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Introduction
RNA-seq is a common tool to obtain expression data.1,2 It is 
popularly applied to identify differentially expressed genes 
(DEGs) or transcripts under different groups or conditions.3,4 
Accurate identification of these DEGs is crucial for multiple 
purposes; for example, they may serve as potential biomarkers 
for clinical diagnosis.5,6 So far, many methods have been devel-
oped for analysis of RNA-seq data7–20 and several evaluation 
studies have also been performed.21–25 Of these, two R/
Bioconductor26,27 packages—edgeR8 and DESeq29—have 
been widely used for differential expression (DE) analysis of 
RNA-seq data.

The two packages commonly employ a generalized linear 
model (GLM) framework. When comparing a multi-group 
data (eg G1 vs G2 vs G3), the main output is an analysis of 
variance (ANOVA)-like p-value, where a low p-value for a 
gene indicates a high degree of DE in at least one of the groups 
compared. In other words, the output itself does not tell us 
which group is differentially expressed compared with the oth-
ers. To confirm where the difference occurred between the 
three groups, for example, GLM users have to perform three 
two-group comparisons (ie G1 vs G2, G1 vs G3, and G2 vs 
G3) as a post hoc test and then decide the DE patterns across 
groups. In case of the three-group comparison, a total of five 
possible patterns (one non-DE pattern and four DE patterns) 
can be considered: G1 = G2 = G3, G1 ≠ G2 = G3, G2 ≠ G1 = G3, 
G3 ≠ G1 = G2, and G1 ≠ G2 ≠ G3.

However, constructing a complete expression pattern based 
on the results of three two-group comparisons can be difficult. 
For example, two possible patterns (G1 ≠ G2 = G3 or 
G1 = G2 = G3) can be constructed if the results of the three 
two-group comparisons were G1 ≠ G2, G1 = G3, and G2 = G3. 
Furthermore, results of the three two-group comparison them-
selves (ie G1 ≠ G2, G1 = G3, and G2 = G3) can vary depending 
on both the multiple comparison procedure and the signifi-
cance level. As the number of groups to be compared increases, 
construction of the complete expression pattern across all 
groups based on the GLM framework becomes more difficult.

Different from the GLM framework, an empirical Bayesian 
framework implemented in baySeq10 and EBSeq12 returns one 
posterior probability (PP) for each of the predefined expres-
sion pattern for each gene; thus, when considering a number 
of patterns for a particular gene, it can assign the pattern with 
the highest PP to the gene under consideration. In other 
words, the Bayesian framework does not require subsequent 
analysis such as the post hoc test to construct the pattern. 
Therefore, baySeq and EBSeq provide a dedicated means for 
pattern classification.

We here focus on the improvement of the Bayesian frame-
work. We demonstrate that a robust normalization strategy pro-
vided in TCC13 can be adapted in the analysis pipeline. Although 
the Bayesian framework is generally inferior to the GLM 
framework when the overall degree of DE is evaluated,21,22 accu-
rate assignment of expression patterns to individual genes 
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obtained from the Bayesian framework with TCC can be inde-
pendently valuable.

Materials and Methods
All analyses were performed using R (version 3.5.1)26 and 
Bioconductor.27 The versions of major R packages were TCC, 
version 1.20.1; edger, version 3.22.4; DESeq2, version 1.20.0; 
baySeq, version 2.14.0; EBSeq, version 1.20.0, and receiver 
operating characteristic (ROC) curve, version 1.6.3. The R 
codes for obtaining the current results are given in our website 
(http://www.iu.a.u-tokyo.ac.jp/~kadota/Osabe_2019/).

DE analysis pipelines

In general, DE analysis consists of two steps (data normaliza-
tion X and DEG identification Z), and each method has the 
original X-Z pipeline.13 The TCC package13 implements a 
multi-step normalization procedure, originally proposed by 
Kadota et  al.28 The key concept is to alleviate the negative 
effect of potential DEGs before calculating the normalization 
factors. The analysis pipeline can be described as X-(Y-X)n -Z 
in which X-(Y-X)n corresponds to the multi-step normaliza-
tion and Y corresponds to a DEG-identification method that 
may be the same as Z. By repeating the DEG elimination 
strategy in X-(Y-X)n, we can use accurate normalization factors 
at the last step Z in the pipeline X-(Y-X)n -Z.

