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ABSTRACT: We present an application of computational inverse
design, which reverses the conventional trial-and-error forward
design paradigm, optimizes biological phenotype by directly
modifying genotype. The limitations of inverse design in
genotype-to-bulk phenotype (G-BP) mapping can be addressed
via an established design paradigm: “design, build, test, learn”
(DBTL), where computational inverse design automates both the
design and learn phases. In any context, inverse design is limited by
the fundamental “one-to-many” nature of the inverse function. G-
BP inverse design is further limited by the number of single
nucleotide polymorphisms that can be made to a member of the
population while maintaining feasibility of genotype creation and
biological viability. Considering these limitations, we propose a
design paradigm based on incremental optimization of phenotype through a combined computational and experimental approach.
We intend this work to be a foundational synthesis of well-known techniques applied to the context of genotype-to-bulk phenotype
inverse design, which has not yet been performed in the literature. The design pipeline can optimize phenotype by either directly
proposing genotypic changes, or simply by suggesting parents to be used for selective breeding. The soybean nested association
matrix data set is used to present an in silico case study of the design pipeline by performing optimization that maximizes protein
content while constraining other phenotypes. A random forest (RF) is used to model the genotype-to-phenotype relationship, and a
genetic algorithm is used to query the RF until a feasible genotype with desired phenotype is discovered. After 20 in silico DBTL
cycles, a final population of individuals with a mean protein content of 36.13%, an increase of three standard deviations above the
original mean is suggested.

1. INTRODUCTION
Soybean production and processing is a globalized industry
that supports a variety of other industries, including animal
feed,1 bioenergy,2 plastics3 and human foods.4 This diversity of
applications is possible because the soybean plant has many
useful products including protein-rich soymeal5 and soy oil,
which contains the common food ingredient soy lecithin.6 Due
to the poultry industry’s reliance on soybean meal,7 our focus
is on optimizing soybeans for protein production.
The concepts of forward and inverse design will frequently

be referenced. Forward design refers to an iterative “trial-and-
error” design paradigm in which design parameters are selected
and then the resulting properties are experimentally
determined.8 In contrast, inverse design uses computational
modeling or simulation alongside optimization to suggest
design parameters based on certain desired properties.9

Forward and inverse design terminology are most frequently
used in metamaterials design, one of the first fields to establish
an inverse design paradigm. Metamaterials, and more
specifically plasmonic materials, are currently the most prolific
field for inverse design. A comprehensive review of plasmonic
inverse design by Ren S. et al.10 reveals that there are two steps
required for inverse design: (1) model the forward function,

(2) optimize the inverse function using the forward model as a
simulator. Plasmonic inverse design is so prolific because step 1
is already solved by deterministic forward function simulation
using finite difference time-domain.11 We have designed a
metamaterials-inspired inverse design pipeline for optimizing
soybean phenotype by synthesizing techniques from meta-
materials and biology. Linking soybean genotype to phenotype
is nontrivial, so mathematical modeling and/or machine
learning (ML) are necessary for forward functional simulation
in this context.
In biology, a true computational inverse design paradigm has

been established in de novo protein design. De novo protein
design benefits heavily from structural and functional
redundancy across kingdoms of life. For instance, Madani et
al. train their large language model for protein sequence design
on over 280 million natural protein sequences.12 Numerous
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publications by the Baker Lab13−17 use molecular dynamics
simulations or the networks RoseTTAFold18 and Alpha-
Fold2,19 developed from similarly large data sets. Working at
the genotype-to-bulk phenotype scale, only phenotypes as
genotypes from the target organism are used, and readily
available simulators that can predict phenotype from genotype
are not available. Also, the intensive design of a particular
protein cannot necessarily guarantee a desired change in
genotype. Thus, we will explore how genotype-to-bulk
phenotype (G-BP) design is currently performed in plant
breeding as a primer.
While ML is currently in use within plant breeding and

agronomy, it has not yet been extended into a computational
inverse design paradigm. There are two general areas within
agronomy that ML is commonly applied. These fields are
genomic selection/genomic prediction (GS/GP) and pheno-
typic prediction. GS is an improvement upon its predecessor,
marker assisted selection,20 in that it does not require an
explicit association between a biomarker and a trait.21 Rather,
GS uses genome-wide biomarker data, typically single
nucleotide polymorphisms (SNPs),22 which are low-cost to
acquire and high density within the genome.23 GS also does
not establish an explicit connection between any biomarker
and a given trait, but rather uses computational methods to
capture several minor genotypic effects on a single trait.24

Typically, a GS model is trained on data that has both
phenotype and genotype information and can then be used to
predict data with only genotype information. Because
gathering phenotype information is not required after the
model is constructed, time is saved in selecting parents with
highly desirable traits for breeding.25

