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Non-typeable Haemophilus influenzae (NTHI) colonizes the lower respiratory tract of
patients with chronic obstructive pulmonary disease and also causes exacerbations of
the disease.The 16-kDa lipoprotein P6 has been widely studied as a potential vaccine anti-
gen due to its highly conserved expression amongst NTHI strains. Although P6 is known
to induce potent inflammatory responses, its role in the pathogenesis of NTHI infection
in vivo has not been examined. Additionally, the presence of an amino-terminal lipid motif
on P6 serves to activate hostToll-like receptor 2 (TLR2) signaling.The role of hostTLR2 and
NTHI expression of the lipoprotein P6 on the induction of airway inflammation and gen-
eration of adaptive immune responses following chronic NTHI stimulation was evaluated
with TLR2-deficient mice and a P6-deficient NTHI strain. Absence of either host TLR2 or
bacterial P6 resulted in diminished levels of immune cell infiltration within lungs of mice
exposed to NTHI. Pro-inflammatory cytokine secretion was also reduced in lungs that did
not expressTLR2 or were exposed to NTHI devoid of P6. Induction of specific antibodies to
P6 was severely limited inTLR2-deficient mice. Although mice exposed to the P6-deficient
NTHI strain were capable of generating antibodies to other surface antigens of NTHI, these
levels were lower compared to those observed in mice exposed to P6-expressing NTHI.
Therefore, cognate interaction between hostTLR2 and bacterial P6 serves to enhance lung
inflammation and elicit robust adaptive immune responses during NTHI exposure. Strate-
gies to limit NTHI inflammation while simultaneously promoting robust immune responses
may benefit from targeting the TLR2:P6 signaling axis.
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INTRODUCTION
Within the respiratory mucosa, there exists a delicate balance
between induction of inflammation to limit pathogen spread and
bystander lung tissue destruction. Ligation of pathogen recogni-
tion receptors, such as Toll-like receptors (TLRs), during infection
is necessary to initiate the protective inflammatory processes and
signaling from these receptors is critical for the generation of
adaptive immune responses (Manicassamy and Pulendran, 2009).
Therefore, protective immune responses to respiratory pathogens
induce and require inflammation to activate antigen-specific lym-
phocytes. We have previously shown that chronic exposure to
a gram-negative bacteria, non-typeable Haemophilus influenzae
(NTHI), in the lung results in high levels of bronchovascular
inflammation and the generation of specific T cells and circulating
antibodies (Lugade et al., 2011).

Non-typeable Haemophilus influenzae is a gram-negative bac-
terium that resides in the nasopharynx of adults and children.
Introduction of NTHI into the middle ear of children causes otitis
media. NTHI also causes lower respiratory tract infections, called
exacerbations, in adults with chronic obstructive pulmonary dis-
ease (COPD; Sethi and Murphy, 2001). The outer membrane of the
bacterium contains several TLR ligands that have been evaluated as

potential vaccine antigens. Included within the outer membrane is
the 16-kDa lipoprotein P6, which comprises approximately 1–5%
of total outer membrane proteins and is highly conserved among
strains of NTHI (Munson et al., 1985; Sethi and Murphy, 2001).
P6 plays a critical role in the structural integrity of the outer mem-
brane as previous work has demonstrated that its absence increases
sensitivity of the mutant NTHI strain to a panel of antimicro-
bial agents (Murphy et al., 2006). Although several studies have
evaluated the potential of P6 as a vaccine antigen (Hotomi et al.,
1998; Bertot et al., 2004; McMahon et al., 2005; Wu et al., 2005;
Ishida et al., 2006; Nomura et al., 2008; Noda et al., 2010), there
are no studies detailing its role in the initiation of inflammation
during infection in vivo.

P6 is a key mediator in the interaction of NTHI with host
immune cells (Chen et al., 2004). The lipoprotein expresses an
amino-terminal tripalmitoyl residue that is required for signal-
ing via TLR2 (Lugade et al., submitted). Other investigators
have shown that P6-mediated induction of the pro-inflammatory
cytokines IL-8 and TNF-α from human epithelial cells is depen-
dent on TLR2 signaling via an NF-κB pathway (Shuto et al.,
2001; Berenson et al., 2005). Using TLR2-deficient mice and a
P6-deficient NTHI strain, we have evaluated whether the cognate
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interaction between host TLR2 and bacterial P6 influences the
extent of lung inflammation and the generation of antigen-specific
lymphocytes. Such information will provide valuable data regard-
ing the pathogenesis of NTHI infection in the lower respiratory
tract and the potential of protective responses from vaccination
to P6.