According to the previous notation,22 we refer to this pipe-
line as XYX-Z with the recommended number of n (=3) for 
short. In this case, the first three letters XYX correspond to the 
multi-step normalization. We do not use the full pipeline XYX-
Z in TCC here. This is because, similar to the main output of 
GLM, the main output of TCC is also p-value that does not 
tell us which group is differentially expressed compared with 
the others.

The DE analysis typically starts with a so-called “count 
matrix,” where each row indicates the gene, each column indi-
cates the sample, and each cell indicates the number of reads 
mapped to the gene in the sample. The R packages used here 
commonly manipulate this type of data as input. For the pos-
sible multi-step normalization procedures XYX in TCC, we 
evaluated two representatives: one is EEE, which consists of 
default methods implemented in edgeR (abbreviated as E) and 
the other is SSS, which consists of default methods imple-
mented in DESeq2 (abbreviated as S). Specifically, EEE is the 
default procedure in TCC for multi-group data with replicates. 
Although two other possible procedures XYX in TCC (ie SES 
and ESE) could be evaluated, it is known that the normaliza-
tion factors obtained by SES and ESE are almost the same as 
those obtained by EEE and SSS.22

For the default normalization methods X, two packages 
(edgeR and baySeq) use the TMM method29 and the other two 
packages (DESeq2 and EBSeq) use the median ratio method.7 
The TMM method and the median ratio method correspond 
to E and S, respectively. Accordingly, the default DE pipeline 

X-Z in baySeq and EBSeq can also be abbreviated as E-baySeq 
and S-EBSeq, respectively. In addition to the four normaliza-
tion methods (E, S, EEE, and SSS), we also evaluated another 
normalization method called MRN (abbreviated as M).14 
Therefore, this study basically compares a total of eight DE 
pipelines: EEE-baySeq, SSS-baySeq, E-baySeq, M-baySeq, 
EEE-EBSeq, SSS-EBSeq, S-EBSeq, and M-EBSeq.

Simulation data

In this study, to perform the multi-group comparison as simply 
as possible, we focused on the three-group data (G1 vs G2 vs 
G3) with equal numbers of biological replicates (ie 3 or 9 rep-
licates per group; Nrep = 3 or 9). When the RNA-seq count data 
are based on biological replicates, the negative binomial (NB) 
distribution is generally applicable.7-10 In the NB distribution, 
the variance (V) can be modeled as V = +µ ϕµ 2 . The empirical 
distribution of read counts for producing the mean (µ) and 
dispersion ( )ϕ  parameters of the model was obtained from 
Arabidopsis data (three biological replicates for both the 
treated and nontreated samples) by Di et al.30

The simulation framework and evaluation metric are the 
same as our previous study,22 enabling the comparison of the 
current results with the previous ones. The simulation condi-
tions were as follows: the total number of genes was 10 000 
(Ngene = 10 000), 5 or 25% of the genes were DEGs (PDEG = 0.05 
or 0.25), the DE levels were four-fold in individual groups, and 
the proportions of up-regulated DEGs in individual groups 
(PG1, PG2, PG3) were (1/3, 1/3, 1/3), (0.5, 0.3, 0.2), (0.5, 0.4, 0.1), 
(0.6, 0.2, 0.2), (0.6, 0.3, 0.1), (0.7, 0.2, 0.1), and (0.8, 0.1, 0.1). 
The shape of the distribution for introduced DEGs is the same 
as that of non-DEGs. The simulateReadCounts function pro-
vided in TCC was used to generate three-group simulation 
data. The output of the simulateReadCounts function is stored 
in the TCC class object with information about the simulation 
conditions and is therefore ready-to-analyze.

Real data

A total of three count data sets were analyzed. The first data set 
was originally sequenced from the three species (ie the three-
group data): humans (G1), chimpanzees (G2), and rhesus 
macaques (G3).31 Briefly, Blekhman et  al studied expression 
levels of liver samples from three males and three females from 
each species, giving a total of six different individuals (ie six 
biological replicates) for each species. Since they performed 
duplicate experiments for each individual (ie two technical rep-
licates), the publicly available raw count matrix consists of 
20 689 genes × 36 samples (=3 species × 6 biological repli-
cates × 2 technical replicates). To correctly estimate the bio-
logical variation and make the assumed structure of input data, 
we summed and collapsed the count data of technical repli-
cates, giving a reduced number of columns in the count matrix 
(ie 18 samples).

