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Sir2 histone deacetylase prevents programmed cell
death caused by sustained activation of the Hog1
stress-activated protein kinase
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Exposure of yeast to high osmolarity induces a transient activa-
tion of the Hog1 stress-activated protein kinase (SAPK), which
is required for cell survival under these conditions. However,
sustained activation of the SAPK results in a severe growth defect.
We found that prolonged SAPK activation leads to cell death,
which is not observed in nma111 cells, by causing accumulation
of reactive oxygen species (ROS). Mutations of the SCFCDC4

ubiquitin ligase complex suppress cell death by preventing the
degradation of Msn2 and Msn4 transcription factors. Accumulation
of Msn2 and Msn4 leads to the induction of PNC1, which is an
activator of the Sir2 histone acetylase. Sir2 is involved in protec-
tion against Hog1-induced cell death and can suppress Hog1-induced
ROS accumulation. Therefore, cell death seems to be dictated by the
balance of ROS induced by Hog1 and the protective effect of Sir2.
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INTRODUCTION
Mitogen-activated protein kinase pathways convert extracellular
stimuli into cellular responses. Mitogen-activated protein kinase
activation must be appropriately regulated because the biological
outcome is different depending on the intensity and duration of
the activation (Marshall, 1995). For instance, transient activation

of the p38 stress-activated protein kinase (SAPK) leads to cell
proliferation, whereas sustained activation leads to apoptosis-like
cell death (Williamson et al, 2004; Wagner & Nebreda, 2009). In
yeast, transient activation of Hog1 SAPK is essential for cell
adaptation and survival of osmostress and controls from cell-cycle
progression to gene expression (Clotet et al, 2006; Chen &
Thorner, 2007; Hohmann et al, 2007; de Nadal & Posas, 2010).
In contrast to its role in cell survival, sustained activation of the
SAPK results in a severe growth defect that is prevented by
overexpression of protein tyrosine phosphatase 2 (Maeda et al,
1994; Wurgler-Murphy et al, 1997). However, little is known
about the molecular basis of this severe growth defect.

Here, we demonstrate that sustained activation of Hog1
induces cell death by promoting high levels of reactive oxygen
species (ROS). This is suppressed by mutations of the SCFCDC4

(SCF; Skp1/Cul1/F-box protein) ubiquitin–ligase complex. Accu-
mulation of Msn2 and Msn4 transcription factors induces PNC1,
an activator of the Sir2 histone deacetylase.

RESULTS AND DISCUSSION
Sustained activation of Hog1 leads to cell death
Inactivation of SLN1 or overexpression of PBS2DD impairs cell
growth (Maeda et al, 1994; Wurgler-Murphy et al, 1997; Fig 1A).
We tested whether this was associated with a decrease of cell
survival, by assessing colony-forming units. Only 24% of wild-
type cells survived 24 h of PBS2DD expression (Fig 1B). A decrease
in cell viability was also observed in a cell permeability assay with
propidium iodide (supplementary Fig S1A online).

Activation of p38 has been associated with apoptosis (Dolado
& Nebreda, 2008). Yeast can undergo cell death accompanied by
features that are diagnostic of apoptosis or programmed cell death
(PCD), and it is associated with characteristics of apoptosis
(Galluzzi et al, 2009; Madeo et al, 2009). Activation of Hog1 by
overexpression of Pbs2DD resulted in 18.2% of TdT-mediated
dUTP nick end labelling-positive cells, whereas only 3.8% of cells
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expressing a control plasmid were positive (Fig 1C). Activation
of the SAPK resulted in 19.5% of cells having a SubG1 DNA
content, indicating DNA fragmentation (Fig 1D). Correspondingly,
sustained activation of Hog1 induced an increase in the number

of cells with metacaspase activation in the highly sensitive
FAM–FLICA Apoptosis Detection Kit (Immunochemistry techno-
logies) (supplementary Fig S1B online). Thus, several independent
assays indicated that activation of the Hog1 SAPK induced cell
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Fig 1 | Sustained activation of Hog1 causes cell death that is partly suppressed by SCFCDC4 mutations. (A) Mutations on the SCFCDC4 complex prevent

cell death induced by PBS2DD or SLN1 inactivation. Cells expressing the PBS2DD allele under the GAL1 promoter (pGAL1–PBS2DD) were spotted on

glucose (control) or galactose. The sln1D and sln1D cdc4-1 strains carrying a plasmid expressing the protein tyrosine phosphatase 2 (PTP2) gene

under the GAL1 promoter (pGAL1–PTP2). (B) Hog1-mediated cell death is improved in a cdc4-1 mutant strain. Cells as in A were grown in galactose

for 24 h. Viability was monitored by counting the colony-forming units in glucose plates. Data represent the mean and standard deviation of three

independent experiments. (C) DNA single-strand breaks caused by Hog1 activation are reduced in cdc4-1 mutant cells. Cells were processed with the

