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Abstract

Protein complexes are not static, but rather highly dynamic with subunits that undergo 1-dimensional diffusion with respect
to each other. Interactions within protein complexes are modulated through regulatory inputs that alter interactions and
introduce new components and deplete existing components through exchange. While it is clear that the structure and
function of any given protein complex is coupled to its dynamical properties, it remains a challenge to predict the possible
conformations that complexes can adopt. Protein-fragment Complementation Assays detect physical interactions between
protein pairs constrained to #8 nm from each other in living cells. This method has been used to build networks composed
of 1000s of pair-wise interactions. Significantly, these networks contain a wealth of dynamic information, as the assay is fully
reversible and the proteins are expressed in their natural context. In this study, we describe a method that extracts this
valuable information in the form of predicted conformations, allowing the user to explore the conformational landscape, to
search for structures that correlate with an activity state, and estimate the abundance of conformations in the living cell. The
generator is based on a Markov Chain Monte Carlo simulation that uses the interaction dataset as input and is constrained
by the physical resolution of the assay. We applied this method to an 18-member protein complex composed of the seven
core proteins of the budding yeast Arp2/3 complex and 11 associated regulators and effector proteins. We generated
20,480 output structures and identified conformational states using principle component analysis. We interrogated the
conformation landscape and found evidence of symmetry breaking, a mixture of likely active and inactive conformational
states and dynamic exchange of the core protein Arc15 between core and regulatory components. Our method provides a
novel tool for prediction and visualization of the hidden dynamics within protein interaction networks.
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Introduction

The living cell is a dynamic, out of equilibrium system in which

the interactions among components of multi-protein complexes

undergo continuous diffusion and exchange. One of the central

challenges in biology is to discover the relationship between the

components contained within the complex and the function it

performs. There are many experimental techniques, such as

Tandem Affinity Purification Mass Spectrometry, and Yeast Two-

Hybrid that seek to identify protein-protein interactions. The

result usually is the addition of a novel edge to an already

complicated network of protein-protein interactions. However,

understanding the role of each individual protein within a protein

complex has remained a challenge until recently.

New experimental techniques based on Protein-fragment

Complementation Assays (pca) have successfully obtained struc-

tural insights from protein-interaction data [1,2]. The DHFR-pca

implements two complementing fragments of dihydrofolate

reductase (DHFR) in a plate-based growth assay and reports

interactions based on growth in the presence of the drug

methotrexate. Methotrexate resistance is conferred to cells when

two complementing DHFR fragments, each fused to the carboxyl

terminus of a bait or prey protein, encounter each other through

direct and indirect interaction of the bait and prey proteins. The

formation of the functional DHFR enzyme is a reversible process

that occurs when the bait and the prey proteins are within 8 nm of

each other. It has been proposed in [1] that the data contained in

the DHFR-pca dataset can be used to refine the results generated

by the Integrative Modeling Platform (IMP) [3], a constraint based

method for generating molecular structure. However, the IMP

requires a large amount of precise structural information, e.g. X-

ray crystallography or from electron micrographs, to generate

models with atomic level resolution. While the pca dataset can be

used to refine high-quality models generated by the IMP, the set of

constraints obtained from pca can also be used to generate a

coarse-grained model containing conformations that represent the

spatial configuration of a single or several conformational states

detected in vivo. Tools are needed for coarse-grained modeling

that can be used to visualize and to interpret protein-protein

interaction data, especially for protein complexes for which

structural information is incomplete or unavailable. To our

knowledge, this type of modeling algorithm does not exist.
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In this article, we introduce MCMC-PCA2, a probabilistic

model for inferring conformational states of protein complexes

based on the network of protein-protein interactions obtained

from the DHFR-pca dataset using a coarse-grained approxi-

mation of proteins. Our approach is based on a Markov Chain

Monte Carlo (MCMC) procedure to generate an ensemble of

possible conformations for a given clique obtained from the

high quality DHFR-pca derived interactome generated by

experimentally testing pair-wise interactions amongst 5756

yeast proteins [1]. Unlike Boolean network based approaches,

MCMC allows a proper sampling of the structure state space.

This set of conformations can be used to determine the

existence of multiple conformations that fit the experimental

data.

Methods

Algorithm design and implementation
Dynamic information is embedded within networks of protein

interactions detected using pca. To extract this information and

gain greater understanding of the dynamic behavior of protein

complexes, we designed an in silico method for predicting diffusion

and exchange of proteins resident in multi-protein complexes. Our

method for model generation implements a MCMC approach to

generate a representative sample of conformations based on

experimental data for protein complex collected using DHFR-pca

and the more recently developed OyCD-pca method [4] that has

been used to detect dependencies of signaling proteins on adaptors

that specify targeting [5]. The output models infer the conforma-

tional space within complexes that satisfy the protein-interaction

network. We applied Principal Component Analysis (PCA) to

identify different conformational states from the sampled confor-

mations. Similar studies have previously used this approach to

model DNA-DNA interactions to model chromosome conforma-

tions and identified major chromosome conformational changes

between differentiated and undifferentiated cell types [6]. The

MCMC-PCA2 software can be downloaded at http://aguada.biol.

mcgill.ca/software.html.

