [7].
Frequently, both ions (cation and anion) that consist of the IL are described separately. Moreover, the
majority of the published models utilize the three-dimensional (3D) descriptors (descriptors that reflect
3D features of the molecule, e.g., solvent accessible surface area, molecular volume). For example,
the QSPR model for predicting critical micellization concentration developed by Barycki et al. [8] is
a linear combination of three descriptors: two of them (H8e and R7p+) characterize the structure of
cation and one (HTi) describes the anion. In this case, the authors separately constructed and then
optimized geometries of anions and cations structures to be used in the next step for calculating 3D
descriptors. It is worth noting that the geometry optimization of molecular structures to be used for
calculating descriptors is usually performed with quantum-chemical methods at a selected level of the
theory. Barycki et al. [8] utilized the semi-empirical PM7 method. In our previous contribution [9],
we investigated how the selection of the optimization method affects the 3D molecular descriptors
(calculated separately for the anionic and cationic moieties) by considering three levels of the theory,
namely: (i) semi-empirical with PM7 Hamiltonian (PM?7), ab initio Hartree-Fock with 6-311 + G* basis
set (HF/6-311 + G*) and density functional theory (DFT) with B3LYP hybrid functional and 6-311 + G*
basis set (B3LYP/6-311 + G*). We proved that the descriptor values were dependent on the applied
theory level. Moreover, we developed the respective QSPR models with use of the descriptors derived
from the structures optimized at the three theory levels and then compared differences in the quality
measures. We noticed that QSPR models utilizing descriptors calculated from the molecular geometries
optimized at the level of PM7 and HF had similar values of the validation parameters (high values of
the Q? validation coefficient and low values of the root mean square error calculated for the external
validation set), hence similarly good quality. In contrary, the model utilizing descriptors calculated from
DFT-based geometries showed lower quality. The above results allowed the authors to recommend the
use of the semi-empirical PM7 method as a routine for separate geometry optimization of anion and
cation and then for the calculation of descriptors for anions and cations separately [9]. Subsequently,
the two blocks of descriptors (calculated for different anions and cations) can be put together to form a
single table of descriptors that characterizes the set of ILs (rows in the table correspond to particular
ILs, whereas columns contain descriptors).
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Figure 1. Basic steps that form the process of the quantitative structure-activity/property relationship
(QSAR/QSPR) model development.

An alternative approach is to calculate molecular descriptors for the ionic pair. In that case,
the structure of an ionic liquid is represented by molecular descriptors calculated as a sum of descriptors
for the anion and the cation weighted by the molar fraction of each ion (the additive scheme) [10].
Geometries of both the anion and the cation are optimized separately. This scheme might be useful
especially in the case of modeling ‘gemini” ionic liquds. Moreover, the descriptors can be calculated
not only from separately optimized ions, but also from the optimized ionic pair. Finally, it would
be beneficial to replace 3D descriptors that require the molecular geometry to be optimized with
much simpler and less time-consuming 2D descriptors that can be derived from two-dimensional
representation of the structure (e.g., from a chemical structural formula). This, however, should be
done without significant loss of QSAR/QSPR model’s quality.



Materials 2020, 13, 2500 3of11

Therefore, one of the crucial questions, when developing QSARs/QSPRs for ILs, is: How the
chemical structure of an ionic liquid should be represented in order to obtain the most reliable
QSAR/QSPR model? In this work we are trying to answer this question by performing a benchmark
study to investigate advantages as well disadvantages of different approaches of describing the structure
of ionic liquids. For the case study we have chosen a dataset that concerns toxicity towards Esherichia
coli. However, we are convinced that similar conclusions could be drawn for the physicochemical
dataset as well. We do believe that the presented results would serve as a starting point for further
discussion on the development of QSAR/QSPR models for ionic liquids in order to accurately predict
the physicochemical properties and biological activity of these compounds.