http://www.iu.a.u-tokyo.ac.jp/~kadota/Osabe_2019/
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The second and third data sets were derived from a study of 
human brain (SRP056477).32 The count data consisting of 
58 037 genes × 52 samples were obtained from the recount2 
database.33 The samples were divided into two source types: 25 
cerebellum (CER) and 27 frontal cortex (FCX) samples, and 
further subdivided into three case types: healthy, sporadic 
amyotrophic lateral sclerosis (sALS), and ALS caused by a 
repeat expansion in C9orf72 (c9ALS). Accordingly, we per-
formed two three-group comparisons (G1 vs G2 vs G3 as 
healthy vs sALS vs c9ALS) for these data. For simplicity, we 
excluded one sample (SRR1927053) from the CER data set 
and three samples (SRR1927071, SRR1927052, and 
SRR1927054) from the FCX data set such that each group 
had eight replicates.

Normalization

A total of five normalization methods (E, S, EEE, SSS, and M) 
were evaluated. The E was calculated using the getLibsizes func-
tion with the option (estimationType = “edger”) in baySeq. The S 
was calculated using the MedianNorm function with default 
option in EBSeq. The EEE was calculated using the calcNor-
mFactors function with options (norm.method = “tmm” and test.
method = “edger”) in TCC. The SSS was calculated using the calc-
NormFactors function with options (norm.method = “deseq2” and 
test.method = “deseq2”) in TCC. The M was calculated using the 
mrnFactors function provided by Maza.34

Expression patterns

In this study, a total of five possible expression patterns were 
considered when performing the Bayesian methods: non-DEG 
pattern (say “nonDEG”), DE pattern up-regulated or down-
regulated in G1 (DEG_G1), DE pattern in G2 (DEG_G2), 
DE pattern in G3 (DEG_G3), and DE pattern between all 
groups (DEG_all). In simulation analysis, only the first four 
patterns (ie nonDEG, DEG_G1, DEG_G2, and DEG_G3) 
were considered.

DE analysis with baySeq

The baySeq was performed using the getPriors.NB function 
with options (samplesize = 2000 and estimation = “QL”) and then 
the getLikelihoods function with options, pET = “Bayesian infor-
mation criterion (BIC)” and nullData = FALSE. The PPs 
assigned for nonDEG were used to rank genes. Genes with 
q-value < 0.05 (ie 5% nominal false discovery rate (FDR) 
threshold) were regarded as DEG. Expression patterns for 
genes with q-value ⩾ 0.05 were regarded as nonDEG.

DE analysis with EBSeq

The EBSeq was performed using the EBMultiTest function 
with options (maxround = 5, Qtrm = 1.0, and QtrmCut = –1) and 

then the GetMultiPP function. The PPs assigned for nonDEG 
were used to rank genes. Genes with q-value < 0.05 (ie 5% 
nominal FDR threshold) were regarded as DEG. Expression 
patterns for genes with q-value ⩾ 0.05 were regarded as 
nonDEG.

Evaluation metrics

The evaluation was performed using the rank information of 
PPs assigned for nonDEG. The area under the ROC curve 
(AUC), which evaluates both sensitivity and specificity of the 
DE pipelines simultaneously, was used as a main measure of 
comparison. A good pipeline has a high AUC value (ie high 
sensitivity and specificity). Two input vectors are required to 
calculate the AUC value. We used two numeric vectors as 
input: one was the rank information obtained from the DE 
pipeline and the other was the binary information indicating 
which gene is non-DEG (0) or DEG (1). The two functions 
(rocdemo.sca and AUC) provided in the ROC package was used 
to calculate the AUC value.

In case of the binary (0 for non-DEG and 1 for DEG) 
classification problem, genes predicted as DEG by the pipe-
line were labeled as either true positive (TP) or false positive 
(FP). Genes labeled as TP correspond to those correctly pre-
dicted as DEG (ie the truth is DEG) and genes labeled as FP 
correspond to those falsely predicted as DEG (ie the truth is 
non-DEG). Similarly, genes predicted as non-DEG by the 
pipeline can be labeled as either true negative (TN) or false 
negative (FN). Genes labeled as TN correspond to those cor-
rectly predicted as non-DEG (ie the truth is non-DEG) and 
genes labeled as FN correspond to those falsely predicted as 
non-DEG (ie the truth is DEG). The accuracy was calculated 
as (TP + TN)/(TP + TN + FP + FN), where the denomina-
tor corresponds to the total number of genes (=10 000) and 
the numerator corresponds to the total number of correctly 
predicted genes. The actual FDR, sensitivity, and specificity 
were calculated as FP/(FP + TP), TP/(TP + FN), and TN/
(TN + FP), respectively.