Input data
The MCMC-PCA2 algorithm requires the set of interactions

amongst the proteins of interest and the shape of those proteins of

interest to generate structural conformations. We generated a

binary interaction matrix for each protein complex of interest

derived from the DHFR-pca dataset and generated the radius of

gyration from modeling each protein of the complex as a sphere.

Coarse grained modeling of proteins as spheres
To simplify the protein complex model generation, each protein

within a given complex was modeled as a uniform sphere. To

confirm the validity of this approach for the yeast protein dataset,

we evaluated the relationship between the chain length (number of

residues) and the volume occupied by the a-carbons. We evaluated

all monomeric yeast proteins deposited in the Protein Data Bank

(n = 477, accessed on 2012-11-28) [7]. Using the structural

information for these proteins, we applied a method of ‘‘sphere-

fitting’’, where the objective was to find a sphere size that

maximizes the number of amino acids per unit volume. This

prevents overestimating sphere sizes from disordered regions

protruding from the core of the protein. First, we centered a small

sphere with a radius of 0.5 nm on the center of mass of each

protein. Then, we expanded the sphere radius in steps of

0.025 nm, iteratively optimizing the position by maximizing the

per unit volume until 100% of the a-carbons were contained

within the sphere volume. We use spheres encapsulating 90% of

the amino acids since this generally maximized the number of

amino acids per unit volume (Figure 1A).

When structural information is unavailable, we estimated

protein size from the correlation between sphere radii and amino

acid sequence length from our results above. We obtained a

power-law correlation (size = 2.83 * x0.39), with 448 of the 477

proteins falling within the 95% confidence interval (green lines,

Figure 1B), a result that strongly agrees with previous studies using

this approach [8]. As expected, globular proteins lie on the trend

line (Figure 1C, left). Examples of proteins for which sphere fitting

to the a-carbon volume is poor include rod-shaped proteins and

proteins that contain one or more large clefts (Figure 1C, right).

Our predicted sizes are in good agreement with previous studies

[8]. Previously, it was demonstrated that the exponent depended

primarily on the hydrophobicity of the protein and not the

structural features [8]. Alternatively, sphere fitting can also be

applied to predicted structures such as those obtained from

RaptorX [9] and Rosetta [10]. The predicted structures are

expected to provide a more accurate estimation of the size of the

protein, especially when the protein has homologues of known

structure.

Generating protein complexes
We define a conformation of a protein complex as a connected

network such that each protein in 3-dimensional space occupies a

sphere of size Ri at the coordinate Pi = (Px(i), Py(i), Pz(i)). The set of

spheres P = {P(1),P(2),…,P(n)}, where n is the number of proteins

in the network being simulated, constitutes a possible conforma-

tion for the protein complex. Although proteins in living cells

contact each other and ‘‘overlap’’ (i.e., classic enzyme substrate

interaction), we implemented a constraint that allows contact but

prevents proteins from overlapping.

To generate the conformational states of a protein complex, we

applied a modified Markov Chain Monte Carlo simulation

(Figure 2 and supplemental text S1). During the initialization,

the proteins (represented as spheres) are placed randomly on a 3D

grid of 4096 nm per side (Figure 2A). We then calculate a score

based on the surface-to-surface distance of each protein-pair. This

Author Summary

Cells are complex dynamic systems, and a central
challenge in modern cell biology is to capture information
about interactions between the molecules underlying
cellular processes. Proteins rarely act alone; more often
they form functional partnerships that can specify the
timing and/or location of activity. These partnerships are
subject to dynamic changes, and thus protein interactions
within complexes undergo continuous transitions. Genetic
and biochemical evidence suggest that regulation or
depletion of a single protein can alter the stability and
activity of an entire protein complex. Experimental
approaches that detect interactions within living cells
provide critical information for the dynamical system that
protein complexes represent; yet complexes are often
depicted as static 2-dimensional networks. We have built a
system that projects in vivo protein interaction datasets as
3-dimensional virtual protein complexes. By using this
method to approximate the diffusion of complex compo-
nents, we can predict transient conformational states and
estimate their abundance in living cells. Our method offers
biologists a framework to correlate experimental pheno-
types with predicted complex dynamics such as short or
long-range effects of a single perturbation to the function
of the whole ensemble.
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score was modeled upon a knowledge-based potential (described

below, Figure 3). At the beginning of each iteration, three proteins

are picked randomly (with replacement) and are moved in a

random direction with a maximum step size of 4 nm in x, y and z

(Figure 2B). As in the initialization, we calculate a new score for

the new conformation. Then, we apply Metropolis-Hasting

selection between these two conformations and move on to the

next iteration (Figure 2 and supplemental text S2) [11]. We say the

system has sufficiently mixed after k iterations, such that the lag-1

autocorrelation of the score of the conformations sampled at k/10,

2k/10, … 10k/10, is less than 0.3. We then sample a conformation

after every k/10 iterations. In order to generate a large number of

possible conformations, we simultaneously ran 4,096 independent

MCMC simulations generating 20,480 sampled conformations.

The approach of lowering the number of iterations per simulation

and increasing the total number of independent simulations takes

advantage of the speed and extreme parallelization offered by

general purpose computing on graphics processing units using

CUDA [12].