GP techniques used for GS span linear, Bayesian, and ML
techniques. A common linear technique used in GP is best
linear unbiased prediction, available with its spinoff techniques
in the package rrBLUP.26 Bayesian techniques, collected in the
package BGLR27 are better at capturing nonlinear and
multivariate relationships than rrBLUP. ML techniques have
been extensively benchmarked on known genotype/phenotype
data sets such as wheat, soybean, and sorghum.28,29 The most
common ML methods used in GP are decision-tree based
methods such as random forests30 and gradient boosted trees
(i.e., XGBoost),31 and support vector machine.32 Deep
artificial neural networks33 and convolutional neural net-
works34 have also been applied to GP. Generally, it appears
that there is a trade-off between model accuracy and model
complexity (and therefore training time).35 Though less
relevant to G-BP design, ML has also been used to perform
phenotype prediction from a plant’s visual characteristics36,37

SNP arrays are extremely high-dimensional data sets, so
there is also a third requirement for inverse design in this case:
(3) dimensionality reduction. This case study uses the soybean
nested association matrix (SoyNAM) data set, which has
already been processed extensively by a genome-wide
association study38 and SNP saliency metrics.39 Feature
selection by these techniques or by computational techniques
such as RF40 are acceptable as dimensionality reduction. Much
of the plant breeding literature is focused on the established
technique of GS/GP, which aims to select parents which are
most likely to lead to desirable phenotype change. Therefore,
there has not been a focus on de novo computational inverse
design through a G-BP lens.
1.1. Limitations/Necessary Constraints. First, while

genetic engineering in soybeans is common and impactful,41

European markets and others are still wary of genetically
modified organisms (GMOs) in foods.42 Any attempts to
design or optimize soybean phenotype will therefore be limited
by consumer perception. Selective breeding is not commonly
considered GMO and can be a good workaround for this issue.
This pipeline both keeps track of suggested changes on a SNP-
by-SNP basis, and tracks the parents each suggested change
comes from, making selective breeding easier. Agronomists
trying to quickly improve their crop while avoiding GMO
concerns can benefit from this technique, which circumvents
typical “trial-and-error” forward design.
Next, while SNPs are the most descriptive way to encode

genotype, working at the base pair level introduces a few
limitations. The number of genotype changes that can be made
in one iteration is greatly limited due to concerns with both
viability and feasibility. Regarding viability, the more computa-
tionally suggested SNPs, the greater the probability that lethal
or counterproductive mutations will be introduced. Feasibility
is a more complicated consideration: using available
technology, is it actually possible to create the suggested
genotype? Two possible options for creating a suggested
genotype are as follows: (1) perform selective breeding with
parents likely to produce desired genotype; (2) use a CRISPR-
based technique.43 The former will allow genetic changes
outside of the suggested SNPs but is simpler to execute. The
latter can make a small number of targeted genetic changes but
introduces GMO concerns and requires knowledge of
extraneous biological techniques. Considering these limita-
tions, we selected a constraint for the maximum number of
SNPs which is large enough to allow for reasonable phenotype
change but small enough to use either technique effectively.
All inverse design techniques are limited by the “one-to-

many” nature of inverse function mapping.44 In a biological
context, “one-to-many” refers to the fact that a single output
phenotype can be created by countless input genotypes. As a
result, an optimization algorithm is much more likely to find
local optima during optimization, and certain modeling
techniques will not be able to complete training.45 The one-
to-many problem is further exacerbated by the high-dimen-
sional nature of SNP data; inclusion of more variables
introduces more nonunique solutions. As a result, an
unconstrained genetic algorithm (GA) attempting to optimize
a phenotype via genotype can suggest genotypes that require
hundreds or thousands of genetic changes.
These limitations are critically detrimental to the rational use

of inverse design in a direct genotype-to-bulk phenotype
context. The proposed design pipeline will address the
aforementioned limitations in multiple ways. Our principal
contribution is a synergistic combination of computational
techniques and experimentation inspired by the “design, build,
test, learn” (DBTL) paradigm.46 DBTL is already commonly
used for intelligent, recursive forward design in metabolic
engineering and systems biology.47,48 We believe that this work
goes beyond current DBTL uses in biology due to its
integration of computational inverse design, which bolsters
and streamlines both the design and learning aspects. This
design paradigm can also be generalized to other fields or other
biological structures to perform inverse design. In addition, to
our knowledge, a paradigm to perform direct G-BP inverse
design has not yet been established within the literature. The
work described here is a novel synthesis of many established
techniques (RF, GA, DBTL, and inverse design) to address the
challenges that G-BP inverse design poses.
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2. METHODS
2.1. Data Set. For this work, we used the SoyNAM data

set.49 Using this data set is advantageous because it is already
well-curated, and feature selection has already been performed.
In addition, it has the largest population size available for a
well-curated, SNP-based data set. The data set contains 5487
individuals, each with the same 4401 SNP loci describing their
genotype. Many phenotypes are available, but we avoid integer
and Boolean phenotypes. For the case study, height (cm),
protein content (% by mass), and seed size (weight in g of 100
seeds) were selected as outputs. Genotypes are pseudo-one-hot
encoded with a 0, 1, or 2 for reference, heterozygous mutation,
and homozygous mutation, respectively.
2.2. Compute. All code was run on an i7-8550U CPU with