In this study, the Bayesian methods (baySeq and EBSeq) 
were performed by considering four or five possible expression 
patterns. When considering four expression patterns (ie non-
DEG, DEG_G1, DEG_G2, and DEG_G3), for example, the 
numerator of the equation for calculating the accuracy was 
defined as the total number of correctly predicted genes for 
individual patterns. Only genes correctly predicted in each of 
the patterns were counted.

Results and Discussion
Simulation results when considering four 
expression patterns (Nrep = 3)

We assessed the performance of a total of eight DE pipelines 
when four possible expression patterns (nonDEG, DEG_G1, 
DEG_G2, and DEG_G3) were considered. Table 1 lists the 
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average AUC values of 100 trials for simulation data with three 
replicates per group (ie Nrep = 3). Overall, the four baySeq-
related pipelines (EEE-baySeq, SSS-baySeq, E-baySeq, and 
M-baySeq) outperformed the four EBSeq-related pipelines 
(EEE-EBSeq, SSS-EBSeq, E-EBSeq, and M-EBSeq). This is 
probably because the baySeq model is closer to the simulation 
data than the EBSeq model. In this sense, it may be better to 
compare between only four DE pipelines using the same 
package.

When we compared four baySeq-related pipelines, the 
AUC values for the baySeq with TCC (ie EEE-baySeq and 
SSS-baySeq) were the highest and similar across the seven con-
ditions. Relative performances for the default baySeq pipeline 
(ie E-baySeq) compared with those for XYX-baySeq generally 
worsened as the degrees of biases increased (ie from left to 
right in Table 1). The trend was more pronounced when a 
higher amount of DEGs was introduced (ie PDEG = 25%; Table 
1). Figure 1 shows representative boxplots of the AUC values 
under three conditions. The differences between XYX-baySeq 
and E-baySeq can be clearly seen at both the most biased 

condition (0.8, 0.1, 0.1) and PDEG = 25%. We confirmed the 
superiority of XYX-baySeq by using another evaluation metric 
(ie accuracy; see Sheet 2 in Additional file 1 of Supplemental 
material).

Surprisingly, M-baySeq consistently outperformed E-baySeq 
under the simulation conditions investigated, despite the theo-
retical similarity between the two normalization methods (ie 
M and E).34 A multi-step normalization procedure based on 
MRN (ie iterative MRN or MMM) can be constructed in 
principle. The performance for baySeq with MMM (ie MMM-
baySeq) could be similar or higher to those for baySeq with 
TCC (ie EEE-baySeq and SSS-baySeq).

While the AUC values shown in Table 1 were comparable 
to those in our previous study (ie Table 1 by Tang et al22), the 
values for E-baySeq and S-EBSeq were slightly different from 
those observed in previous studies. This can be explained by the 
difference in the possible patterns considered. While Table 1 
considered four patterns (nonDEG, DEG_G1, DEG_G2, and 
DEG_G3), the previous study considered two (nonDEG and 
DEG_all) and five patterns (nonDEG, DEG_G1, DEG_G2, 

Table 1. Average AUC values for simulation data (Nrep = 3).