Modelling the knowledge-based potential
Our algorithm relies on the precise, binary nature of the pca

method that detects well-defined, pair-wise protein-protein inter-

actions. For all interaction pairs, a positive outcome implies that

the two proteins of interest come together such that the mutant

DHFR enzyme forms and can overcome the inhibition of

methatrexate. The spatial constraint of the DHFR-pca was

estimated using the RNA polymerase II crystal structure as a

benchmark to reference detected interactions against the distance

between carboxyl termini of protein pairs. Positive pca interactions

were predominantly composed of protein pairs within 8 nm of

each other with an upper bound of , 11 nm [1].

The estimated 8 nm resolution of the DHFR-pca method is ,2

fold greater than the average diameter of a folded protein [13].

Our coarse-grained approach of modeling proteins as spheres has

the potential to overestimate protein size, however this nanometer

imprecision is overshadowed by the resolution of the pca method.

Moreover, the 8 nm resolution of the assay implies pairs of

interacting proteins have significant diffusional space in which to

assume conformational states.

The spatial constraint implicit in the interaction dataset

represents a physical barrier that is overcome if an interaction is

detected, and must be factored in to the knowledge-based

potential. Proteins that are more than 8 nm apart are much less

likely to be detected as interaction [1] and our simulation requires

that we take the 8 nm resolution of the DHFR-pca method into

consideration when modeling the surface-to-surface distance

between interacting and non-interacting proteins.

As designed, the DHFR-pca could only detect interactions

between proteins for which the C-termini are separated in distance

by no more than approximately 8 nm [1]. Consequently, the

expected distance between most of the interacting proteins would

be less than 8 nm and very few of the detected interactions would

occur at the 8 nm limit. This is a reasonable assumption when

considering the true physical limitation of the pca assay. We also

consider the flexible linker (GGGGS)2) between the protein of

interest and the DHFR fragment is predicted by Pep-fold to be

,1.2 nm in length when fully relaxed and able to stretch up to

,2.4 nm [14]. Given that the DHFR protein has a radius of

gyration of ,2.2 nm, the DHFR-pca assay could detect binary

Figure 1. Modeling proteins as spheres. A: When structural
information was available on PDB, we fit a sphere to the volume
occupied by the a-carbon chain of the protein, with an initial volume of
0.5 nm and progressive increasing the volume by 0.025 nm until 100%
of the a-carbons are contained within the sphere. We find that for most
proteins the optimal sphere size contains 90% of a-carbons. B: The
correlation between protein size (r, in nm) and chain length gives a
power law (insert equation). Red: fitted line. Green: 95% confidence
intervals. C: In general both globular and non-globular proteins follow
the trend line. In some cases (rod shaped proteins or proteins that

contain one or more clefts) protein size and chain-length are poorly
correlated. (Labels: Protein Databank accession number).
doi:10.1371/journal.pcbi.1003654.g001
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protein-protein interactions at up to about 9.2 nm if both linkers

are fully stretched. It would be rare for the linkers to be

consistently stretched to full length during the detection of an

interaction. Based on this, the probability of detecting an

interaction should rapidly decrease as the distance between the

proteins increase since the stretching of the linker would be

thermodynamically unfavorable. This creates a bias in the

distribution of the distance at which a protein-protein interaction

is detected as a result of the linker not completely stretching.

Therefore, in our simulations, we model the surface-to-surface

distance between two proteins as a Weibull distribution.

The Weibull distribution is characterized by two parameters:

scale (l) and shape (k). The scale para-meter was set to 4 nm (half

of the DHFR-pca resolution[1]) because this produced a distribu-

tion with most of the weight lying within the range for a detectable

interaction, while allowing for false positives. The shape parameter

was set to

Min 2, 1z
IPizIPj

8

� �

where IPi is the number of interactions for protein i. We defined k

as a dynamic parameter to prevent proteins from centering around

‘‘hub’’ proteins. This promotes the exchange of interaction

partners to increase the conformational landscape explored.

Without setting k as dynamic parameter, proteins that interact

with a hub would cluster around it and create unnatural

conformations.

In order to illustrate our concept, we have created a simple toy

model describing interactions among 3 proteins: A, B and C

(Figure 3). We assume that the experimental DHFR-pca data

shows that protein A interacts with B, B interacts with C and A

does not interact with C (Figure 3A). One possible conformation is

shown in Figure 3B with the constraints that are required to be

satisfied (Figure 3C,D). A more detailed example is illustrated in

Figure S1.

A non-interacting pair proved difficult to model because we are

modeling the absence of an interaction as information. As the

distance between two non-interacting proteins increases, we would

expect the ‘‘probability’’ of non-interaction to increase to 1

because there exist a critical distance where two pca fragments will

no longer be able to complement each other. This idea is well

characterized by a cumulative distribution function. We model

Figure 2. Overview of the MCMC PCA algorithm. A: Initialization
of the algorithm involves three steps. The proteins are modeled as
spheres (1) and randomly placed on a grid (2). This random placement
constitutes as the initial conformation sampled. A score is calculated for
this initial complex (3). B: At the beginning of each iteration, three
protein is chosen at random (with repetition) to be translated by up to
4 nm in a random direction in x, y and z. The arrow indicates a move
chosen by the algorithm. C: We accept the new complex according to
the Metropolis-Hasting sampling method.
doi:10.1371/journal.pcbi.1003654.g002

Figure 3. Applying MCMC-PCA2 to a simple toy model. A: The
input data for a toy model. Let A interact with B, B with C, but that A
does not interact with C. B: The toy model should satisfy these
constraints, as determined by the DHFR-pca. C: The surface-to-surface
distance between interacting pairs are modeled as Weibull distribu-
tions. This allows D: The surface-to-surface distance between non-
interacting pairs is modeled as a cumulative Weibull distribution.
doi:10.1371/journal.pcbi.1003654.g003
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non-interacting pairs by implementing the potential function as a

cumulative Weibull distribution function (l= 8, k = 2; Figure S1).