2. Materials and Methods

2.1. Experimental Data and Molecular Descriptors

The experimental data of ILs” toxicity towards Escherichia coli were collected from the
literature [11]. The analyzed dataset contains 24 ionic liquids, in which six various types of cations
(imidazolium, pyridinium, pyrrolidinium, piperidinium) and three anions (bromide, thiocyanate,
bis(trifluoromethylsulfonyl)amide) can be distinguished. Antimicrobial activity was expressed as
EC50 in mM unit. Detailed information can be found in the Table S1 in Supplementary Materials.

The structure of each ionic liquid has been described using molecular descriptors in two ways.
The first set of descriptors contained those calculated after independent geometry optimization of
each ion (A|B). The second one contained molecular descriptors calculated for the whole ionic liquid
after geometry optimization of the ionic pair ([A+B]) by one of the DFT methods (B3LYP/6-311 + G*¥)
with the Gaussian 09 software (Revision D.01, Gaussian, Inc., Wallingford, CT, USA) [12]. In the case
of all sets, the descriptors values were calculated with the DRAGON (v. 7) software [13]. However,
to increase efficiency of the benchmark study, the pool of descriptors was reduced to the following
groups: constitutional descriptors, topological indices, ETA indices, walk and path counts, information
indices, atom-centered fragments, WHIM, GETAWAY and Randic molecular profiles connected to
molecular shape, and geometrical descriptors [14].

2.2. Model Development

The optimal, physically interpretable combination of the descriptors was selected by employing
a stepwise selection algorithm in olsrr package implemented in R programming language [15].
The algorithm starts with an empty model. Then, in each step the best model (according to a specific
criterion, e.g., lowest mean absolute error (MAE) value) is chosen from all models with one additional
feature and from all models with one feature less. The algorithm was used for the sets of descriptors
mentioned in previous section ((A|B) and [A + B]). The multiple linear regression (MLR) technique was
used to find the relationship between the chemical structure of ionic liquids (described by molecular
descriptors) and the modeled value (1ogEC50). Goodness-of-fit of the QSPR models was measured by
using sets of measures such as the determination coefficient (R?), root mean square error of calibration
(RMSE(c), mean of absolute errors (MAE). All calculated metrics can be found in Supplementary
Materials (Tables 52-57).

2.3. Validation Process

According to requirements established by the Organization for Economic Co-operation and
Development (OECD) referring to principles for the validation of QSAR models, we performed
the internal and external validation of our models [16]. The stability of the models was verified
by leave-one-out cross-validation coefficient (Q%cy) and root mean square error of cross-validation
(RMSEcy). We also estimate the predictive ability by calculating two external validation measures:
external validation coefficient (Q?gxt) and root mean square error of prediction (RMSEgxt). It should
be noticed that external measures are calculated only for chemicals from the validation set. Additional
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parameters have been also calculated in order to confirm quality of the developed QSPR models,
namely: concordance correlation coefficient (CCC) and modified r? for whole dataset (rz(overall)) [17].
We also estimated the presence of influential points in the training set by performing F-test proposed
by Toth et al., where F value is equal to: (1 - Q?cv)/(1 - R?) [18]. Moreover, we calculated other metrics
and compared them with criteria proposed by Tropsha and thereby confirmed the good quality of
the developed QSPR models [19]. Those criteria and values of all additional metrics can be found in
Supplementary Materials (Tables S2-57).

2.4. Applicability Domain

An essential part of the model development is related to the verification of the applicability
domain (AD), which is defined as “the physico-chemical, structural, or biological space, knowledge or
information on which the training set of the model has been developed, and for which it is applicable
to make predictions for new compounds” [20]. Determining the applicability domain allows for
estimating the reliability of predicted values (their interpolation or extrapolation), and thus verifies
the model’s usefulness for new compounds. To define the applicability domain of our models we
employed the standardization approach proposed by Roy et al [21]. As a result, we were able to identify
compounds that could be considered as X-outliers or points outside of AD. Obtained results were
compared with the leverage approach (Williams plot) [22]. In that approach the applicability domain
is limited by the two critical values: three standard deviation units of the standardized residuals (+30)
and the threshold leverage value (h*). The value of h* is calculated as h* = 3p’/n, where p’ is the number
of model’s variables plus one, and n is the number of compounds in the training set. The predictions
for compounds with h; > h* are treated as the results of extrapolation, so they will be less reliable [23].