PG1 1/3 0.5 0.5 0.6 0.6 0.7 0.8

PG2 1/3 0.3 0.4 0.2 0.3 0.2 0.1

PG3 1/3 0.2 0.1 0.2 0.1 0.1 0.1

(a) PDEG = 0.05

 EEE-baySeq 90.38 90.43 90.45 90.48 90.46 90.47 90.56

 SSS-baySeq 90.37 90.39 90.41 90.43 90.43 90.46 90.58

 E-baySeq 90.38 90.39 90.38 90.38 90.37 90.37 90.45

 M-baySeq 90.41 90.45 90.40 90.40 90.42 90.44 90.52

 EEE-EBSeq 85.77 85.87 85.83 85.87 85.79 85.82 85.93

 SSS-EBSeq 85.78 85.88 85.83 85.86 85.80 85.81 85.94

 S-EBSeq 85.78 85.86 85.79 85.82 85.73 85.72 85.78

 M-EBSeq 85.73 85.83 85.77 85.82 85.75 85.74 85.85

(b) PDEG = 0.25

 EEE-baySeq 90.38 90.38 90.48 90.48 90.49 90.63 90.76

 SSS-baySeq 90.35 90.39 90.48 90.49 90.50 90.66 90.77

 E-baySeq 90.38 90.23 90.23 90.03 90.00 89.71 89.01

 M-baySeq 90.40 90.34 90.38 90.31 90.27 90.21 89.95

 EEE-EBSeq 85.82 85.88 85.92 85.94 85.97 85.95 86.06

 SSS-EBSeq 85.82 85.87 85.94 85.95 85.99 85.99 86.13

 S-EBSeq 85.83 85.63 85.51 85.35 85.31 84.75 84.02

 M-EBSeq 85.78 85.76 85.76 85.70 85.71 85.48 85.20

Abbreviation: AUC, area under the ROC curve. Average AUC values (%) of 100 trials for each simulation condition are shown: (a) PDEG = 0.05 and (b) PDEG = 0.25. A total 
of seven conditions are shown. The highest AUC values for each condition are in bold.

https://journals.sagepub.com/doi/suppl/10.1177/1177932219860817
https://journals.sagepub.com/doi/suppl/10.1177/1177932219860817
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DEG_G3, and DEG_all) when performing baySeq and EBSeq, 
respectively.

Despite the different numbers of possible patterns to be 
considered, we observed similar AUC values between the cur-
rent and previous studies. This is probably because these values 
are calculated based on the PPs assigned for the nonDEG pat-
tern; the AUC value is used as a measure of the discriminability 
between non-DEG and the others. In other words, a high 
AUC value does not necessarily indicate a high classification 
performance within DEG. Nevertheless, we observed the 
superiority of XYX-baySeq to X-baySeq in terms of the classifi-
cation performance within the three kinds of DEGs (see Sheet 
4 in Additional file 1 of Supplemental material).

In practice, it is important to control FDR when identify-
ing DEGs. Remember we regarded genes satisfying 
q-value < 0.05 (ie 5% nominal FDR) as DEGs when con-
structing the confusion matrix (Sheet 4 in Additional file 1 of 

Supplemental material). We investigated the actual FDR 
under the nominal value (Sheet 5 in Additional file 1 of 
Supplemental material). The baySeq-related pipelines had 
consistently better values in terms of the actual FDR than the 
EBSeq-related pipelines.

It should be noted that the AUC values (<91%) of the best 
performing pipeline (ie XYX-baySeq) shown in Table 1 are 
consistently lower than those (>91%) of the full analysis pipe-
line provided in TCC (ie EEE-E shown in Table 1 by Tang 
et al22). This fact indicates that the EEE-E as a non-Bayesian 
DE pipeline can be recommended when the overall degree of 
DE is evaluated. However, as described previously, the primary 
output of EEE-E does not tell us which group is differentially 
expressed compared with the others. While it is possible to 
roughly know the DE group(s) in a GLM framework by, for 
example, performing all pairs of two-group comparisons, con-
structing a complete expression pattern across all groups can be 

Figure 1. Boxplots of AUC values for simulation data (Nrep = 3).
Abbreviation: AUC, area under the ROC curve. Representative boxplots for AUC values under three conditions, (1/3, 1/3, 1/3), (0.6, 0.2, 0.2), and (0.8, 0.1, 0.1), are 
shown. The average AUC values in the plots are shown in Table 1.

https://journals.sagepub.com/doi/suppl/10.1177/1177932219860817
https://journals.sagepub.com/doi/suppl/10.1177/1177932219860817
https://journals.sagepub.com/doi/suppl/10.1177/1177932219860817
https://journals.sagepub.com/doi/suppl/10.1177/1177932219860817
https://journals.sagepub.com/doi/suppl/10.1177/1177932219860817
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difficult. Indeed, two common packages (edgeR and DESeq2) 
as well as TCC, which implement GLM framework, do not 
provide an approach for obtaining the complete expression 
pattern for each gene. Therefore, our focus on improving the 
Bayesian framework makes sense.