MATERIALS AND METHODS
MICE
Six-week old C57BL/6NCr (WT) female mice were purchased
from NCI. Female B6.129-Tlr2tm1Kir/J (TLR2−/−) mice were pur-
chased from Jackson Laboratories (Bar Harbor, ME, USA). Mice
were maintained under specific pathogen free conditions. All pro-
cedures performed on animals were IACUC-approved, and com-
plied with all state, federal, and NIH regulations. Groups of five
mice per genotype were used in all experiments.

PREPARATION AND OROPHARYNGEAL ADMINISTRATION OF NTHI
Frozen glycerol stock of P6-expressing NTHI strains 1479 and
49P5H1 (P6+ NTHI) and P6-deficient NTHI strain 49P5H1 (P6−
NTHI) were streaked on chocolate-agar plates. Generation of the
P6-deficient strain has been described elsewhere (Murphy et al.,
2006). Single colonies of both strains were grown in a liquid culture
of brain–heart infusion (BHI) media supplemented with 10 μg/ml
hemin and 10 μg/ml β-nicotinamide adenine dinucleotide (β-
NAD). After 3–4 h of culture in a 37˚C shaking incubator, OD600

was determined in order to dilute the required number of colony
forming units (CFU) to 2 × 108 CFU/ml in PBS. Bacteria was pel-
leted in microcentrifuge tubes at 13000 × g for 10 min and washed
twice in PBS. NTHI was introduced to mice by oropharyngeal
instillation via the trachea as previously described (Lugade et al.,
2011). Mice received bi-weekly instillations of live NTHI for 16
consecutive weeks before analysis.

BRONCHOALVEOLAR LAVAGE
On the day of sacrifice, mice were injected intraperitoneally with
1 ml of warmed 2.5% Avertin (2,2,2-tribromoethanol). The tra-
chea exposed for cannulation with a 22-gage i.v. catheter. PBS
(750 μl) was injected and withdrawn from the lung two times
using a tuberculin syringe. White blood cell count of bronchoalve-
olar lavage (BAL) fluid was assessed using a hemocytometer. Cells
were cytocentrifuged onto clean glass slides and stained with
Hema 3® (Fisher Scientific) to obtain cell differential counts of
macrophages, lymphocytes, and neutrophils. Cytokine levels in
BAL supernatants were measured by sandwich ELISA.

LUNG HISTOLOGY
Lungs were excised and fixed in 10% formaldehyde (Polysciences,
Inc.) in PBS, embedded in paraffin, sectioned, and stained with
H&E by the Roswell Park Cancer Institute histopathology core
facility. Images were obtained on an Olympus light microscope
equipped with a CCD camera and Spot image analysis software
(v25.4, Diagnostics Instruments). A scoring schema (outlined in
Table 1) was developed to quantify the extent of inflammation and
immune cell infiltration in the lungs of mice exposed to NTHI.
Identity of the slides was blinded during two independent scoring
sessions by the pathologist (Paul N. Bogner) and a consensus score
of 0–3 was given for each of the parameters evaluated.

CYTOKINE ELISPOTS
Frequency of cytokine-secreting antigen-specific T cells from the
spleen of NTHI-challenged mice was evaluated by ELISPOT. Mul-
tiscreen Immobilon-P plates (Millipore) were coated overnight
at 4˚C with 3 μg/ml of rat anti-mouse IFN-γ (clone AN-18),
anti-mouse IL-4 (clone 11B11), or anti-mouse IL-17A (clone
eBio17CK15A5). Lymphocytes were co-cultured with syngeneic
antigen presenting cells (APCs) pulsed with 1 μM P641–55 peptide
or lysates of the P6+ NTHI 49P5H1 strain. After an 18h culture,
the plates were washed extensively and cytokines detected with
biotinylated antibodies (IFN-γ , R4-6A2; IL-4, BVD6-24G2; IL-
17A, eBio17B7) followed by addition of streptavidin-HRP. Spots
were developed with tetramethylbenzidine (TMB) substrate and
enumerated microscopically.

