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Abstract

Amitraz is an acaricide that is widely used in apiculture. Several studies have reported that

in honeybees (Apis mellifera Linnaeus; Hymenoptera: Apidae), amitraz affects learning,

memory, behavior, immunity, and various other physiological processes. Despite this, few

studies have explored the molecular mechanisms underlying the action of amitraz on honey-

bees. Here, we investigated the transcriptome of honeybees after exposure to 9.4 mg/L ami-

traz for 10 d, a subchronic dose. Overall, 279 differentially expressed genes (DEGs) were

identified (237 upregulated, 42 downregulated). Several, including Pla2, LOC725381,

LOC413324, LOC724386, LOC100577456, LOC551785, and P4504c3, were validated by

quantitative PCR. According to gene ontology, DEGs were mainly involved in metabolism,

biosynthesis, and translation. Kyoto Encyclopedia of Genes and Genomes pathway analy-

ses revealed that amitraz treatment affected the relaxin signaling pathway, platelet activa-

tion, and protein digestion and absorption.

Introduction

Approximately 80% of flowering plants, including many crops, require insects to pollinate [1–

3]. Honeybees (Apis mellifera Linnaeus; Hymenoptera: Apidae) are the most important polli-

nators worldwide [4]. One-third of global food is linked to the pollination activity of honey-

bees [4]. In recent years, the substantial decline in apiculture has garnered much attention [5–

8]; however, the underlying reasons for this remain poorly understood. Many factors affect the

wellbeing of honeybees, including pathogens, pesticides, malnutrition and changing apicul-

tural practices [9–11]. Among these, pesticide exposure has been widely accepted to be the

major contributor to a decline in the honeybee population [10].

Honeybees are continuously exposed to agricultural pesticides, which are transported to

hives by foraging bees [10]. Direct application of acaricides within beehives to control Varroa
mites and other pests creates an extra pesticide burden on the bees [10]. Acaricides and pesti-

cides contaminate apicultural products such as honey, beeswax, and pollen [8, 12, 13].

The midgut of honeybee is an absorptive organ and involved in degraded chemical com-

pounds[14]. The epithelium, in particular, is responsible for detoxification of ingested
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xenobiotics[15]. Meanwhile, honey bee larvae exposed to sublethal concentrations of a broad

range of pesticides resulted in midgut cell apoptosis[16]. As the same time, the midgut is the

principal barrier to invasion of the honey bee for many pathogens [17].

Amitraz [1,5-di-(2,4-dimethylphenyl)-3-methyl-1,3,5-triaza-penta-1,4-diene] is a formami-

dine pesticide used globally to control pests on animals and crops [18]. It is an acaricide and

mainly acts on the central nervous system of ectoparasites by interacting with octopamine

receptors, causing lethal and sublethal effects [19]. In the apiary, beekeepers can control Var-
roa mites by fumigation of beehives with amitraz, but it results in contamination of honey

stored in combs[20]. Amitraz does not persist in the hive environment [21], but its metabolite

N-(2,4-dimethylphenyl)-N0-methylformamidine can accumulate and has been found in wax,

pollen, and inside the bees themselves [13]. Moreover, acute exposure to amitraz also can kill

honeybee larval midgut epithelial cells [22]. Amitraz also affects learning, memory [23, 24],

immunity [25] and sensory organs [26] in honeybees. In addition, a recent study reported that

amitraz affected the immune system of the queen [27]. Amitraz stress leads to increase gluta-

thione S-transferases activity in the larval instars, pupae, newly emerged bees and nurse bees

[28].

Despite the adverse effects of amitraz on honeybees, the relevant molecular mechanisms

remain poorly explored. In this study, we conducted high-throughput RNA sequencing

(RNA-Seq) analyses to investigate honeybee transcriptomes after exposure to 9.4 mg/L amitraz

for 10 d, a subchronic level. Differentially expressed genes (DEGs) were identified and ana-

lyzed. Our aim was to help understand the molecular mechanisms underlying the action of

amitraz to elucidate reasons for the decline in honeybee populations.