Simulation results when considering four 
expression patterns (Nrep = 9)

We previously reported that the relative performances for the 
original EBSeq pipeline (ie S-EBSeq) tend to improve as the 
Nrep increases.22 We performed a similar analysis, as shown in 
Table 1, with Nrep = 9 (Additional file 2 of Supplemental 
material). Although the AUC values for the two XYX-EBSeq 
pipelines (ie EEE-EBSeq and SSS-EBSeq) were the highest 
overall and similar across the seven different conditions, the 
superiority was not observed when evaluating the accuracy 
(Sheetd2 in Additional file 2 of Supplemental material). This 
can be explained by the high actual FDR (>33% at PDEG = 0.25 
and >16% at PDEG = 0.05) compared with the nominal value 
(=5%). Nevertheless, it can be said that the Bayesian methods 
with TCC are promising for accurate classification of DE 
patterns.

Simulation results when considering f ive expression 
patterns

Remember that the simulation data have four expression pat-
terns (nonDEG, DEG_G1, DEG_G2, and DEG_G3). However, 
another possible pattern (ie DEG_all) can practically be con-
sidered for the three-group comparison. To investigate the 
effect of DEG_all, we performed the Bayesian-based methods 
with five possible expression patterns. The results with Nrep = 3 
and 9 are shown in Additional files 3 and 4 of Supplemental 
material, respectively.

Overall, the number of genes assigned to the DEG_all pat-
tern was small (ie low FPs). In particular, the XYX-baySeq 
pipelines showed very few DEG_all genes (maximum 0.02%; 
see Sheet 4 in Additional files 3 and 4 of Supplemental mate-
rial). This is mainly because baySeq tends to detect fewer 
DEGs than EBSeq. Indeed, EEE-baySeq and EEE-EBSeq 
called 1993.32 and 2698.48 DEGs satisfying 5% nominal 
FDR, respectively, under the simulation condition: Nrep = 9, 
Ngene = 10 000, PDEG = 0.25, PG1 = 0.8, PG2 = 0.1, and PG3 = 0.1. 
The truth for this condition is 10 000 × 0.25 = 2500 DEGs. 
This characteristic of baySeq results in low FPs (ie low Type 
I error) as well as low TPs, leading to high precision with low 
sensitivity. Similarly, EBSeq results in high FPs as well as 
high TPs (ie low Type II error), leading to low precision with 
high sensitivity. There is a trade-off between Type I and Type 
II errors. Nevertheless, the conclusions derived from the case 
of four patterns remained unchanged for the case of five 
patterns.

Results for real data

We analyzed a real data set consisting of 20 689 genes × 18 
liver samples for three-group comparison: six humans (G1), 
six chimpanzees (G2), and six rhesus macaques (G3).31 
Table 2 shows the number of genes assigned to individual 
patterns when considering (1) five patterns, (2) four pat-
terns, and (3) the common ones. Similar to the simulation 
results, the numbers of genes assigned to DEG_all were 
relatively small (Table 2). In particular, baySeq had fewer 
identified DEGs overall, and thus, the influence of the 
presence or absence of DEG_all pattern was less than that 
of EBSeq.

Surprisingly, we observed considerably different results 
among the EBSeq-related pipelines with four patterns (Table 
2). While three pipelines (EEE-EBSeq, SSS-EBSeq, and 
S-EBSeq*) identified much less nonDEG genes (<10 000), 
S-EBSeq and M-EBSeq identified 12 662 and 12 842 non-
DEG genes, respectively and were similar to the results 
obtained with the four EBSeq-related pipelines with five pat-
terns. The three EBSeq-related pipelines (EEE-EBSeq, SSS-
EBSeq, and S-EBSeq*) commonly employ normalized size 
factors. In particular, the difference between S-EBSeq* and 
S-EBSeq is only the presence or absence of size factor nor-
malization; the mean values of size factors before and after 
normalization were 1.027 and 1.000, respectively. It is diffi-
cult to understand that this slight difference of 0.027 affected 
the four but not the five patterns. We did not observe this 
phenomenon for the simulation data and another real data 
(Additional file 5 of Supplemental material).32 To the best of 
our knowledge, this is the first study to report that the pres-
ence or absence of size factor normalization can have a large 
effect on DE result when using EBSeq.