3. Results and Discussion

3.1. Relationship between the Form of Structure Representation and the Model Quality

In this part of the study we have investigated the influence of the structure representation on the
model quality. The MLR method combined with the forward selection of descriptors was used to
describe the relationship between the structure of ionic liquids and its toxicity towards E. coli bacterium.
The six model equations (Table 1, M1-M6) were developed, to examine how the way of describing
the ILs structure influences the quality of the QSAR model. The first three models (M1-M3) were
built using 2D and 3D descriptors calculated for each of the cations and anions separately, after the
geometry optimization of a particular ion. The remaining ones (M4-M6) were developed with 2D and
3D descriptors calculated from the optimized geometries of whole ionic pairs.

Table 1. The equations of all models developed in this study.

Type of

Model’s ID Descriptors Descriptors Calculated for: Equation for Predicting 1ogECs9 [mM]
M1 2D Separate ions logECs0 = 2.49-0.14 Psi_i_0* — 0.001 SMTIV®
M2 3D Separate ions logECsg = 2.52-0.12 L1m€ - 0.19 L1i*
M3 2D, 3D Separate ions logECsg = 2.304-0.142 Psi_i_0* — 0.006 QZZmC®
L logECs = 4.15-0.001 GMTI - 0.09 MDDD —
M4 2D Ionic pair 0.16 AMW
M5 3D Ionic pair logEC5p = 6.91-0.24 L/Bw — 1.05 RTv + 0.53 L3u
M6 2D, 3D Ionic pair logECs( = 3.49-0.001 GMTI - 3.21 Ele + 0.04 DISPm

Superscripts A and C in equation stands for anion, cation respectively. The lack of superscript means that the
descriptor was calculated for the ionic pair.

The six models utilized two or three, uncorrelated descriptors: Psi_i_O—intrinsic state
pseudoconnectivity index, type 0; SMTIV—Schultz MTI by valence vertex degrees; L1m—Ist
component size directional WHIM index/weighted by mass; L1i—1st component size directional
WHIM index/weighted by ionization potential; QZZm—quadrupole z-component value/weighted
by mass; GMTI—Gutman molecular topological index; MDDD—mean distance degree deviation;
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AMW-—average molecular weight; L/Bw—length-to-breadth ratio by WHIM; RTv—R total
index/weighted by van der Waals volume; L3u—3rd component size directional WHIM
index/unweighted; Ele—1st component accessibility directional WHIM index/weighted by Sanderson
electronegativity; DISPm—displacement value/weighted by mass. Superscripts A and C in equation
stands for anion, cation respectively. The absence of a superscript means that the descriptor was
calculated for the ionic pair.

All models are characterized by satisfactory goodness-of-fit, robustness and predictive capabilities
(the values of R?, Q*cy, Q?gxt close to 1 and low values of the errors: RMSEc, RMSEcy, RMSEgpxt)
(Figure 1). Surprisingly, models with 3D descriptors are not the ones with the best quality metrics.
The model based on 2D descriptors calculated for ionic pair (M4) is the one that is most accurate in
terms of internal as well as external data set. The visual correlations between the experimental and
the predicted log EC50 values for all developed models confirmed the differences in the statistical
parameters mentioned above (Figures 2 and 3).

Q2loo R2ext
1.0
0.9+ 0.9 091
i 08 0.8 1
0.7+ 0.7 1 0.7 1
0.6 4 0.6 0.6 1
0.5+ 0.5 1 0.5
0.4 0.4 0.4
0.3 0.3 0.31
0.2 1 0.2 1 0.2 1
0.1+ 0.1 0.14
0.0 1 l 0.0 1 | 0.0 1 l
M2 M3 M4 M5 M6 M2 M3 M4 MS M6 M2 M3 M4 M5 M6
RMSE_c RMSE_cv RMSE_ext
0.4 4 0.3
0.3 1
0.3 1
0.24
0.2 1
0.2 1
- 0.14
0.1 gt
0.04 l 0.04 | 0.04 l
M2 M3 M4 M5 M6 M2 M3 M4 MS M6 M2 M3 M4 M5 M6

Model

Figure 2. Quality measurements of the developed QSAR models.