The cumulative distribution function equally weighs protein-pairs

with a distance greater than 20 nm. We extended the distance

between proteins from 8 to 20 nm, making the knowledge-based

potential less stringent so as to accommodate for possible false

negatives in the DHFR-pca dataset. This approach was critical to

the simulation of the diffusional space that a given protein can

potentially occupy, and to the identification of conformational

states that can be extracted from the simulations.

Prediction of metastable conformations
To probe for conformational states within the ensemble of

20,480 conformations generated by the MCMC simulation, we

first minimized misalignment between conformations. To remove

translational and symmetrical misalignment, we created a

coordinate system based on four proteins, (0,x,y,z) from our input

dataset. All conformations are first translated such that the center

of mass (COM) of protein 0 is at the zero co-ordinate. Next, each

conformation is rotated such that the COM protein X is on the

positive x-axis then rotated around the x-axis such that the COM

of protein Y has no z-value and its y-value is positive. Based on the

COM of protein X and Y, the positive z-direction is defined such

that the vectors defined from the origin to the COM of protein X

and Y are a right-handed coordinate system. Based on this new

coordinate system, we verify if protein Z is on the positive z-axis. If

it is not, we use the mirror image around the X-Y plane such that

it becomes on the positive z-axis.

To minimize rotational misalignment, we take a conformation i

and project it by applying Kabsch’s algorithm [11-13] onto the

conformation j that is most similar to it. We define similarity

between conformations based on the root mean squared distance

(RMSD) between the projected conformation i and conformation

j. The conformation j that is most similar to conformation i has the

lowest RMSD. Since the position of each conformation being

projected will change upon each iteration, we reapply the Kabsch

algorithm until the sum of the positional difference before and

after running the algorithm is less than 1.

Next we applied PCA on the Z-score transformed COM, where

the distribution of the COM is transformed into a distribution of

Z-scores. The Z-score transform is a necessary step because nodes

with many edges are expected to diffuse less than nodes with few

edges; the latter are expected to occupy a larger diffusional space

in comparison. Therefore, without this Z-score transformation, it

is expected that the first few principal components would

correspond to proteins that moved the most. However, the goal

is to identify a distinct change in the spatial occupation of a few

key proteins, such as regulators or linchpin proteins that lead to

the formation of distinct clusters. The Z-score transformation

allows for such spatial changes to be identified. The ensemble of all

protein complexes was then projected on to the two first principal

components allowing the de-convolution of clusters representing

dominant conformations.

Results and Discussion

Case study: The 18-member Arp2/3 complex
The composition and dynamic properties of multi-protein

complexes can be studied experimentally using many techniques,

yet the DHFR-pca method in particular reveals the modular and

interconnected nature of protein interaction networks (PINs). As

the number of components in a PIN increases, the need for in silico

modeling and visualization of complex dynamics and diffusional

space also increases. Detection of interaction pairs using DHFR-

pca enabled the construction of a large-scale protein interaction

network that contains a number of sub-networks, each containing

10s of proteins.

An example of a multi-protein complex is the evolutionarily

conserved Arp2/3 complex, which is one of a number of protein

complexes that contribute to the formation of actin filaments by

decreasing the energy barrier required for nucleation [15]. The

Arp2/3 complex is composed of seven proteins that together

promote the nucleation of new actin filaments off of existing

filaments, resulting in branched filaments that are required for

both cell motility and endocytosis [16–18]. Mammalian Arp2/3

components and their respective yeast orthologs are shown in

Table 1.

The spatial scale of the Arp2/3 complex is small enough that all

proteins pairings should be detected by the DHFR-pca, as the

maximum distance between carboxyl-termini is ,10 nm. The

distance between pairs of carboxyl termini was calculated from the

PDB structure 1K8K using UCSF Chimera [19]. With the

exception of Arc15 (a single core interaction with Arp2), the

number of edges between the seven core proteins detected by the

DHFR-pca is in agreement with the number of predicted

interactions between proteins with carboxyl termini , 8 nm

apart, as well as three interactions between pairs .8 nm apart;

Arp2-Arc19 (8.49 nm), Arc40-Arc18 (9.14 nm) and Arc40-Arc19

(9.21 nm; Table 1).

The extended Arp2/3 DHFR-pca PIN contains 18 proteins, 11

of which are accessory proteins that are connected to one or more

of the proteins that comprise the seven-member core Arp2/3

complex [1]. Sla1, Sla2, Las17, Rvs161/Rvs167 and the type I

myosin Myo5 are well-characterized regulators of the actin

Table 1. Comparison of structural and pca binary interactions in the Arp2/3 complex ([37,38]).