12 GB of DDR4-2400 Hz RAM. The problem statement and
proof of concept each take about 5 h, while the full case study
requires 48 h of processor time.
2.3. Packages and Hyperparameters. The inverse

design framework consists of a RF in Scikit-learn v1.2.250 as
a forward simulator (genotype-to-phenotype), and a GA in
pyGAD v3.0.051 to perform optimization on the inverse
function (phenotype-to-genotype). Uniform Manifold Approx-
imation and Projection (UMAP) v0.552 was used to generate
2-D renderings of genotype data.
For each algorithm, different hyperparameters were used to

illustrate the problem statement, provide validation and proof
of concept, and finally to carry out the case study. Table 1

displays GA hyperparameters used in each part of this project.
For every RF, default sci-kit learn parameters for a RF
regressor were used. Crossover and mutation probabilities
were intentionally kept low to avoid excessive violation of the
SNP constraint.
Default sci-kit learn parameters were used for the RF. 5-fold

cross-validation was used to determine the accuracy of the RF
on genotypes/phenotypes not part of the training set. Table 2
displays the results of this 5-fold cross-validation for predicting
height and protein together, and height, protein, and seed size
together. Including more phenotypes introduced more error
but may be more relevant to an agronomical context.
2.4. One-to-Many Problem Statement. For the problem

statement and subsequent proof of concept, a simple fitness
function was used: absolute error from desired phenotype as
predicted by the RF. No phenotype constraints were applied;
however, a constraint disallowing more than 20 SNP changes
from an existing member of the population was enforced to
address feasibility and viability concerns. The fitness function
began by calculating the Hamming distance of each solution’s

genotype to each other member of the population. There are
three options:

1. Solution is a member of the population: assign fitness =
0.

2. Solution has a neighbor within SNP constraint: calculate
fitness normally.

3. Solution has no neighbors: replace with a known
genotype, calculate fitness.

This genotype constraint guaranteed that all solutions will be
anchored to an existing member of the population and will be
within the desired number of SNPs.
First, all individuals with a genetic “neighbor” within 20

SNPs or less were found. These neighbors can be found in
Supporting Information S1. The height and protein content
phenotypes of an individual from the largest cluster of 19
individuals within 20 SNPs of each other were selected as a
target, and this individual was deleted from the population.
The goal was to validate the inverse design pipeline by
regenerating the genotype of this removed individual by
targeting its phenotype with inverse design. After training an
RF on the remaining population, 10 GA runs were performed
which used the new RF to predict phenotype within the fitness
function. Each run, the individual closest to desired phenotype
was saved and plotted against the original population in 2-D
using UMAP.
2.5. Proof of Principle. To prove that the GA is capable of

regenerating a certain genotype by setting its phenotype as the
target, a smaller-scale experiment was performed using the
same neighbor cluster described in Section 2.4. The RF was
still trained on the full population minus the target. However,
when a solution was above the maximum number of SNPs
allowed, the pool of individuals it could be replaced with only
contained the neighbors within its cluster. Also, only the 19
individuals in the cluster were checked by the fitness function,
so this GA is able to operate much faster. Thus, more
generations were allowed to find and settle in an optimum, as
shown in Table 1. Ten GA runs were performed for each of the
19 individuals in the cluster.
2.6. Case Study. For the case study, phenotype constraints

and a more stringent 10 SNP constraint were enforced. Ten
SNPs were not necessarily the ideal number; one must strike a
balance between taking small enough steps to retain biological
viability and feasibility of creation and taking large enough
steps to make significant phenotypic change. The SoyNAM
data set is very well-curated, with a large population, a
relatively low number of high-confidence SNP markers, and
high minor allele frequencies (10−20%). Thus, we approached
the problem with confidence that making multiple SNP
changes at once would not result in an unviable organism. As a
general rule of thumb, the less curated the data set, the fewer

Table 1. GA Hyperparameters for Various Inverse Design
Techniquesa

parameter PS GA POP GA CS GA

total iterations 10 10 100 (20 DBTL x 5)
repeats allowed N/A 300 10
generations 50 20,000 50
population size 20 20 20
SNP tolerance 20 20 10
crossover probability 30% 30% 30%
mutation probability 0.2% 0.2% 0.2%
elites kept 5 5 5
aPS: problem statement, POP: proof of principle, CS: case study.