When the tool for applicability domain (AD) evaluation recently developed by Roy et al. [21]
was applied, none of the ILs were classified as an object out of the domain. The same conclusions
can be derived from the leverage approach (a standard approach used for AD evaluation). For all
models, the residual values for all training and validation ILs were within +3 standard deviations from
the mean value. Thus, the perditions were correct in relation to the molecular structures’ variation.
However, there were several ILs with high leverage values, considered as “good leverage points”, that
stabilized the models [21,22]. Details on the AD evaluation can be found in Supplementary Materials
(Tables S2-57).

Among the models based on descriptors calculated for separate ions (M1-M3), the one utilizing
2D and 3D descriptors (M3) can be considered as “the best” in terms of quality parameters. The first
descriptor present in the equation (Psi_i_0*) reflects the electronegativity of atoms in the molecule and
its topology (anions in this case) [24], whereas the second (QZZm) characterizes the distribution of
electric charges, taking into account the mass of the cation.
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Figure 3. Experimental vs. predicted toxicity towards E. coli (log ECsp, (mM)).

In the case of the models utilizing descriptors calculated for ionic pairs (M4-M6), the one with
2D descriptors only (M4) is the most accurate. It employs three descriptors: GMTI that describes the
structure branching; MDDD reflecting the molecular size; and AMW—the average molecular weight
related to the atomic composition.

The most accurate models from both groups (namely: M3 and M4) have comparable values
of the quality measures. However, QSAR models should not only be well described by statistical
parameters, but also be interpretable in relation to the toxicity mechanism. In the case of M3, one can
directly analyze, which ionic moiety (anion or cation) has a bigger impact on the toxicity towards E. coli.
Unfortunately, the descriptors selected to the equation are not intuitive and easy for interpretation by
non-experts. On the contrary, mechanistic interpretation of descriptors chosen for the M4 equation
is simpler. Although all of the selected descriptors refer to the molecular (or ionic) size and shape,
there are some important differences: descriptors in M3 account topology of the molecule as well as
molecular properties such as electronegativity, whereas descriptors in M4 characterize the size and
shape in a straighter way. Previous studies proved that factors such as branching (long alkyl chains) as
well as molecular volume determine the lipophilic interactions. Thus, they can influence the toxicity
of ILs towards E. coli [25-27]. Molecular descriptors in the M4 model equation are reflecting those
factors. Therefore, we can conclude that the developed model (M4) is not a random correlation but is
consistent with the existing knowledge of the studied toxicity mechanism.

The performed case study demonstrated that the way of molecular structure representation
influences not only the quality of the model but also the possibility of interpretation. Both aspects
should be considered during QSAR model development to obtain a reliable tool for hazard assessment
of ionic liquids.
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3.2. Influence of Structure Representation on the Variable Selection

In the second section, we studied the consequences of changing the representation approach
on the descriptors’ selection. Different ways of calculating descriptors (see Section 3.1) resulted in
different numbers of descriptors to be considered at the stage of building the predictive QSAR models
(Table 2). For example, in the case of M1, every ionic liquid was initially described by 278 anionic and
294 cationic 2D descriptors. In the case of M4, the same ILs were also described by 2D descriptors,
but since they encoded the structure of the ionic pair (as a sum of descriptors calculated for particular
ions), their number (298) is almost two times lower. When 3D descriptors were added, the total number
of descriptors to be considered when selecting variables to the model increased significantly. It is
worth to mention that our case study was based on the limited types of descriptors. The maximum
number of descriptors would even reach several thousand, if all types of descriptors available in the
modern software (e.g., DRAGON, alvaDesc) were calculated. Preserving the highest possible ratio
between the number of objects (here: ionic liquids) in the training set and variables (here: descriptors)
is crucial for the efficient execution of the feature selection algorithms. Moreover, any feature selection
algorithm (e.g., genetic algorithm) will be more effective and time-competitive when working on a
smaller set of possibly important descriptors [28].