Human S.c. Homolog predicted edges in structure1 pca edges with core proteins2 pca edges with core+11 adapters2

Arp2 Arp2 5 6 8

Arp3, Arp3-b Arp3 5 - -

p41-Arc, Sop2h Arc40 3 5 12

p34-Arc Arc35 6 5 8

p21-Arc Arc18 4 5 8

p20-ARC Arc19 4 5 8

p16-Arc Arc15 5 1 5

11K8K. Note that the last crystallizable residue was used, which may not represent the actual position of the C-terminal as the last residue was not present in the
structure. 2From Tassarov et al. 2008.
doi:10.1371/journal.pcbi.1003654.t001
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nucleation and membrane scission functions of the complex

(Table 2) [18,20–22]. Las17 is the budding yeast homologue of the

mammalian Arp2/3 activating protein WASp [20]. The DHFR-

pca-derived complex is both complete and appropriate as a test bed

for our analysis. One exception is Arp3, which was not tested

because the DHFR-tag produces a non-functional Arp3 protein.

Then, to predict interaction edges between Arp3 and members of

the extended complex, we used structural information from the

1K8K structure as well as interaction data in BioGrid information.

The full interaction matrix for all 18 proteins is shown in Figure 4A

and Supplementary dataset S1. When proteomic data are

unavailable from other experimental sources, predicted protein-

protein interactions, such as those obtained from Coev2Net [23]

can be used as input data to the algorithm.

Prediction of metastable states of the 18-component
complex

In order to investigate the possible conformational states

embedded within the extended Arp2/3, we generated an ensemble

of 20,480 different conformations. We align the conformations

using Arc15, Arp2, Arc40 and Sla2 and minimized their rotational

and symmetrical misalignment as described in the previous

section. We then performed principal component analysis (PCA)

on the aligned conformations. These aligned conformations were

then projected onto the first two principal components (Figure 4B).

PCA allows us to visualize the distribution of predicted confor-

mations of the Arp2/3 complex.

The PCA analysis revealed interleaved yet distinct clusters, and

indicates a continuous transition from one conformation to

another with at least one major conformational state and one

minor conformational state (Figure 4B). We investigated this

possibility by creating a biplot, which creates a visual represen-

tation of the contribution of each variable (the x, y, z components

of a protein) to the first two principal components (Figure 4C).

Each line represents the relative contribution of that variable to

the first two principal components and was used to identify the

proteins that contribute to five different sub-regions of the PCA

landscape (Figure 4D). Interestingly, many of the proteins that

contribute to the formation of these clusters are regulatory proteins

that include Myo5 and Las17 (activators of the complex) and

Rvs161/167 (effector proteins). Surprisingly, Sla1, an inhibitor of

Las17, is an important factor contributing to the formation of sub-

region 2 only, but seems to have little influence on the core Arp2/

3 complex, suggesting that cluster 2 represents a large population

of extended complex conformations (Figure 4D). In other sub-

regions, the regulators and effectors have a stronger influence on

the core complex and most strongly in sub-region 3 where Myo5, a

motor protein, is thought to activate the Arp2/3 complex and

couple its activity to the curvature of the plasma membrane during

endocytosis [24]. This biplot would suggest that there is a spatial

coordination between the core Arp2/3 complex and its regulators

and effectors.

Minor and major clusters suggest distinct branching and
scission conformations

Guided by the biplot, we next investigated the two major

clusters of the PCA landscape by plotting the center of mass of

each protein as a dot, which creates a visual representation of

complex conformations. We highlighted proteins that the PCA

analysis determined to be contributing the most to the formation

of that cluster (Rvs161/167, Las17 and Myo5, Figure 5A,B). Each

cluster is viewed from the same angle. Distributions of the

accessory proteins Myo5 (Green), Las17 (Dark Blue) and Rvs161/

167 (Red) are distinctive for clusters 1 and 2 in comparison with

the distribution of the majority of Arp2/3 core components and

accessory proteins (collectively labeled core+7).

Our analysis of complex conformations suggests spatial inter-

play between Myo5 and Las17 (activators of the Arp2/3 complex)

and Rvs161/Rvs167 (required for scission during endocytosis)

[25,26]. Conformations resident in both cluster 1 and cluster 2 are

characterized by an asymmetric distribution of Myo5 and

Rvs161/Rvs167 that breaks the symmetry of the structure. While

this asymmetry is qualitatively apparent, we calculate the contact

frequency (CF) and apply it as a quantitative measurement of the

separation of Myo5, Las17 and Rvs161/167 (Figure 5C,D). We

define the CF between two proteins as the observed frequency for

which their surface-to-surface distance is within a given distance

(i.e. the resolution). CF enables us to estimate mixing between two

distributions of protein positions. We performed a pair-wise

measurement of contacts between pairs of proteins at two

resolutions (10 nm and 20 nm). We first investigated the mixing

of Myo5 and Rvs161 across all 20,480 conformations produced by

the MCMC (Figure 5D), which ranged from 2.63% (sub-region 5)

to 12.94% (sub-region 2). Next we investigated the mixing of

Las17, which functions in actin branching and is functionally

coupled to Myo5 [27]. In all sub-regions, Myo5 and Las17 mixing

Table 2. Accessory proteins identified in an extended Arp2/3 complex by Tassarov.