Table 2. Five-Fold Cross-Validation of RF for Various
Phenotype Combinationsa

protein
only

height and
protein

height, protein, and
size

fold 1 1.44% 3.56% 4.31%
fold 2 2.27% 5.52% 5.53%
fold 3 1.46% 3.94% 4.48%
fold 4 1.56% 4.15% 4.86%
fold 5 1.80% 5.53% 6.06%
average MAPE 1.71% 4.54% 5.05%
aMean average percentage error was used as an error metric.
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SNPs should be allowed per iteration. Unfortunately, there is
no good way to guarantee viability computationally, but tuning
the SNP constraint appropriately can help mitigate the chance
to generate unviable or infeasible solutions.
When fitness was calculated normally, multiple constraints

and rewards were applied to attempt to produce a compact
soybean plant with small, protein-dense seeds. More
specifically, the fitness functions (in eqs 1−3) for height (H)
and seed size (S) penalize the solution heavily for values larger
than each phenotype’s mean value. These constraints are
imposed to avoid unrealistic solutions (i.e., growing excessively
tall plants with large seeds to achieve higher protein contents).
The fitness function for protein (P) heavily penalized solutions
below the mean value and afforded progressively larger rewards
for phenotypes significantly above the mean. “Sol” is the

phenotype of the current solution. μ and σ refer to the mean
and standard deviation of the phenotype in the original
population, respectively. Seed size rewards and penalties are
larger because seed size has a smaller range.
2.7. DBTL Pipeline. The overarching design pipeline we

are suggesting is inspired by DBTL, iteratively suggesting new
genotypes which are expected to provide improvements on
phenotype in an incremental manner. A conceptual diagram of
a full DBTL cycle is included in Figure 1. This pipeline is
unique, because the suggestion of these new individuals
(design) and their subsequent addition to and analysis with the
original data (learn) is entirely automated via an inverse design
framework. In practice, creation of suggested genotypes
(build) and measurement of their phenotypes (test) must be

Figure 1. Full optimization pipeline. Inner loop: single GA run; keep individual closest to desired. Outer loop: after all GA runs finish, experiment
and update new individuals. Red dotted line: RF is used to predict phenotype within the GA’s fitness function.

Figure 2. (A) Three consecutive DBTL cycles of abstractly represented genotype, depicting the SNP limitation as individuals moved toward the
desired genotype (gold). (B) Three cycles of phenotype optimization by DBTL, illustrating the creation of new phenotypes and their new
distributions until the target range was reached.
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done experimentally and must be done frequently to balance
out the computational component.
In this case study, a DBTL-like pipeline was used to suggest

small populations of soybean genotypes, which successively
produced increased protein content subject to constraints. A
conceptual illustration of both genotype and phenotype
approaching their target values through DBTL is included in
Figure 2. To be more specific, during the case study a GA runs
five times to suggest five genotypes per DBTL cycle. At this
point, these genotypes would need to be experimentally
created, grown, and tested for phenotype. However, in this
case study we took the RF’s phenotype prediction as fact,
added the GA-generated individuals to the population, and
began the GA runs again.

3. RESULTS AND DISCUSSION
3.1. Problem Statement. Before presenting the case

study, we will demonstrate the one-to-many problem. Ten GA
runs were performed using a target phenotype whose genotype
is known to have a cluster of neighbors within the 20 SNP
limit. The results are displayed via UMAP representation, as
shown in Figure 3. Hypothetically, validation of the pipeline by

reconstructing this genotype should be feasible within the
constraints of the pipeline. However, not only can the
genotype not be reconstructed, but the GA also produced a
different suggested genotype for each run despite having the
same target phenotype. If many GA runs were performed, the
original genotype would likely be found eventually; however,
using the same GA hyperparameters as in the case study,
reconstructing a specific genotype appeared prohibitively
difficult. Even after drastically reducing the search space by

imposing an SNP constraint, many local optima clouded the
search space.
The purpose of this exercise was to demonstrate the drastic

effects of the “one-to-many” nature of inverse function
mapping on G-BP inverse design. As shown by UMAP in
Figure 3, the same target phenotype could be represented by
many, vastly different genotypes. The large changes in design
parameters that generating these individuals would require are
not feasible in G-BP design. It is clear that another approach is
necessary, so we embraced “one-to-many” by taking an
incremental approach.
3.2. Proof of Principle. To address the stated problem, the