Table 2. Number of individual variables in investigated data sets.

Model Number of All Variables Anions’ Descriptors  Cations’ Descriptors
M1 572 278 294
M2 813 352 461
M3 1385 630 755
M4 298 0 0
M5 414 0 0
M6 712 0 0

The study was performed in two groups of models, dependently on the way of description of the
analyzed ionic liquids: (i) models in which ions are described separately (M1-M3) and (ii) models that
utilized descriptors calculated for the whole ionic pair (M4-M6). For the purpose of the benchmark
study, we have chosen stepwise selection method, a simple feature selection algorithm. In spite of
using the identical control parameters, there are no common descriptors selected for models within
both groups. The most probable explanation is the significant difference in the variance of variables.
Moreover, models from the first group have similar values of the quality parameters to those from the
second group despite the lower number of variables in the equation. Therefore, by using simpler way
of ionic liquid representation, we were able to develop a model with high accuracy and a lower chance
to be overfitted.

3.3. Influence of the Presence of the Second ion on Reliability of the Applicability Domain Assessment

The main purpose of a QSAR model development is to create a tool that will deliver reliable
predictions for new compounds. However, there is a critical condition: the new compound should
belong to the applicability domain (AD) of the model. This means, its molecular structure should be
similar to the training set enough to let the model interpolate (not extrapolate) the predicted endpoint
value. Thus, majority of the AD assessment methods are based on the concept of molecular similarity.
The algorithms of the molecular similarity calculation are based on the descriptors values used in the
QSAR equation. This assumption is especially important in the case of models with 3D descriptors
because their values could be influenced by the method selected to perform geometry optimization.

Obviously, when using descriptors calculated separately for the individual ions, the values of the
descriptors are identical for all ionic liquids in the dataset. For example, thiocyanate anion has the same
value of L1i* descriptor (equals to 1.38) in the case of both: 1-butyl-3-methylpyridinium thiocyanate
and 1-octyl-3-methylimidazolium thiocyanate. The same situation is in the case of cationic descriptors
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(Table 3). Therefore, the borders of the applicability domain are exact and easy to define. However,
when the descriptors are calculated based on the structure of the whole ionic liquid the values of 3D
descriptors are influenced by geometries of both ions. Thus, the same descriptors have a range of
different values (Table 4). In consequence, the verification of AD is more challenging. Moreover, in
such a case it should be investigated whether the selection of geometry optimization method and
conditions would significantly affect the calculated 3D descriptors.

Table 3. Three-dimensional (3D) descriptors calculated for anions and cations after separate optimization
of ions. Descriptors in the table form equation of model M2.

IL L1iA L1m €
[C4mpy] [SCN] 1.38 6.78 h .
[C8mim] [SCN] 1.38 18.4 e same anion
[C4mpyrr] [NT2] 5.67 4.48 )
[CAmpyrr] [Br] 0.00 4.48 The same cation

Superscripts A and C in equation stands for anion, cation respectively.

Table 4. Three-dimensional (3D) descriptors calculated for ionic pairs with the same anion present in

M5 equation.

IL L/Bw RTv L3u
[C4mim] [NTf2] 1.98 6.69 2.29
[C4py] [NTf2] 1.68 6.65 1.39
[C4mpyrr] [NT2] 2.3 6.75 2.13
[C4mpip] [NTf2] 2.03 6.82 1.39
[C8mim] [NTf2] 2.85 7.20 2.13
[C8py] [NTf2] 2.2 7.16 1.56
[C8mpyrr] [NTf2] 2.05 6.93 1.28
[C8mpip] [NTf2] 2.23 7.34 1.90