protein S.c. homolog function

WASp Las17 Actin nucleator

Myosin I Myo5 Type I myosin associated with branched actin filaments

Sla1 Adaptor protein that links actin to clathrin in endocytosis

Hip1/R Sla2 Adaptor protein that links actin to clathrin in endocytosis

Lsb3

End3

Amphiphysin Rvs161 Required for membrane scission during endocytosis

Amphiphysin Rvs167 Required for membrane scission during endocytosis

YNR065C Uncharacterized

Gyl1 GAP with a role in exocytosis

Sec4 Involved in exocytosis

doi:10.1371/journal.pcbi.1003654.t002
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was greater than 50% (mean; 66.6%) while Rvs161 and Las17

mixing was ,31% (mean; 20.19%). This analysis is in agreement

with asymmetry observed between the two conformational states

of the protein complex (clusters 1 & 2) illustrated in Figure 5A,B.

We hypothesize that the actin branching (Myo5) and scission

functions of the core+7 extended complex are spatially distinct.

The complete CF analysis is given in Supplemental dataset S2.

Identifying activity states through biased motion
By using MCMC simulations to generate conformation

states, our conformational states represent an ensemble of

conformations with similar scores, close to a local minimum.

Embedded within these conformational states are conforma-

tions that are undergoing diffusion and exchange relative to

the local maximum scoring state. The diffusional search space

for each protein within a given conformational state is

determined by a set of attractors (interacting proteins) and

repressors (non-interacting proteins). Therefore, it is expected

that proteins are continuously undergoing biased motion

within a simulation. By determining the direction of the biased

motion, we create a directed network of proteins moving in

relation to one another. This information is useful for

generating hypotheses regarding the dynamic outcomes of

regulatory inputs to a macromolecular complex.

Figure 4. A: The experimental DHFR-pca interaction network. Arp3 was not included in the Tassarov et al. analysis and DHFR-pca edges are
not available. Edges for Arp3 are based in predictions from the Arp2/3 structure (blue) and protein interaction data from BIOGRID (pink). B: Principal
Component Analysis (PCA) was performed on the set of all conformations to project each conformation on to the two first principal components.
Two clusters are formed: major (top) and minor (bottom). C: Biplot for the PCA. The biplot creates a visual representation of the contribution of each
variable to the first two principal components. The length and direction of each line associated to each variable indicates its importance in the
separation of the data. The PCA landscape indicates the presence of 5 different sub-regions. D: PCA scores were grouped in to a 2D histogram with
sub-regions indicated. In parenthesis: number of conformations in sub-region.
doi:10.1371/journal.pcbi.1003654.g004
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We estimated the motion of protein ensembles (i.e. ensemble of

positions sampled by the MCMC for a specific protein) by fitting a

Gaussian distribution to each ensemble, and quantify the bias by

calculating the skewness of the distribution. First, we discretized

the conformational space into
ffiffiffiffiffiffi
N3
p

bins (
ffiffiffiffiffiffi
N3
p

bins per axis),

where N is the number of conformations, and built a 3D histogram

storing frequencies of occurrence of a protein in this space. Then,

we used Least-Squares minimization techniques to fit a Gaussian

distribution, and used the eigenvector associated with the highest

eigenvalue of the covariance matrix to determine the axis of

motion (Figure 6A).

To determine the orientation of the motion, we projected the

center of mass of proteins (PCOM) on this axis and estimated the

asymmetry of the distribution by calculating the skewness value.

The sign of this value was used to determine the orientation of the

motion (Figure 6B). Then, to identify attractor(s) that may

influence the movement of the protein of interest (POI), we

projected the mean of each fitted Gaussian on to the main

eigenvector of the POI. The POI is said to be moving towards the

projected protein that is closest to the tip of the eigenvector

(Figure 6B, inset).

Activation of the Arp2/3 complex by WASp/Las17 has been

studied at the level of conformational changes in the seven-protein

core structure. Reconstituted Arp2/3 complexes composed of

budding yeast proteins revealed strong similarity to the mamma-

lian 1K8K structure [28]. In both cases binding of WASp/Las17

occurs at a cleft between Arp2 and Arp3, and shifts the overall

conformation of the complex from open (inactive) to closed

(active)[28]. We hypothesized that activation of the core Arp2/3

complex would be represented by two criteria; directed diffusion of

Arp2 and Arp3 towards each other, and directed diffusion of

Las17 towards Arp2 and Arp3 (Figure 6C). These criteria were

best satisfied by conformations in sub-region 1 of cluster 1. For

sub-regions 1-4, a random sample of 200 conformations is shown

(Figures 6D,E). Arp2 and Arp3 exhibit extensive mixing in sub-

region 1 (Figure 6D) and Las17 diffuses towards both Arp2 and

Arp3, with a skew 2-fold larger than in sub-regions 2-5 (Figure 6F).