Conclusions
We evaluated a total of eight Bayesian-based DE pipelines 
using three-group RNA-seq count data. The Bayesian meth-
ods coupled with TCC normalization performed comparably 
or better than the Bayesian methods with the default nor-
malization settings. In particular, the AUC values for XYX-
baySeq (ie EEE-baySeq and SSS-baySeq) were higher overall 
than the other Bayesian-based pipelines. Since EEE is the 
default normalization method of TCC, using EEE-baySeq 
would be the best practice among the eight Bayesian-based 
pipelines interrogated. We also confirmed that EEE-baySeq 
was robust against different choices of possible expression 
patterns. It is useful to obtain complete expression pattern 
across all groups compared, by taking advantage of the 
Bayesian framework.

It is important to note that we do not recommend the use of 
EEE-baySeq if the purpose is to rank genes according to the 
overall degree of DE. This is because the AUC values for the 
default DE pipeline of TCC (ie EEE-E) were still higher than 

https://journals.sagepub.com/doi/suppl/10.1177/1177932219860817
https://journals.sagepub.com/doi/suppl/10.1177/1177932219860817
https://journals.sagepub.com/doi/suppl/10.1177/1177932219860817
https://journals.sagepub.com/doi/suppl/10.1177/1177932219860817
https://journals.sagepub.com/doi/suppl/10.1177/1177932219860817
https://journals.sagepub.com/doi/suppl/10.1177/1177932219860817
https://journals.sagepub.com/doi/suppl/10.1177/1177932219860817
https://journals.sagepub.com/doi/suppl/10.1177/1177932219860817
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those for EEE-baySeq. Therefore, the use of EEE-E can be 
recommended for the purpose. In practice, the EEE-baySeq is 
useful as a subsequent analysis of EEE-E. By assigning the 

most plausible expression patterns to individual genes that are 
ranked according to the overall degree of DE, an accurate clas-
sification would be accomplished.

Table 2. Numbers of genes assigned to individual patterns.

DE PIPELINE NONDEG DEG_G1 DEG_G2 DEG_G3 DEG_all TOTAL

(a) Five possible expression patterns

 EEE-baySeq 15 106 914 877 3473 319 20 689

 SSS-baySeq 14 999 938 893 3539 320 20 689

 E-baySeq 15 032 935 886 3507 329 20 689

 M-baySeq 15 400 884 805 3298 302 20 689

 EEE-EBSeq 12 798 1284 1455 4471 681 20 689

 SSS-EBSeq 12 782 1302 1430 4476 699 20 689

 S-EBSeq 12 821 1253 1442 4474 699 20 689

 S-EBSeq* 12 826 1253 1439 4482 689 20 689

 M-EBSeq 13 042 1198 1368 4435 646 20 689

(b) Four possible expression patterns

 EEE-baySeq 14 986 1026 978 3699 − 20 689

 SSS-baySeq 14 983 1031 958 3717 − 20 689

 E-baySeq 14 978 1037 976 3698 − 20 689

 M-baySeq 15 330 985 890 3484 − 20 689

 EEE-EBSeq 9866 1517 1665 7641 − 20 689

 SSS-EBSeq 9816 1560 1648 7665 − 20 689

 S-EBSeq 12 662 1504 1671 4852 − 20 689

 S-EBSeq* 9872 1502 1666 7649 − 20 689

 M-EBSeq 12 842 1426 1606 4815 − 20 689

(c) Common

 EEE-baySeq 14 890 887 846 3405 − 20 028

 SSS-baySeq 14 849 898 851 3464 − 20 062

 E-baySeq 14 844 896 842 3424 − 20 006

 M-baySeq 15 205 846 769 3220 − 20 040

 EEE-EBSeq 9865 1284 1455 4445 − 17 049

 SSS-EBSeq 9815 1302 1430 4448 − 16 995

 S-EBSeq 12 661 1253 1441 4446 − 19 801

 S-EBSeq* 9871 1253 1438 4452 − 17 014

 M-EBSeq 12 841 1198 1368 4404 − 19 811

Abbreviations: DE, differential expression; FDR, false discovery rate. Genes satisfying 5% nominal FDR (q-value < 0.05) were regarded as DEG. In the original EBSeq 
pipeline, S-EBSeq was performed using Bayesian method with size factors, and S-EBSeq* was performed using Bayesian method with normalized size factors such that 
the mean was 1.
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