B CELL ELISPOTs
Multiscreen Immobilon-P plates (Millipore) were coated
overnight at 4˚C with 3 μg/ml of P6 protein or 4 × 106 CFU
of intact heat-killed P6− NTHI. Cells were added to plates and
cultured for 18 h. Rabbit anti-mouse IgG-subclass specific poly-
clonal antibodies (Jackson ImmunoResearch) was added to wells
followed by HRP-conjugated mouse anti-rabbit polyclonal anti-
bodies (Jackson ImmunoResearch). Spots were developed and
enumerated as described for cytokine ELISPOTs.

SERUM ANTI-P6 AND ANTI-NTHI IG
Titers of antigen-specific antibodies were measured using an indi-
rect ELISA as described previously (Badr et al., 1999). Briefly,
ELISA plates were coated overnight at 4˚C with 3 μg/ml of P6
protein or 4 × 106 CFU of intact heat-killed P6+ NTHI. Weekly
serum samples from individual mice were added to blocked plates
and detected with AP-conjugated goat anti-mouse Ig (Sigma).
Plates were developed with p-nitrophenylphosphate (pNPP) and
absorbance measured at 405 nm.

RESULTS
COGNATE INTERACTION OF HOST TLR2 AND NTHI LIPOPROTEIN
PROMOTES INFLAMMATION
Our previous work has demonstrated that chronic exposure to
NTHI in the lower respiratory tract induces an inflammatory
microenvironment characterized by immediate neutrophil accu-
mulation and long-term lymphocytic accumulation (Lugade et al.,
2011). The role and requirement of host pattern recognition recep-
tors for the initiation of NTHI-mediated lung inflammation has
not been evaluated. WT and TLR2−/− mice were exposed to NTHI
strain 1479 by oropharyngeal instillation for 16 consecutive weeks
in order to determine whether host expression of TLR2 is required
for the generation of lung inflammation. Characteristic lympho-
cytic accumulation surrounding airways and bronchovasculature
was observed in lungs of WT mice exposed to P6-expressing NTHI
strain 1479 (P6+ 1479 → WT; Figure 1, top row). In contrast,
the extent of inflammation was not as evident histologically in
the lungs of TLR2−/− mice exposed to NTHI strain 1479 (P6+
1479 → TLR2−/−; Figure 1, second row). Although the local-
ization pattern of infiltrating cells was similar between WT and
TLR2−/− mice, the extent of infiltration was substantially lower in
TLR2−/− mice, suggesting that TLR2 plays an important role in the
generation of robust chronic NTHI-mediated lung inflammation.
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Table 1 | Pathological evaluation of lung inflammationa.

Peri-bronchovascular inflammationb Plasma cell frequencyc Pleural inflammationd Interstitial inflammatione

Marked Moderate Mild 10–50% 1–10% Moderate Mild Moderate Mild

P6+ 1479 →WT 1/5 4/5 0/5 2/5 3/5 4/5 1/5 3/5 2/5

P6+ 1479 →TLR2−/− 0/5 1/5 4/5 0/5 5/5 0/5 5/5 0/5 5/5

P6+ 49P5H1 →WT 1/5 4/5 0/5 1/5 4/5 3/5 2/5 3/5 2/5

P6− 49P5H1 →WT 0/5 2/5 3/5 0/5 5/5 0/5 5/5 1/5 4/5

aFrequency of mice with observed lung inflammation.
bSeverity of peri-bronchovascular inflammatory cell accumulation. Marked (score of 3): average of (15 cell cuff thickness and/or (3 peribronchial well-developed lym-

phoid follicles. Moderate (score of 2): average of 5–15 cell cuff thickness. Mild (score of 1): average (5 cell cuff thickness.cPlasma cell frequency in peri-bronchovascular

infiltrates.dSeverity of inflammation in lung pleura. Moderate (score of 2): patchy pleural thickening by inflammatory cells and/or diffuse pleural inflammation without

thickening. Mild (score of 1): patchy pleural involvement by inflammatory cells without pleural thickening.eSeverity of inflammation in interstitial space. Moderate

(score of 2): patchy interstitial involvement of inflammatory cells with or without inflammatory nodules. Mild (score of 1): focal interstitial involvement of inflammatory

cells without inflammatory nodules.