TdT-mediated dUTP nick end labeling (TUNEL) assay (þ ) and the presence of single-strand DNA breaks was detected by FACS analysis. Data shown

are representative of three independent experiments. (D) Induction of the appearance of SubG1 population of cells on Hog1 activation is reduced

in cdc4-1 mutant cells. Cells were grown as in A and analysed for SubG1 population by FACS analysis. Data shown are representative of three

independent experiments. (E) Cell death caused by sustained PBS2DD expression is mediated by Nma111. The indicated strains expressing the PBS2DD

allele were grown in glucose (control) or galactose. (F) Cell viability on permanent Hog1 activation is fully restored in the absence of NMA111. Strains

as in E were grown in glucose (control) or galactose for 24 h and colony-forming units were assessed in glucose plates. Data represent the mean and

standard deviation of three independent experiments. FACS, fluorescence-activated cell sorting.
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death. Several genes have been involved as mediators of
apoptosis-like cell death in yeast (Carmona-Gutierrez et al,
2010). Deletion of NUC1 did not prevent cell death on Hog1
activation. By contrast, deletion of YCA1 partly suppressed cell
death and deletion of NMA111—the Omi/HtrA2 homologue
(Walter et al, 2006)—completely abolished it (Fig 1E and F). Thus,
Hog1 activation leads to PCD mediated by Nma111.

SCF mutations suppress Hog1-mediated cell death
Permissive mutations of the CDC4 gene—the E3 ligase of the
SCFCDC4 complex—suppressed the growth defect associated with
HOG hyperactivation (Fig 1A,B; supplementary Fig S1A online).
SCFCDC4 is a complex containing Skp1, Cdc53 and Cdc34
proteins. Permissive mutations in any of these genes suppressed
the growth defect caused by activation of Hog1 (Fig 1A), although
to different extents. The cdc4-1 cells overexpressing PBS2DD

showed a survival rate almost two times higher than wild-type
cells and reduced apoptosis (Fig 1C and D; supplementary Fig S1B
online). Thus, mutations of the SCFCDC4 partly suppress cell death
caused by Hog1 activation.

cdc4-1 shows reduced levels of Hog1-induced ROS
The induction of ROS is the most common cause of apoptosis-like
cell death in yeast (Madeo et al, 1999). In the absence of O2,
which prevents ROS formation, cell death caused by Hog1 was
abolished (Fig 2A, left panel). Antimycin A inhibits respiration and
provokes an increase of ROS formation. Interestingly, antimycin A
abolished the anti-apoptotic effect of cdc4-1 on Hog1

activation (Fig 2A, middle panel). Incubation of cells with
dinitrophenol—which inhibits adenosine triphosphate formation
without affecting ROS levels—did not alter the ability of cdc4-1
cells to suppress cell death caused by Hog1 (Fig 2A, right panel).
Therefore, cell death caused by Hog1 activation is not due to a
deficit of adenosine triphosphate, but is probably due to an
increase in ROS formation.

We then quantitatively assessed ROS production. Overexpres-
sion of PBS2DD caused a 2.6-fold increase in ROS formation in
wild-type cells, whereas it was lower than 1.8-fold in a cdc4-1
mutant (Fig 2B). An increase in ROS levels might be caused by
inhibition of mitochondrial respiration. We assessed mitochondrial
respiration in a plate assay in the presence of triphenyl tetrazolium
(Kobayashi et al, 1974) and found that it was strongly inhibited in
reponse to stress (white cells; Fig 2C). Correspondingly, growth on a
non-fermentable carbon source was impaired in the presence of
osmostress (supplementary Fig S5B online). To establish the role of
Hog1 in the inhibition of mitochondrial respiration, we used an
analogue-sensitive hog1as strain (Macia et al, 2009) and found that
inhibition of hog1as prevented the inhibition of respiration (Fig 2C).
Sustained activation of Hog1 by Pbs2DD resulted in a similar
reduction of oxygen consumption in wild-type and cdc4-1 mutant,
which was dependent on HOG1 (Fig 2D). It is noteworthy that
deletion of GPD1 did not prevent the reduction of oxygen
consumption in response to Hog1 activation, indicating that
glycerol metabolism is not the source of the inhibition of respiration
(Fig 2D). Therefore, activation of Hog1 decreases mitochondrial
respiration and leads to an increase in ROS formation.
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Fig 2 | Hog1-induced reactive oxygen species accumulation is reduced in a cdc4-1 mutant. (A) Reactive oxygen species (ROS) production causes cell
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of three independent experiments. (C) Hog1 inhibits mitochondrial respiration in response to osmostress. Wild-type and hog1as-mutant strains in