Range 1.17 0.69 1.02

3.4. Other Practical Aspects of ILs Modeling with QSAR/QSPR

There are several examples in the literature, where QSAR models for ILs use even
more sophisticated approaches of calculating the molecular descriptors than those presented in
Sections 3.1-3.3. For example, Bruzzone et al. [29] developed a QSAR model for predicting toxicity
(ECsp) for Vibrio fischeri based on for 33 ionic liquids. Because all 33 ILs contained a halide anion
(chloride or bromide), only the molecular structure of the cations was optimized at the DFT level of
theory and used for calculating constitutional, topological, geometrical, electrostatic, and quantum
chemical descriptors (with CODESSA software,). Similarly, Nekoeinia et al. [30] developed a QSPR
model for predicting the normalized polarity parameter (ETy). The model was developed based on a
set of 52 ILs having the same anions: (CF3SO,)N?~. The 2D and 3D descriptors such as topological and
GETAWAY were calculated only for cations, after geometry optimization at the molecular mechanics
level of theory (MM+ force field implemented in HyperChem software, v.7). In the model of cytotoxicity
to the leukemia rat cell line (IPC-81) developed by Torrecilla et al. [31] the dataset included ionic liquids
having various types of cation and anions. Therefore, the authors optimized molecular geometries
of the cations and anions independently at the level of DFT (B3LYP/6-31++G**). Based on that,
they derived the So-profile molecular descriptors of counterions. A different approach was used by
Wang et al. [32]. Although they modeled ionic liquids with the same anion (bromide), they were
optimizing geometry of the whole structure (at the DFT level, B3LYP/6-311G (d, p)) in the case of each
IL. Then, they used the quantum-mechanical properties (e.g., HOMO/LUMO energy, the total energy)
of Br-ILs as descriptors in a QSAR model predicting toxicity towards V. fischeri and D. magna.
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All the presented examples show that there are various ways of deriving structural information
on IL encoded by molecular descriptors. Moreover, their values often depend on the method of
geometry optimization. QSAR/QSPR models based on the 3D and/or quantum-chemical descriptors
could provide deeper insight into the structure and properties of ionic liquids. However, a more
precise description of the structure would not automatically guarantee better accuracy in predicting
the endpoint value. Moreover, a wide use of QSAR methodology for finding new compounds with
desired properties (e.g., viscosity, octanol-water partition coefficient, thermal stability) is possible
on the condition that they are easy to apply and to reproduce by users not very experienced in
computational chemistry. Thus, the necessity of performing geometry optimization of ions or ionic
pairs with advanced computational techniques could limit the applicability of QSAR/QSPR modeling.

The reliable QSAR/QSPR model should have a well-defined endpoint and applicability domain,
should be validated with an external data set, and should be assessed by correctly used statistical
parameters [33]. However, QSAR models can be applied not only to predict the endpoint values for a
large number of untested compounds, but also to investigate mechanisms of the observed toxicity.
Thus, the descriptors employed in the model equation should enable to provide an interpretation of
the possible mechanisms of toxicity [34]. Therefore, the selected combination of descriptors should be
validated not only in terms of statistical requirements (i.e., goodness-of-fit), but also in the context
of eventual sheading new light or consistency with the existing knowledge on the studied toxicity
mechanism. Undoubtedly, the same aspect, i.e., the possibility to investigate mechanisms of the
modeled property, has to be taken under consideration in terms of the development of QSPR models
for predicting physicochemical properties.

4. Conclusions

This contribution was aimed at performing a benchmark study to investigate the relationship
between the way of structure representation and the model quality. Moreover, we have discussed
the advantages and disadvantages of several approaches of describing the structure of ionic liquids.
The most important conclusions are:

e 2D descriptors are suitable to build reliable QSAR models;

e  The strategy in which the 2D descriptors were calculated for the whole ionic liquid allowed to
build the model with the highest quality;

e  More precise description of the ionic liquid’s structure (through 3D descriptors calculated for ions
or geometry optimization of ionic pairs followed by descriptors calculation) does not guarantee
the better accuracy and predictive ability of the developed model;

e Models based on 2D descriptors are easier to apply and reproduce, even by non-experts in
computational chemistry, which could lead to an increase of the application of in silico methods
in various R&D areas.

Despite the fact that the case study concerns toxicity, we do believe that presented conclusions
also concern the development of quantitative structure-property relationships (QSPR) models that
allow predicting physicochemical properties.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/13/11/2500/s1.
Table S1: The experimental data of ILs” toxicity towards Escherichia coli collected from the literature, Table S2:
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