FIGURE 1 | Absence of hostTLR2 or bacterial P6 limits immune cell

infiltration. Mice were exposed to NTHI for 16 consecutive weeks. H&E
stained lung sections were analyzed for inflammation by light microscopy.
Representative images of H&E sections taken from five mice per group.
Images in the right column are enlarged magnification of the outlined
region. Immune cell infiltrates surrounding perivascular (arrows) and
peribronchial (arrowheads) regions are indicated.

Like many gram-negative bacteria, NTHI expresses a variety of
TLR2 ligands such as Pam3Cys-expressing lipoproteins and pep-
tidoglycan (Li, 2003). One of the components of the NTHI outer
membrane is P6, an immunogenic lipoprotein that expresses an
amino-terminal tripalmitoyl residue and initiates TLR2 signal-
ing. P6 is highly conserved among NTHI strains and despite its
potential as a promising vaccine candidate, has not been directly
tested for its role in NTHI-mediated inflammation. The chronic
inflammation model was initially established using the well char-
acterized NTHI strain 1479. However, we were unable to con-
struct a P6-deficient mutant in this strain, perhaps because of the
well described variability in the transformability observed among
strains of NTHI (Murphy et al., 2006). Thus, the P6− mutant was
constructed in strain 49P5H1 which was isolated from the sputum
of an adult with COPD (Murphy et al., 2006). In order to precisely
define the role of P6 in the elicitation of chronic inflammation,
WT mice were exposed to 49P5H1 strains that either expressed P6
(P6+ 49P5H1 → WT) or were devoid of P6 (P6− 49P5H1 → WT).
The P6-deficient strain (P6− 49P5H1) was instilled into WT mice
in order to determine whether the presence of P6 in the outer
membrane of NTHI is required for the induction of lung inflam-
mation in TLR2-expressing hosts. Lymphocytic accumulation was
observed in WT mice exposed to P6+ 49P5H1 in a pattern similar
to that observed in WT mice exposed to strain P6+ 1479 (Figure 1,
third row compared to top row). Exposure to P6− 49P5H1 in WT
mice did not result in the extensive lymphocytic accumulation that
was observed with P6+ 49P5H1 (Figure 1, bottom row compared
to third row). Clearly, the presence of other TLR ligands expressed
by the P6− 49P5H1 mutant strain did not appreciably contribute
to the induction of lung inflammation in the WT host, suggesting
that P6 plays a critical role in NTHI-mediated inflammation.

The level of lung inflammation generated was scored using a
semi-quantitative system by a pathologist to determine whether
any differences exist due to the absence of host TLR2 or bacterial
P6 (Table 1). All WT mice receiving P6-expressing NTHI strains
(1479 or 49P5H1) were scored for bronchovascular inflammation
at“moderate”or“marked”levels,whereas the majority of TLR2−/−
mice receiving P6+ 1479 or WT mice receiving P6− 49P5H1 scored

www.frontiersin.org April 2011 | Volume 2 | Article 10 | 3

www.frontiersin.org
http://www.frontiersin.org/mucosal_immunity/archive


Lugade et al. Chronic NTHI lung inflammation

primarily as “mild.” Additionally, pleural and interstitial inflam-
mation was very different in TLR2-deficient hosts or mice exposed
to P6− 49P5H1. Thus, histopathological evidence of inflammation
is greatest in a host that expresses TLR2 and when NTHI expresses
the P6 lipoprotein in the outer membrane.