In sub-regions 2-5, Las17 diffuses away from Arp2 and Arp3

Figure 5. Visual representation of 3-dimensional complex conformations within cluster 1 (A) and cluster 2 (B). Distributions of Myo5,
Las17 and Rvs161/7 show the most striking conformational changes across the two clusters. Green: Myo5, Dark blue: Las17, Red: Rvs161/167Blue-
grey: Core+7; composed of the seven core proteins of the Arp2/3 complex and adaptor proteins Sla1/2, Lsb3, End3, Gly1, Sec4 and the expression
product of YNR065C. Symmetry breaking within the extended complex suggests branching versus scission complexes. C: Contact frequency is used
to quantitatively assess functional domains and spatial relationships amongst components, typically using a resolution of 20 nm. D: Contact
frequency demonstrates symmetry breaking of Myo5 and Rvs161/167, and a Myo5 bias in the distribution of Las17.
doi:10.1371/journal.pcbi.1003654.g005
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Figure 6. Proteins experience directed diffusion throughout a single MCMC simulation as a consequence of the set of attractors
and repressors. A: The axis along the path of directed motion is expected to have the highest variance. Using the covariance matrix from the fitted
Gaussian for the Protein of Interest (POI), the eigenvector (EV) with the largest absolute eigenvalue (EV1) forms the axis along which diffusion is
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(Figure 6F), with the most ‘‘open’’ Arp2-Arp3 conformation in

sub-region 4 (Figure 6E,F).

A third criterion for Arp2/3 activation by Las17 is its

interaction with Sla1. Sla1 inhibits Las17 and restrains actin

polymerization during critical steps in membrane scission [20].

Complex conformations where Las17 and Sla1 distributions do

not overlap are expected to be representative of complexes

active in actin polymerization and branching, and are

observed in sub-region 1 (Supplementary dataset S3). Based

on three criteria, we propose that sub-region 1 (1057

conformations of 12,083) contains active conformations of

the Arp2/3 complex. We suggest that only a small sub-

population (,8%) of the conformations embedded in the

DHFR-pca dataset represent complexes that are active in actin

polymerization and branching.

Arc19 and Arc35 are core components of the Arp2/3

complex that acts as scaffolds that maintain the core structure,

while Arc15 contributes to the association of Arp2 and Arc40

alone [29]. Arc15 is also thought to be required for activation

of the complex as a consequence of its association with Las17

[30]. Arc15 is not required for complex stability but rather

links the core complex to its regulators (Figure 7A). This

peripheral role of Arc15 is consistent with the DHFR-pca edges

detected in [1], which show PPIs with Arp2 and Arc40 but not

other core proteins with carboxyl termini located within 5 nm

(Figures 4A and 7B). We hypothesized that these are true

negatives, reflecting transient interactions between Arc15 and

core proteins in living cells. Arc15’s interaction with Las17,

Myo5, Rvs161 and Sla2, which binds to Rvs161 and promotes

membrane scission, are consistent with Arc15 serving as a

tether for effector proteins that transiently couple to the Arp2/

3 complex (Figure 7C,D). Our analysis of directed diffusion

suggests Arc15 frequently moves towards accessory proteins

such as Myo5, Rvs16. In sub-regions 1, 3 and 5, Arc15 diffuses

randomly relative to Arc2 and Arc3 but towards effector

proteins; Myo5 in sub-region 1, Rvs161 in sub-region 3 and

both Myo5 and Rvs161 in sub-region 5 (Figure 7C). Consistent

with a role as a tether, Arc15 moves towards the core protein

occurring. B: Diffusion is occurring either in the direction of the EV or in the opposite direction. The long tail of the distribution determines the
direction of diffusion, which can be calculated from the skew of the distribution. C: Activation of the Arp2/3 complex by Las17. Arp2 and Arp3 move
towards each other, and Las17 moves towards (and binds) to Arp2 and Arp3. Sub-region 1 contains conformations that are consistent with Arp2/3
activation. D: Visualization of sub-region 1 Arp2, Arp3 and Las17 conformations. E: Visualization of Arp2, Arp3 and Las17 conformations in sub-regions
2-5. F: Directed diffusion amongst Arp2, Arp3 and Las17. Arrow length represents diffusiveness (EV1) relative to the center of mass (COM; circles) of
the distribution of conformations for each protein. Numerical value is the skew, or direction of diffusion. Higher values correspond to increasing bias.
In sub-region 1, Arp2 and Arp2 move towards each other and Las17 moves towards Arp2 and Arp3.
doi:10.1371/journal.pcbi.1003654.g006

Figure 7. Arc15 bridges Arp2/3 core proteins and accessory proteins/regulators. A: Arc15 interacts with several accessory proteins (Las17,
Myo5, Sla2 and Rvs161) and Arp2, but not other core proteins. B: Distance/edge matrix for core proteins. C: Arc15 exhibits ‘‘outward’’ directed
diffusion towards Myo5 or Rvs161. D: Direct diffusion towards core proteins is correlated with a bias to Las17.
doi:10.1371/journal.pcbi.1003654.g007

Prediction of Dynamic Protein Complexes

PLOS Computational Biology | www.ploscompbiol.org 10 May 2014 | Volume 10 | Issue 5 | e1003654



Arc19 (sub-region 4) or Arp3 (sub-region 2), and is an attractor

of Las17 (Figure 7D). Our analysis suggests the absence of

DHFR-pca interactions between Arc15 and other core Arp2/3

proteins is a reflection of its interactions with highly diffusive

accessory proteins.