Materials and methods

Honeybee rearing

The honeybees were obtained as previously described [29, 30]. Two frames with sealed broods

nearing adult emergence were collected from an apparently healthy colony at the Institute of

Apiculture Research, Anhui Agriculture University, Hefei, China. The population had not

been exposed to pesticides. The frames were held in darkness at 35 ± 1˚C with relative humid-

ity (RH) 50% ± 10%. Newly emerged honeybees were then placed into wooden cages (11 × 10

× 8 cm) in darkness for 2 d (28 ± 1˚C, RH 60% ± 10%). Throughout the experimental period,

bees were fed sufficient fresh pollen and 50% (w/v) sucrose-water solution. Dead bees were

removed daily.

Amitraz treatment

We followed previously reported methods by Shi et al. with some minor modifications[31].

The median lethal concentration (LC50) of amitraz to honeybees is 94 mg/L [32]. Herein we

used amitraz(99% purity) which was obtained from aladdin company(Shanghai, China) at a

sublethal concentration (9.4 mg/L). A stock solution of amitraz (1000 mg/L) was prepared in

acetone. Working solution (9.4 mg/L) was prepared by dissolving the stock solution in 50%

sucrose-water solution. Sucrose–water solution added the equivalent acetone without amitraz

as a negative controls.

Three-day-old bees were used for assays (45 bees/replicate, three replicates/treatment).

After 10 d, all bees were collected and placed at 4˚C for 5 min to anesthetized them; the bees

were then dissected on ice, using liquid nitrogen to flash freeze the sample and the midgut was

removed and stored at −80˚C.
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RNA extraction, library preparation and sequencing

Ten midguts from each replicate were pooled for RNA extraction using TRIzol reagent (Invi-

trogen, Carlsbad, CA, USA). RNA concentration was quantified and RNA integrity verified.

Sequencing libraries were generated using a NEBNext Ultra RNA Library Prep Kit for Illumina

(NEB, CA, USA) following the recommended protocol; 3 μg RNA from each sample were

used to prepare the library. Index codes were added to link sequences with the sample from

which they originated. mRNA was purified from total RNA using poly-T oligo-attached mag-

netic beads. mRNA was fragmented in 5× NEBNext First Strand Synthesis Reaction Buffer at

elevated temperature. First strand cDNA was synthesized using random hexamer primers and

M-MuLV Reverse Transcriptase (RNase H). Second strand cDNA was synthesized using DNA

Polymerase I and RNase H. Overhangs were blunted using exonuclease/polymerase. 30-ends of

DNA fragments were adenylated and ligated with NEBNext Adaptors. DNA fragments (150–

200 bp long) were selected by purification using an AMPure XP system (Beckman Coulter,

Beverly, MA, USA). USER Enzyme (3 μL; NEB) was incubated with the size-selected, adaptor-

ligated cDNA at 37˚C for 15 min, then 5 min at 95˚C. PCR was performed with Phusion

High-Fidelity DNA polymerase, universal PCR primers. The amplicons obtained were purified

using the AMPure XP system, and library quality was assessed on an Agilent Bioanalyzer 2100.

Clustering of the index-coded samples was performed on a cBot Cluster Generation System

using the TruSeq PE Cluster Kit v3-cBot-HS (Illumina). Then, the library preparations were

sequenced (Illumina HiSeq 4000); 150-bp paired-end reads were generated.

Read processing

Raw reads (FASTQ) were initially processed using in-house Perl scripts. Clean reads were

obtained by removing low-quality reads, and those containing adapter sequences or poly-N.

All downstream analyses used high-quality clean reads. At the same time, the Q20, Q30, and

GC contents were calculated. The index of the honeybee genome (NCBI: assembly Amel_-

HAv3.1) was built using Bowtie v2.2.3, and reads were aligned to the genome using TopHat

v2.0.12. HTSeq v0.6.1 was used to count read numbers mapped to each gene.

Analysis of differential expression

Differential expression analysis used the DESeq R package v2.15.3. The resulting P-values were

adjusted using the Benjamini and Hochberg approach for controlling false discovery rate;

genes with adjusted P-value<0.05 were considered to be differentially expressed. Gene ontol-

ogy (GO) enrichment analysis of DEGs was performed using the GOseq R package (gene

length bias was corrected); GO terms with corrected P-values <0.05 were considered signifi-

cantly enriched by DEGs. For Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway

analysis, we used KOBAS to assess the statistical enrichment of DEGs.