The role and contribution of cognate TLR2 and P6 to the
immune cell composition (Table 2) and cytokine production
(Figure 2) from BAL fluid was also assessed. Total immune cell
infiltration was greatest in WT mice receiving either strain of
P6-expressing NTHI (i.e., 1479 or 49P5H1). There was a statis-
tically significant difference in the total number of leukocytes in
TLR2−/− mice receiving P6+ 1479 (346 vs 98, p < 0.01) com-
pared to WT mice receiving the same strain (Table 2). Sim-
ilarly, WT mice receiving P6− 49P5H1 also exhibited a sta-
tistically significant difference in total immune cell infiltration
when compared WT mice that were instilled with P6+ 49P5H1
(285 vs 154, p < 0.01). Macrophages comprised the majority of
immune cells in the BAL fluid in TLR2−/− mice and WT mice
receiving P6− 49P5H1, accounting for greater than 70% whereas
macrophages accounted for roughly 60% in WT mice receiving
either strain of P6-expressing NTHI, a difference that was sta-
tistically significant (p < 0.01). In conjunction with an increase
in macrophages, there was a statistically significant decrease in
the frequency of lymphocytes present in TLR2−/− mice receiv-
ing NTHI strain 1479 and WT mice receiving P6− NTHI strain
49P5H1 as compared to their counterpart WT mice receiving

P6-expressing NTHI. This altered leukocyte frequency suggests
that a lung microenvironment in which host TLR2 or P6 is absent
during NTHI exposure results in a limited cell infiltrate and altered
inflammatory phenotype.

Differences in BAL fluid pro-inflammatory cytokines were
assessed by cytokine-specific ELISA (Figure 2). TNF-α, IL-6, IL-
17, and IFN-γ were detected in the BAL fluid from WT mice
receiving P6-expressing NTHI, indicative of chronic pulmonary
inflammation. Levels of IL-6 and TNF-α were decreased by almost
50% (p < 0.01) in TLR2-deficient mice and WT mice exposed to
NTHI devoid of P6. In addition, the levels of cytokines associated
with inflammatory T cell activation, IL-17 and IFN-γ , were also
diminished in TLR2−/− mice receiving NTHI strain 1479 and WT
mice receiving P6− NTHI strain 49P5H1. Collectively our results
demonstrate that the ability of the host to respond via surface
TLR2 expression to NTHI P6 on its outer membrane is critical
toward the generation of inflammatory mediators that contribute
to chronic lung inflammation.

ADAPTIVE IMMUNE RESPONSES TO CHRONIC NTHI ARE DEPENDENT
ON HOST TLR2 AND BACTERIAL P6 EXPRESSION
We next assessed whether the absence of TLR2 or bacterial P6
impacts on the generation and function of NTHI-specific T
cells and B cells. An immunodominant peptide we had previ-
ously identified from P6 (McMahon et al., 2005) was utilized to
measure the frequency of cytokine-secreting P6-specific T cells

Table 2 | Immune cell composition in bronchoalveolar lavage fluid.

Total cell count (×103) Macrophages (%) Neutrophils (%) Lymphocytes (%)

P6+ 1479 →WT 346 ± 78 201 (58) 17 (5) 128 (37)

P6+ 1479 →TLR2−/− 98 ± 13* 75 (77)* 7 (7) 16 (16)*

P6+ 49P5H1 →WT 285 ± 59 177 (62) 11 (4) 97 (34)

P6− 49P5H1 →WT 154 ± 31* 109 (71)* 12 (8) 32 (21)*

*p < 0.01, one-way ANOVA comparison of WT vs TLR2−/− mice and P6+ 49P5H1 vs P6− 49P5H1.

FIGURE 2 | Pro-inflammatory cytokine levels in BAL fluid. Concentration
of TNF-α, IL-6, IFN-γ , IL-17 in BAL fluid of mice exposed to either P6+ 1479

��, P6+ 49P5H1 (�), or P6− 49P5H1 (�) NTHI were analyzed by sandwich
ELISA. *p < 0.01, one-way ANOVA. Average ± SEM.
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from the spleens of WT and TLR2−/− mice exposed to NTHI
strain 1479 (Figure 3A). Although P6-specific T cells were detected
in TLR2−/− mice, the frequency of these cells that secreted IFN-γ ,
IL-17, or IL-4 exhibited a statistically significant decrease com-
pared to WT mice receiving NTHI strain 1479. Thus, the opti-
mal generation of P6-specific T cells is reduced in the absence
of TLR2.