pipeline must be validated on a smaller scale. Table 3 displays
the results of each individual within the largest cluster of
neighbors after only allowing that cluster to act as parents.
Many members could now be found using inverse design, but
this small-scale technique still fell short on a few cluster
members. The one-to-many problem still introduced difficulty
in recreating an exact genotype, even at the scale of a few
SNPs. Only 10 of the 19 members of the neighbor cluster can
be found from the others after 10 GA runs. For the others,
there were phenotype optima along the way that the GA finds
and becomes stuck in. It appeared that if the target genotype
was able to be reconstructed, it would be done relatively
quickly. Many of the successful solutions were performed in
one or two iterations.
This smaller scale validation showed that it was in fact

possible to reconstruct a genotype via GA/RF inverse design
by targeting its phenotype. However, the goal of inverse design
was not to regenerate a specific genotype but rather to create a
phenotype of interest by manipulating genotype. Most
importantly, we can learn from the results of this proof of
principle: due to the infinite number of solutions to the inverse
genotype-phenotype function, DBTL should be introduced to
allow for a more incremental and scaffolded approach to
optimization. When an acceptable local optimum is found, it is
best to avoid excess computational work and instead perform
experimental verification and learn from the suggested
individual.
3.3. Case Study. The goal of this in silico case study, to

maximize protein content by inversely designing genotype in
an incremental manner, was successful. Using the DBTL
pipeline, 100 unique genotypes were created which are
displayed on a histogram alongside the original distribution
of the population in Figure 4A. Experimental verification was
simulated by adding individuals to the population and
retraining the RF between each DBTL iteration. Importantly,
we recognized that by performing this case study fully in silico
it was likely that some overfitting occurred. Overfitting will be
addressed at length in the following sections; however, if this
pipeline is applied to in vivo G-BP inverse design, overfitting is
mitigated by intermittent experimental verification.

Figure 3. Dimensionally reduced demonstration of the one-to-many
problem of inverse design. Genotype (in 2-D) of the selected target
phenotype is displayed as an orange star. All GA-generated yellow
triangles and the orange star shared the same predicted phenotype.
This plot demonstrates the difficulty of exactly regenerating a
genotype by targeting its phenotype through inverse design.

Table 3. Proof of Principle Results for Individuals within Cluster of Neighborsa

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

iterations required − 1 − − − 1 6 − 1 1 − 1 1 1 − − 2 2 −
SNPs of best fitness 6 0 7 10 6 0 0 1 0 0 4 0 0 0 5 7 0 0 5
lowest SNPs required 2 0 5 10 5 0 0 1 0 0 2 0 0 0 2 6 0 0 2

a“SNPs of best fitness” indicates the genetic difference between the individual with closest predicted phenotype to target. “Lowest SNPs required”
is closest genotype to the target achieved during any GA run. Individuals whose genotype could be reconstructed are Bolded, and those not found
in 10 iterations are marked by “−”.
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Regardless, after 20 DBTL cycles, it appears that the GA-
generated individuals formed a new population distribution.
The final DBTL cycle generated five individuals whose average
protein content was 36.13%, an increase of 3.04 standard
deviations based on the original distribution. On the
histogram, many individuals cluster within 36.0−36.2% protein
content, showing that the pipeline is likely approaching the
point of diminishing returns. In Supporting Information S1,
genotype and phenotype are provided for all final GA-
generated individuals.
As shown in Figure 5, the average phenotype difference

between a new individual and its closest neighbor (“parent”) in

the original population was small to begin with but became
larger as more DBTL cycles occured. At a late stage of inverse
design, the pipeline appeared to latch onto strong individual
and continue make small changes to them. This is likely an
artifact of overfitting, because as new individuals were added to
the population, they were weighted more heavily in RF
training. Therefore, the same parent (e.g., parent #3890) can
appear to produce larger and more desirable phenotype
differences in future generations (shown in Table 4) due to the
influence of the new individuals on the RF. This result further
evidenced that this pipeline must be performed with frequent
experimental verification. Note that Figure 5 shows phenotype
differently between only the original population and new

individuals, showing that phenotype changes move slowly at
first, then very quickly, followed by reaching a point of
diminishing returns. Table 4 includes new individuals in the
analysis, and shows that in late stages, small changes dominate,
indicating DBTL may be unable to further produce improve-
ments without experimentation.
Selected metrics for the five individuals produced by the