YPD plates with or without 0.8 M NaCl were grown for 12 h at 25 1C, and tetrazolium chloride was added as an overlay in the presence (þ ) of the

kinase inhibitor 1NM-PP1 (5 mM). (D) Activation of Hog1 causes a reduction in oxygen consumption independently of SIR2, cdc4-1 and GPD1.
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SCFCDC4 restricts Msn2-mediated gene expression
We then assessed HOG signalling. Phosphorylation of Hog1 and
its nuclear accumulation were identical in a wild-type and cdc4-1
mutant in response to osmostress or PBS2DD induction (Fig 3A,B).
It is noteworthy that mutations in SCFCDC4 (cdc4-1, cdc34-2
and cdc53-1) were slightly more resistant to osmotic stress than
wild-type cells, despite normal Hog1 signalling (Fig 3C,D).

The Hog1 SAPK is a key regulator of gene expression by
controlling several transcription factors and chromatin-associated
proteins (de Nadal & Posas, 2010). The SCFCDC4 complex is
involved in control of the turnover of several transcription factors
(Pal et al, 2007; Olson et al, 2008). In a cdc4-1 strain, expression
of genes under the control of Msn2 and Msn4 transcription factors,

but not Sko1 or Hot1 (that is, CTT1 and ALD3 compared with
GRE2 and STL1), was stronger than that in wild-type cells (Fig 3E).
Therefore, these data indicate that Msn2 and Msn4 might be the
target for SCFCDC4. It is noteworthy that Msn2 is ubiquitinated in
vitro by Cdc4 (Chi et al, 2001).

Degradation of Msn2 in response to osmostress and by
overexpression of PBS2DD was slower in a cdc4-1 strain than in
the wild type (Fig 3F; supplementary Fig S2 online). Correspond-
ingly, Msn2 occupancy at the CTT1 promoter, analysed by
chromatin immunoprecipitation (ChIP), was extended in a
cdc4-1 strain in response to stress (Fig 3G). It is noteworthy
that Msn2 was phosphorylated by Hog1 in an in vitro assay
(Fig 3H). Thus, cdc4-1 cells have an increased amount of Msn2
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at stress-responsive promoters, which leads to an increase in
MSN2-dependent gene expression.

cdc4-1 suppression depends on PNC1 expression
Cell death due to Hog1 was not suppressed in a cdc4-1 msn2
msn4 strain (Fig 4A). Correspondingly, overexpression of MSN2
under the ADH1 promoter prevents cell death Hog1 activation in
wild-type cells (Fig 4A). Expression of PNC1 is induced in
response to osmostress by Msn2 and Msn4 (Posas et al, 2000;
Causton et al, 2001), and the role of Msn2 and Msn4 in cell
longevity is mediated by PNC1, an activator of Sir2 (Bitterman
et al, 2002; Anderson et al, 2003; Gallo et al, 2004; Medvedik
et al, 2007). Either PBS2DD overexpression or osmostress induced
PNC1 expression that was stronger and more extended in a cdc4-1
mutant (Fig 3B,C; supplementary Fig S3A,B online). Similarly to
a cdc4-1 msn2 msn4 strain, overexpression of PBS2DD induced
cell death in a cdc4-1 pnc1 strain (Fig 3A). Correspondingly,
overexpression of PNC1 prevented cell death in response to
Hog1 activation (Fig 3B). Thus, Pnc1 mediates the effect of
Msn2 and Msn4 to prevent cell death in response to sustained
Hog1 activation.

Sir2 activation suppresses Hog1-mediated apoptosis
A cdc4-1 sir2 strain was unable to prevent cell death caused
by Hog1 activation (Fig 4D). This effect was specific for Sir2, as
deletion of HDA2 or SIR2 did not abolish the effect of cdc4-1
(Fig 4E). Correspondingly, cell death, as measured by the presence
of SubG1 cells, was partly suppressed in a cdc4-1 strain, but not
in a cdc4-1 sir2 strain (Fig 4F).