T cell responses to total NTHI strain 49P5H1 antigens were
measured in WT mice that had received NTHI strain 49P5H1,
both the P6+ and P6− strain. The frequency of NTHI-specific T
cells was significantly lower in WT mice receiving P6− 49P5H1 as
compared to WT mice receiving P6+ 49P5H1 (Figure 3C). Inter-
estingly and unexpectedly, we observed that the absence of P6 in
the outer membrane of NTHI hampers the generation of T cells
to the other NTHI antigens suggesting that the presence of P6
during bacterial exposure is critical for the optimal generation of
NTH-specific T cells.

The frequency of antigen-specific Ig-secreting B cells from the
bone marrow was measured by B cell ELISPOT. WT and TLR2−/−
mice receiving P6-expressing NTHI strain 1479 were evaluated for
P6-specific cells (Figure 3B). A statistically significant decrease in
the frequency of anti-P6 Ig-secreting cells for all three IgG sub-
classes tested was observed in TLR2−/− mice as compared to
similarly treated WT mice. The presence of all three IgG sub-
classes tested in TLR2−/− mice suggests that the absence of this
receptor did not hamper isotype switching but only the magnitude
of P6-specific B cells generated.

B cell frequency in WT mice receiving NTHI strain 49P5H1
was measured using intact heat-killed 49P5H1 (Figure 3D). Sim-
ilar to the T cell ELISPOT, frequency of total NTHI antigen-
specific B cells secreting the three IgG subclasses tested was lower
in WT mice receiving P6− 49P5H1 compared to the levels of
antigen-specific B cells in mice receiving P6+ 49P5H1. Thus, the
presence of P6 in the outer membrane of NTHI is critical also

for the optimal generation of B cells that secrete NTHI-specific
antibodies.

The titers of P6-specific antibodies in serum was measured
by indirect ELISA in WT and TLR2−/− mice. TLR2−/− mice
exhibited diminished levels of P6-specific Ig compared to WT
mice (Figure 4A). Although, the magnitude of the anti-P6 Ig
was lower, the kinetics of anti-P6 Ig generation and maintenance
was not altered in TLR2−/− mice. Therefore, the ability of the
host to respond to lipoprotein P6 via TLR2 is important for the
robust generation of anti-P6 antibodies. To determine whether
the absence of P6 from the outer membrane of NTHI impacted
the ability of WT mice to elicit antibodies against other NTHI
surface antigens, ELISA plates were coated with intact 49P5H1
(Figure 4B). WT mice receiving P6+ NTHI strain 49P5H1 exhib-
ited endpoint titers of NTHI-specific Ig significantly greater than
that observed in mice receiving P6− NTHI strain 49P5H1. Thus,
overall, the ability of the host to mount a robust adaptive immune
response to NTHI is dependent on host TLR2 expression and the
presence of the P6 lipoprotein in the outer membrane of NTHI
during chronic exposure.

DISCUSSION
Toll-like receptors and their cognate ligands expressed in
pathogens exert a potent response on the immune system during
infection. The pathogenesis of bacterial infections includes tissue
inflammation, which is initiated by TLR signaling. Inflammatory
responses to pathogens are regulated to minimize overt dam-
age, especially at mucosal surfaces. Mucosal tissues are populated
with commensal bacteria and therefore they must tightly regu-
late the response to pathogens via TLR activation (Alexopoulou
and Kontoyiannis, 2005). Conversely, the absence of inflammation
or insufficient inflammation can also be deleterious by allowing
unrestrained pathogen growth and abrogating immune cell
activation. In this study, we have demonstrated that absence of

FIGURE 3 | Frequency of antigen-specific immune cells in lymphoid

organs. ELISPOT to measure frequency of IFN-γ -, IL-17-, IL-4-secreting T cells
(A,C) and frequency of IgG1-, IgG2a-, IgG2b-secreting B cells (B,D) from mice

exposed to NTHI. Responses to P6 are measured in (A,B); responses to NTHI
strain 49P5H1 are measured in (C,D). *p < 0.01, one-way ANOVA.
Average ± SEM.
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FIGURE 4 |Titers of anti-P6 and anti-NTHI Ig in serum. Indirect ELISA
was used to measure Ig levels in mice exposed to NTHI. Purified P6 was
used to measure anti-P6 Ig in mice exposed to P6+ 1479 (•,�) and intact
NTHI 49P5H1 was used to measure anti-NTHI levels in mice exposed to
P6+ 49P5H1 (©), or P6− 49P5H1 (�). *p < 0.01, two-way ANOVA with
Bonferroni post-test comparison between groups. Average ± SEM.

the TLR2:P6 signaling axis severely limits the extent of NTHI-
mediated airway inflammation and the optimal generation of
adaptive immune responses.