final DBTL cycle are included in Table 4. A similar analysis for
all individuals generated by the design pipeline is included in
Supporting Information S1. As shown in Table 3, across all
solutions the pipeline tends to use close to or more than the
maximum number of allowed SNPs for each solution. This
driving force to use more SNPs is also justification for the
application of the SNP restriction as a hard constraint, while
the phenotype constraints are applied as softer penalty and
reward functions. This SNP constraint is what prevents the GA
from making infeasible suggestions to acquire phenotype
improvements. As shown in Figures 4 and 6, this DBTL
pipeline pushes the boundaries of existing phenotypes, but
does not make outlandish or infeasible genotype suggestions.
Phenotype can be a soft constraint because optimization of

protein content does not necessarily drive the other
phenotypes in a certain direction to maximize protein content.
As shown in Figure 6A, the pipeline was capable of finding
solutions slightly below, just at, or slightly above the
population mean. The solutions slightly above were allowed
because the reward for exceptional protein content outweighed
the penalty for minor violations of height and seed size
constraints. On the whole, however, the pipeline seemed to do
better at following the seed size constraints than the height
constraints.
A RF with default parameters was used as the forward

function simulator. It appears that a more powerful technique,
such as XGBoost53 or an artificial neural network,54 with tuned
hyperparameters could be superior due to the high-

Figure 4. Both stacked histograms display the protein phenotype of the yellow GA-generated individuals compared to (A) the true protein
phenotype distribution and (B) the protein phenotype distribution as predicted by RF. The RF tends to compress the phenotype distribution
toward its mean. (A,B) Both use the same genotypes as input for the blue data, but (B) is the phenotype generated by the pipeline. GA-generated
individuals begin to form a new distribution around 36% protein content, toward the tail.

Figure 5. Average phenotype difference from parent (original
population) genotype based on RF prediction. Savitsky−Golay
smoothing was used to generate a smooth fit curve for the data.

Table 4. Results for the Five Individuals in the Final DBTL
Cyclea

1 2 3 4 5

parent index 3890 5574 5495 5549 5539
phenotype difference from
parent (RF)

0.626 −0.01 −0.01 0.06 −0.01

SNPs required from parent 8 10 8 7 10
aAt this stage, small changes are all that can be made. Bold:
individuals previously generated by inverse design.
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dimensionality and interdependence of the data. The effects of
using an untuned RF are evident in Figures 4B and 6B, which
display DBTL solutions alongside the population distribution
as predicted by the RF. The RF is poor at predicting
phenotypes near the extremes of the population, resulting in a
compression of the phenotype distribution. When compared to
the distribution the RF is able to predict, the GA-generated
individuals appear to have a much more significant increase in
protein content than when compared to the true phenotypes.
Therefore, a technique that can more faithfully predict the full
range of true phenotypes would be able to further push the
boundaries of protein content.
Azodi et al.35 have benchmarked many regression techniques

for SoyNAM and other biological data sets. They show that
gradient boosted trees (e.g., XGBoost) and ANNs both have
increases in accuracy over RF. Azodi et al. also benchmarked
many linear regression techniques for phenotype prediction,
which can match or exceed the accuracy of XGBoost and
ANNs. In future work, switching to one of these algorithms is
highly recommended; however, note that both XGBoost and
ANNs are less accurate than RF or linear methods for
biological data sets other than SoyNAM. There are two
reasons for this. First, the SoyNAM data set is extremely well-
curated and contains few features compared to other data sets:
4401 SNPs determined by multiple techniques to have
significant effects on phenotype. More importantly, the
SoyNAM data set is a collection of nearly 5500 individuals;
therefore, it has the best feature-to-sample ratio of any publicly
available SNP-based database. In conclusion, the choice of
regression algorithm must be based on the data set at hand and
time constraints.

4. CONCLUSION
Any design paradigm in G-BP inverse design must intelligently
approach the inherent one-to-many nature of inverse function
mapping. Due to this, we present a computational inverse
design pipeline inspired by design, build, test, learn, in which
the “design” and “learn” phases are semiautomated. This
technique can save time and resources over trial-and-error
forward design techniques by either directly suggesting a
genotype to be created or by intelligently suggesting the parent
organism(s) for use in selective breeding.
To our knowledge, this is a novel application of computa-

tional inverse design in a direct genotype-to-bulk phenotype
context. In addition, this generative DBTL framework is
generalizable to any field, especially those in which large
changes in design parameters are not feasible. At a smaller
scale, it is also generalizable to other genotyping data than
SNPs.
Incremental inverse design as presented is an effective

technique for performing genotype-to-bulk phenotype inverse
design. There may be other techniques that are superior to this
particular application for biological inverse design, but we
simply intended to lay the groundwork for inverse design to
occur within the field of agronomy/plant breeding or general
genotype-to-phenotype mapping. Despite issues with over-
fitting stemming from introducing in silico individuals to the
pipeline, we have presented a useful in silico demonstration of
computational inverse design in biology that can be used to
make phenotype improvements while maintaining viability and
practicality. Phenotype and SNP constraints are enforced to
make performing computational and experimental design in an
alternating and incremental fashion feasible for agronomists
and engineers alike.