We then analysed whether resveratrol, a drug that was
suspected to induce Sir2 activity, improved cell growth (Howitz
et al, 2003). Resveratrol did not prevent cell death in a sir2 strain.
Correspondingly, overexpression of Sir2 suppressed cell death on
Hog1 activation (Fig 4D). The cdc4-1 sir2 strain showed an
increase in ROS levels on Hog1 activation, which was similar to
that of the wild-type strain and twofold higher than that of the
cdc4-1 strain (Fig 2B). There was a slight increase of ROS on 2 h
incubation in the presence of NaCl in the wild type, which was
further increased in a sir2 strain (supplementary Fig S5 online).
Therefore, Sir2 is required for protection from Hog1-induced cell
death, by preventing Hog1-induced ROS accumulation.

A main role for Sir2 in cell survival is the suppression of
ribosomal DNA recombination and the formation of toxic extra-
chromosomal ribosomal DNA circles in the nucleus of mother
cells (Sinclair & Guarente, 1997). SIR2 also affects lifespan by
increasing silencing at telomeric regions (Dang et al, 2009).
Interestingly, deletion of NET1, a component of the ribosomal
DNA-localized Sir2 complex (Straight et al, 1999), abolished the
effect of cdc4-1 on Hog1 activation (supplementary Fig S4B
online). By contrast, deletion of either SIR4 or deletion of HM loci
(Aparicio et al, 1991) did not affect cell viability (supplementary
Fig S4B online). Therefore, although this is genetic evidence that
will require further characterization, our data indicate that the
function of Sir2 at ribosomal DNAs might dictate the level of cell
death on Hog1 activation.

Activation of SAPK signalling is essential for cell adaptation to
stress. However, sustained activation of the pathway unravels a
more-complex hypothesis. When it is not restricted, SAPK
activation causes an inhibition of mitochondrial respiration,

which results in an increase of ROS formation that can only be
counteracted by the Hog1-dependent activation of Sir2 and the
lifespan extension pathway (Fig 4G). Although a decrease in
mitochondrial respiration might be important for cell adaptation,
an extended reduction of respiration leads to excessive ROS
formation. To prevent cell damage, Hog1 induces PNC1 gene
expression and concomitantly activates Sir2 to balance
excessive ROS accumulation. Therefore, cell fate is dictated by
the balance between ROS induced by Hog1 SAPK and the
protective effects of Sir2.

METHODS
Yeast strains and plasmids. A complete list is included in the
supplementary information online. The strains used in this study
showed similar growth rates when grown in YPD. Expression of
the Pbs2DD protein was similar in all strains tested (supplementary
Fig S4A online).
Northern blot analysis. Yeast cultures were grown to early log
phase (optical density at 660¼ 0.6–0.8). Cells were either
subjected to stress (0.4 M NaCl, indicated times), shifted to
galactose or untreated. Total RNA was probed by using radio-
labelled polymerase chain reaction fragments containing labelled
CTT1 (1.7 kb), ALD3 (1.5 kb), GRE2 (1.1 kb), STL1 (1.7 kb), PNC1
(0.8 kb) and ACT1 (1.4 kb). Signals were quantified by a Typhoon
8600 phosphorimager and the ImageQuant software.
Chromatin immunoprecipitation. ChIP was performed as described
previously (Alepuz et al, 2003). Yeast cultures were grown to
early log phase before osmostress (0.4 M NaCl). For crosslinking,
yeast cells were treated with 1% formaldehyde for 20 min at 25 1C.
Primer mixes were adjusted for balanced signals.
PCD measurements. Apoptosis-like cell death was measured
by using FLICA assay adapted to flow cytometry, a TdT-mediated
dUTP nick end labelling assay adapted to flow cytometry or
following the presence of a SubG1 population of cells by flow
cytometry, as described in the supplementary information online.
Colony-forming unit assay. Yeast cultures were grown to early
log phase in raffinose and then shifted to galactose or glucose
for 24 h before plating. The number of colonies was determined
after 3 days at 25 1C in replicas. Data are the result of three
independent experiments with replicas.
ROS and mitochondrial respiration assays. ROS amounts in
liquid growing cells were detected by using 20,70-dichloro-dihydro-
fluorescein diacetate (H2DCF-DA) from Invitrogen (Carlsbad, CA).
In plate, mitochondrial analysis was performed using a tetrazolium
overlay assay. Measurement of oxygen consumption was recorded
by direct measurement using oxygen measurer, as indicated in the
supplementary information online.
Supplementary information is available at EMBO reports online
(http://www.emboreports.org).
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