Exposure to outer membrane protein P6 results in produc-
tion of prototypical inflammatory signals. In one such example,
P6 stimulation of primary human epithelial cells upregulates
MUC5AC mucin gene transcription (Chen et al., 2004) and the
upregulation of this gene is an important contributor to airway
obstruction in COPD patients (Caramori et al., 2009). Overpro-
duction of mucin by epithelial cells increases bacterial adherence
and colonization (Knowles and Boucher, 2002) and the absence
of this signaling pathway may also play a role in the dimin-
ished inflammatory response observed with NTHI devoid of P6.
In fact, Moghaddam et al. (2008) have demonstrated increased
mucin gene transcription in mice chronically exposed to NTHI
lysates. In our model, there was no evidence of mucus over-
production when mice were exposed to live, intact P6+ NTHI,
therefore it was not surprising that exposure to P6− NTHI would
also prevent accumulation of mucus in the airways. Monoclonal
antibody inhibition of TLR2 prevented MUC5AC mucin gene
transcription from Mycoplasma pneumoniae treated epithelial cells
(Kraft et al., 2008), supporting the importance of this signaling
axis for the induction of NTHI-mediated airway obstruction in
COPD patients.

Non-typeable Haemophilus influenzae is present in the
airways under stable conditions, in adults with COPD
(Sethi and Murphy, 2001). The degeneration of normal mucocil-
iary processes in the COPD airways due to accumulated lifetime
cigarette-smoke exposure contributes to the colonization of NTHI
in the lower respiratory tract. It is now well accepted that cigarette-
smoke alters the immune response in the airways and even impacts

adversely on systemic immunity (Domagala-Kulawik, 2008; Mehta
et al., 2008; Dhillon et al., 2009; Stämpfli and Anderson, 2009). This
alteration negatively influences the innate immune response to
bacterial infection, which further dysregulates inflammatory cas-
cades in the respiratory mucosa. Using a model of acute intranasal
NTHI exposure (4 h), Gaschler et al. (2009) demonstrated that
short-term NTHI exposure induces airway TNF-α production
similar to that observed in our model involving exposure to NTHI
for up to 16 weeks. Interestingly, the production of inflamma-
tory cytokines, most notably MCP-1, increased in the respiratory
mucosa of mice exposed to 8 weeks of cigarette-smoke prior to the
acute NTHI exposure (Gaschler et al., 2009). Therefore, the inflam-
matory profile is additionally exaggerated and has the potential to
cause further respiratory damage in lungs that have been assaulted
by cigarette-smoke. Innate immune responses to NTHI are fur-
ther impaired by cigarette-smoke exposure through the inactiva-
tion of alveolar macrophage clearance of the colonizing bacteria
(Martí-Lliteras et al., 2009). This double hit, of increased inflam-
matory cytokine production and diminished bacterial clearance,
likely contributes to exacerbations that characterize the course
of COPD.