Figure 6. Scatterplots displaying phenotype distributions of (A) height and (B) seed size vs protein content. Left Figures: DBTL solutions
compared to true phenotypes. Right Figures: DBTL solutions compared to RF-predicted phenotypes. GA-generated individuals are realistic
solutions that push the boundary of protein content. This effect is more apparent when compared to the phenotypes the RF is able to predict.
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Potapenko, A.; et al. Highly accurate protein structure prediction
with AlphaFold. Nature 2021, 596 (7873), 583−589.
(20) Dekkers, J. C. Commercial application of marker-and gene-
assisted selection in livestock: strategies and lessons. J. Anim. Sci.
2004, 82 (suppl_13), E313−E328.
(21) Jannink, J. L.; Lorenz, A. J.; Iwata, H. Genomic selection in
plant breeding: from theory to practice. Briefings Funct. Genomics
2010, 9 (2), 166−177.
(22) Yang, L.; Zhao, D.; Meng, Z.; Xu, K.; Yan, J.; Xia, X.; Cao, S.;
Tian, Y.; He, Z.; Zhang, Y. QTL mapping for grain yield-related traits
in bread wheat via SNP-based selective genotyping. Theor. Appl.
Genet. 2020, 133, 857−872.
(23) Vignal, A.; Milan, D.; SanCristobal, M.; Eggen, A. A review on
SNP and other types of molecular markers and their use in animal
genetics. Genet., Sel., Evol. 2002, 34 (3), 275−305.
(24) Desta, Z. A.; Ortiz, R. Genomic selection: genome-wide
prediction in plant improvement. Trends Plant Sci. 2014, 19 (9), 592−
601.
(25) Matei, G.; Woyann, L. G.; Milioli, A. S.; de Bem Oliveira, I.;
Zdziarski, A. D.; Zanella, R.; Coelho, A. S. G.; Finatto, T.; Benin, G.
Genomic selection in soybean: accuracy and time gain in relation to
phenotypic selection. Mol. Breed. 2018, 38, 117.
(26) Endelman, J. B. Ridge regression and other kernels for genomic
selection with R package rrBLUP. Plant Genome 2011, 4 (3), 250−
255.
(27) Pérez, P.; de Los Campos, G. Genome-wide regression and
prediction with the BGLR statistical package. Genetics 2014, 198 (2),
483−495.
(28) Farooq, M.; van Dijk, A. D.; Nijveen, H.; Mansoor, S.; de
Ridder, D. Genomic prediction in plants: opportunities for ensemble
machine learning based approaches. F1000Research 2022, 11, 802.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.4c01704
ACS Omega 2024, 9, 41208−41216