In summary, our analysis suggests that MCMC-PCA2 is a

useful method for extracting protein complex conformations

representing subpopulations of protein complexes embedded

within pca-derived datasets. We applied MCMC-PCA2 to the

Arp2/3 complex, and analyzed the results of our simulations.

As with any modeling approach, interpretations of the data are

open for debate and represent hypotheses rather than

conclusions. Finally, the quality/completeness of the input

data influences the predicted diffusional behavior of the

complex as well as the predictive power of the method. The

user must remember that the model predictions for the

behavior of the complex are limited to the available input

data, and as with any PIN should not be assumed to be

complete or accurately represent the complex as it exists in a

living cell. Nonetheless, in the absence of experimental data,

computational methods such as Coev2Net [23] could be used

to predict missing physical constraints.

The upper bound for interaction between surfaces of

interacting proteins is a physical constraint that has been

experimentally determined for the DHFR-pca [1]. The DHFR-

pca has been used as a molecular ruler through the implemen-

tation of several linker lengths with an extended length of 2, 4

or 12 nm (Gly4-Ser)N, where N is 1,2 or 6) [31]. This assay was

able to detect the difference in spatial separation of two forms

of the erythropoietin receptor (EpoR) dimer. In the absence of

ligand, the distance between the EpoR subunits’ COOH-

termini is 7.3 nm, predicting that only DHFR-pca linkers with

a combined extended length . 7.3 nm will consistently detect

the interaction. Implementation of the (Gly4-Ser)6 linker

(24 nm) resulted in the detection of ,100% of EpoR. The

(Gly4-Ser)2 linker (8 nm) detected a fraction of EpoR and

,100% of EpoR bound to ligand [31]. The user must view the

knowledge-based potential we use to model surface to surface

contacts as an approximation of the true physical constraint,

which should be further interrogated experimentally to test

predictions of the MCMC-PCA2 model. It would also be

theoretically possible to integrate in our framework a force

field modeling the physical interactions between the proteins in

the complex. Although it is out of the scope of this study, such

extension has the potential to improve the accuracy of the

model prediction.

MCMC-PCA2 can be a powerful hypothesis generation tool,

as the ability to visualize and explore conformations gives the

user insight into the conformations that protein complexes

adopt in vivo, even when there is little to no structural

information. Structural information is indeed important, and

future development will include structural information. This

method could also be applied to the analysis of PINs built using

pair-wise interactions detected by other spatially defined and

dynamic methods such as split-ubiqutin [32], Forster Reso-

nance Energy Transfer [33] and Cross-linking Mass Spec-

trometry [34–36]. In the case of the Arp2/3 PIN, our findings

shed light on the spatial and functional organization of a highly

complex and dynamic multi-protein complex; with the

prediction of the asymmetric distribution of proteins that

perform actin polymerization/branching and membrane scis-

sion, a sub-population of active Arp2/3 conformations and

finally unexpected insight to the dynamic association of Arc15

with the Arp2/3 complex and it’s regulators. Our method

extends the powerful DHFR-pca and OyCD-pca approaches for

building PINs by providing a means to predict meta-states and

to visualize and interrogate diffusional space among ensembles

of proteins in living cells.

Supporting Information

Dataset S1 PIN edges for the extended Arp2/3 complex.

Binary interaction matrix for the 18-member extended Arp2/3

complex used in the study. A 2-dimensional representation of

the matrix is shown in Figure 4A. All edges are based in

interaction data with the exception of those for Arp3 are based

in data from [1]. Edges for Arp3 are based on protein-protein

interaction data from BIOGRID (Las17, Myo5, Arc40) or

from the Arp2/3 PDB structure 1K8K (Arp2, Arc35, Arc19,

Arc18, Arc15).

(XLS)

Dataset S2 Contact frequency; relates to Figure 5C,D. All

values for contact frequency (%) between protein distributions

for all 18 members of the extended Arp2/3 complex. CF is

provided for the 5 regions shown in Figure 4D at d = 8, 10 12, 15

or 20 nm.

(XLS)

Dataset S3 Protein bias, relates to Figure 6. Results for analysis

of random or biased diffusion of protein distributions in the 5

regions shown in Figure 4D.

(XLS)

Figure S1 Applying the knowledge-based potential. Toy

model: Assume A interacts with B, B interacts with C, while

A and C do not interact. An interaction occurs when the

surface-to-surface distance between two proteins is less than

8 nm. A-H: The weighing scheme used to assign probabilities

to the surface-to-surface between two interacting proteins

(Weibull distribution with c = 4, k = as shown). The number of

interactions of a protein determines the mean of the

distribution. As the number of interactions increases, the

mean of the distribution is shifted towards the 8 nm limit. This

weighting allows proteins with a large number of interactions

(i.e. hubs) to displace larger sub-complexes and also sample

conformations with smaller sub-complexes. I-J: For non-

interacting protein pairs, we allow for a small number of

experimental false negatives in our simulations by lightly

penalizing protein-pairs that are within the experimental

resolution of the Protein-fragment Complementation Assay.

(TIF)

Text S1 MCMC proof.

(PDF)

Text S2 Posterior sampling method (Metropolis-Hastings selec-

tion).

(PDF)
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