In addition to alterations to the innate immune response,
cigarette-smoke exposure also reduces the generation of IFN-
γ producing Th1 cells (Phaybouth et al., 2006); although there
is some question whether both Th1 and Th17 skewed cells are
present in the airways of chronic smokers (Harrison et al., 2008).
Exposure to P6+ NTHI-induced antigen-specific T cells capable
of secreting IFN-γ (Th1) and IL-17 (Th17; Lugade et al., 2011).
Both types of cells are likely required for clearance of the infil-
trating bacteria and maintenance of the chronic inflammatory
milieu. Attenuation of NTHI-specific Th1 responses by cigarette-
smoke exposure in the airways of COPD patients therefore serves
to exacerbate pulmonary inflammation at the expense of bacter-
ial clearance. Generation of the protective IFN-γ producing cells
is dependent on the presence of the TLR2:P6 signaling axis, but
TLR2 signaling can be negatively modulated by cigarette-smoke
exposure (Droemann et al., 2005; Bagaitkar et al., 2010). Thus,
vaccination strategies that induce the generation of P6-specific
Th1 cells will be essential for clearance of NTHI from airways dur-
ing disease exacerbations (McMahon et al., 2005; Lugade et al.,
submitted). Our previous work has revealed the requirement of
TLR2 for the vaccination efficacy of P6 (Lugade et al., submitted).
Similarly, the current study has demonstrated the role of TLR2 in
driving the immunopathology of NTHI infection and generation
of adaptive immune responses. Thus, TLR2 plays a critical role
in the setting of NTHI vaccination and immune response follow-
ing NTHI infection. Protective immune responses are required
to limit the extent of pathogen-mediated inflammation during
infection. It is therefore critical to overcome TLR2 hyposensitivity
observed as a result of cigarette-smoke exposure (Bagaitkar et al.,
2010). Although the absence of TLR2-mediated signaling upon
NTHI infection is beneficial for limiting airway inflammation, its
absence prevents stimulation of protective immune responses that
can limit pathogen growth and through this mechanism reduce
pathogen-mediated inflammation. Additionally, the presence of
Th1 and Th17 effector cells serves to initiate rapid secondary
immune responses upon pathogen re-infection.
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Signaling from TLRs has the dual function of initiating inflam-
mation and serving as an adjuvant for the induction of adaptive
immune responses. Immune-mediated pathology is commonly
observed in mucosal tissues upon pathogen infection and the
mechanism behind these processes is a result of TLR ligation
(Heimesaat et al., 2007; Layland et al., 2007; Sayi et al., 2011). How-
ever, suppression of TLR function in order to limit immunopathol-
ogy is detrimental, as these same receptors are required to initiate
immune responses to mucosal pathogens, such as respiratory syn-
cytial virus and Toxoplasma gondii (Cyr et al., 2009; Murawski et al.,
2009;Yarovinsky et al., 2008). In our model of NTHI-mediated air-
way inflammation, TLR2 is essential for the induction of IL-6 and
TNF-α in the BAL fluid and for the generation of IFN-γ - and
IL-17-secreting T cells. The requirement of TLR2 for the optimal
generation of these cells suggests that COPD patients with frequent
disease exacerbations may have a defect in the ability to generate
these cells. This defect may be attributed to a lifetime of cigarette-
smoke exposure that has diminished TLR2 signaling (Droemann
et al., 2005).

In the present study, we used non-isogenic NTHI strains 1479
and 49P5H1. In view of this, we have been cautious to confine
our comparisons and conclusions to immune responses to the
P6 molecule because comparisons of immune responses to anti-
gens other than P6 could be confounded by strain differences.
Importantly, the amino acid sequences of P6 from strains 1479
and 49P5H1 are identical in all 153 amino acids based on the gene
sequences (Murphy et al., 2006).

Of particular interest is the finding that anti-P6 antibodies are
an important proportion of the total antibody response elicited
against NTHI during respiratory mucosal exposure, despite the
lipoprotein being a relatively minor constituent of the total outer
membrane protein on this bacterium. The absence of P6 from
the outer membrane resulted in lower titers of anti-NTHI anti-
bodies suggesting that responses to P6 are critical for generating
effective immune responses to the bacteria during exacerbations
(Abe et al., 2002). We are currently investigating whether bacterial
colonization in the respiratory mucosa and airway inflammation
upon NTHI exposure can be limited by prophylactic vaccination
with P6.

The results of the current study establish an essential role for
TLR2 and P6 in calibrating the inflammatory response to NTHI in
the respiratory mucosa. Signaling via the TLR2:P6 axis has broad
regulatory effects on both innate and T and B cell effector func-
tions. Our work identifies the dual function of this cognate inter-
action on the induction of inflammation and adaptive immune
responses, thereby serving as a potential therapeutic target for
NTHI-induced exacerbations of COPD.
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