41215

https://pubs.acs.org/doi/10.1021/acsomega.4c01704?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acsomega.4c01704/suppl_file/ao4c01704_si_001.xlsx
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ranjan+Srivastava"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0003-4309-605X
https://orcid.org/0000-0003-4309-605X
mailto:rs@uconn.edu
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Joseph+Zavorskas"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Harley+Edwards"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Mark+R.+Marten"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Steven+Harris"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c01704?ref=pdf
https://github.com/SrivLab/SoybeanInverse
https://github.com/SrivLab/SoybeanInverse
https://doi.org/10.13031/2013.24203
https://doi.org/10.13031/2013.24203
https://doi.org/10.13031/2013.24203
https://doi.org/10.1023/B:JOOE.0000003126.14448.04
https://doi.org/10.3390/foods10061354
https://doi.org/10.3390/foods10061354
https://doi.org/10.1016/B978-1-63067-044-3.50005-4
https://doi.org/10.1016/B978-1-63067-044-3.50005-4
https://doi.org/10.3920/JAAN2020.0007
https://doi.org/10.3920/JAAN2020.0007
https://doi.org/10.1007/s11432-013-5033-0
https://doi.org/10.1007/s11432-013-5033-0
https://doi.org/10.3390/ma15051811
https://doi.org/10.3390/ma15051811
https://doi.org/10.1039/D1NR08346E
https://doi.org/10.1039/D1NR08346E
https://doi.org/10.1038/s41587-022-01618-2
https://doi.org/10.1038/s41587-022-01618-2
https://doi.org/10.1038/s41586-023-06415-8
https://doi.org/10.1038/s41586-023-06415-8
https://doi.org/10.1038/s41586-021-04184-w
https://doi.org/10.1038/nature23912
https://doi.org/10.1073/pnas.2207974120
https://doi.org/10.1073/pnas.2207974120
https://doi.org/10.1038/s41586-023-05909-9
https://doi.org/10.1038/s41586-023-05909-9
https://doi.org/10.1126/science.abj8754
https://doi.org/10.1126/science.abj8754
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.2527/2004.8213_supplE313x
https://doi.org/10.2527/2004.8213_supplE313x
https://doi.org/10.1093/bfgp/elq001
https://doi.org/10.1093/bfgp/elq001
https://doi.org/10.1007/s00122-019-03511-0
https://doi.org/10.1007/s00122-019-03511-0
https://doi.org/10.1051/gse:2002009
https://doi.org/10.1051/gse:2002009
https://doi.org/10.1051/gse:2002009
https://doi.org/10.1016/j.tplants.2014.05.006
https://doi.org/10.1016/j.tplants.2014.05.006
https://doi.org/10.1007/s11032-018-0872-4
https://doi.org/10.1007/s11032-018-0872-4
https://doi.org/10.3835/plantgenome2011.08.0024
https://doi.org/10.3835/plantgenome2011.08.0024
https://doi.org/10.1534/genetics.114.164442
https://doi.org/10.1534/genetics.114.164442
https://doi.org/10.12688/f1000research.122437.1
https://doi.org/10.12688/f1000research.122437.1
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.4c01704?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(29) Tong, H.; Nikoloski, Z. Machine learning approaches for crop
improvement: Leveraging phenotypic and genotypic big data. J. Plant
Physiol. 2021, 257, 153354.
(30) Sarkar, R. K.; Rao, A. R.; Meher, P. K.; Nepolean, T.;
Mohapatra, T. Evaluation of random forest regression for prediction
of breeding value from genomewide SNPs. J. Genet. 2015, 94, 187−
192.
(31) Li, B.; Zhang, N.; Wang, Y. G.; George, A. W.; Reverter, A.; Li,
Y. Genomic prediction of breeding values using a subset of SNPs
identified by three machine learning methods. Front. Genet. 2018, 9,
237.
(32) Zhao, W.; Lai, X.; Liu, D.; Zhang, Z.; Ma, P.; Wang, Q.; Zhang,
Z.; Pan, Y. Applications of support vector machine in genomic
prediction in pig and maize populations. Front. Genet. 2020, 11,
598318.
(33) Sandhu, K. S.; Lozada, D. N.; Zhang, Z.; Pumphrey, M. O.;
Carter, A. H. Deep learning for predicting complex traits in spring
wheat breeding program. Front. Plant Sci. 2021, 11, 613325.
(34) Ma, W.; Qiu, Z.; Song, J.; Li, J.; Cheng, Q.; Zhai, J.; Ma, C. A
deep convolutional neural network approach for predicting
phenotypes from genotypes. Planta 2018, 248, 1307−1318.
(35) Azodi, C. B.; Bolger, E.; McCarren, A.; Roantree, M.; de Los
Campos, G.; Shiu, S. H. Benchmarking parametric and machine
learning models for genomic prediction of complex traits. G3: Genes,
Genomes, Genet. 2019, 9 (11), 3691−3702.
(36) Pound, M. P.; Atkinson, J. A.; Townsend, A. J.; Wilson, M. H.;
Griffiths, M.; Jackson, A. S.; Bulat, A.; Tzimiropoulos, G.; Wells, D.
M.; Murchie, E. H.; et al. Deep machine learning provides state-of-
the-art performance in image-based plant phenotyping. Gigascience
2017, 6 (10), gix083.
(37) Jiang, Y.; Li, C. Convolutional neural networks for image-based
high-throughput plant phenotyping: a review. Plant Phenomics 2020,
2020, 4152816.
(38) Tadist, K.; Najah, S.; Nikolov, N. S.; Mrabti, F.; Zahi, A.
Feature selection methods and genomic big data: a systematic review.
J. Big Data 2019, 6 (1), 79.
(39) Liu, Y.; Wang, D.; He, F.; Wang, J.; Joshi, T.; Xu, D. Phenotype
prediction and genome-wide association study using deep convolu-
tional neural network of soybean. Front. Genet. 2019, 10, 1091.
(40) Rogers, J.; Gunn, S. Identifying feature relevance using a
random forest. In Subspace, Latent Structure and Feature Selection:
Statistical and Optimization Perspectives Workshop, SLSFS 2005, Bohinj,
Slovenia, February 23−25, 2005, Revised Selected Papers; Springer:
Berlin, 2006; pp 173−184.
(41) Lee, H.; Park, S. Y.; Zhang, Z. J. An Overview of Genetic
Transformation of Soybean; IntechOpen, 2013.
(42) Berschneider, J. Chances and Limitations of European Soybean
Production: Market Potential Analysis. Master’s Thesis, Universitaẗ
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