Real-time quantitative PCR (qPCR) analysis

We selected seven DEGs identified following RNA-Seq (LOC725381, CYP4C3, LOC41332,

Pla2, LOC724386, LOC100577456, and LOC551385) for verification by qPCR analysis. RpS5
and β-actin was used as the reference gene, and all the primers used were given in Table 1. We

used 0.5 μg of total RNA (same as the total RNA for RNA-seq) for each sample. ReverTra Ace

qPCR RT Master Mix Kit (Toyobo, Osaka, Japan) and a SuperReal PreMix Plus (SYBR Green)

Kit (TIANGEN, Beijing, China) were used to obtain cDNA and perform qPCR, respectively.

The relative expression levels of genes was calculated using the 2−ΔΔCt method [33]. Primer

sets are listed in Table 1. Student’s t-test was used to assess differences in gene expression levels
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between amitraz-treated bees and controls. We used three replicates per group for qPCR

validation.

Results

Survival

As shown in Fig 1, the average survival rate on day ten for the forager bees exposed to 9.4 mg/

L amitraz and control of 50% sucrose-water solution were 77.8% and 88.9%, respectively.

There were no significant differences among all treatments (Log-rank χ2 = 2.024, df = 1,

P = 0.1548; Fig 1). The 9.4 mg/L amiteaz is a sublethal concentration.

Table 1. Primer sequences.

Genes Primer Sequences (5’~3’) amplification efficiency (%)

LOC725381 Forward: CTAACCGCATTTCCCTTT 95.6

Reverse: ATTCCGCATACAACAACG

CYP4C3 Forward: ATTTGTCTTGCGATGAGC 97.8

Reverse: ACGACGAAACAGTAGGGA

LOC413324 Forward: ATTGGCGGCACTCCTGAT 101.5

Reverse: TCCACGGGAAGGCGATTA

Pla2 Forward: GCGACGACAAGTTCTATGAT 95.9

Reverse: GTAGTGAAGACAACGACCCTC

LOC724386 Forward: CATTTTGTTCTGGGAGTGGGT 96.8

Reverse: CGTATTTGCGGTGCTCTTCAT

LOC1100577456 Forward: CGTTCTCCTCGCTTATACCGT 100.4

Reverse: GAATGATTTCAGCCCTCCACT

LOC551385 Forward: CTTGCTGCCCTCCCGAAACTC 103.7

Reverse: CGAGAACACGCCGCAGAAAAG

RpS5[34] Forward: AATTATTTGGTCGCTGGAATTG 99.5

Reverse: TAACGTCCAGCAGAATGTGGTA

β-actin[35] Forward: TGCCAACACTGTCCTTTCTG 95.2

Reverse: AGAATTGACCCACCAATCCA

https://doi.org/10.1371/journal.pone.0228933.t001

Fig 1. Survival of forager bees subjected to chronic exposure to field-realistic concentrations of amitraz after 10 d.

https://doi.org/10.1371/journal.pone.0228933.g001
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Raw read processing and quantitative gene expression

Six libraries were created from amitraz-treated bees and controls: amitraz-1, amitraz-2, ami-

traz-3, control-1, control-2, and control-3, which generated 46588584, 38742446, 39577344,

42787014, 47048748, and 44719946 usable reads, respectively. The Q20 were 99.97%, 99.97%,

99.97%, 99.97%, 99.97% and 99.97%, respectively, while the Q30 were 97.04%, 97.06%, 96.99%,

97.00%, 97.30% and 96.93%, respectively. Q20, Q30, and GC contents were listed in S2 Table.

After mapping to the reference genome (NCBI: assembly Amel_HAv3.1) and junction data-

base, 44944558, 37354986, 38094470, 41341014, 45468272 and 43453530 total mapped reads

were acquired, respectively. The numbers of uniquely mapped reads were 27182392,

21407197, 24815509, 26929339, 28752629 and 27107676 respectively. Among these unique

reads, 57.31%–65.14% were mapped to exons (S1 Table). The sequencing data are available in

the SRA database (https://dataview.ncbi.nlm.nih.gov/object/PRJNA593612?reviewer=

elfpv4vmb047ik7k9efhmla825) of the NCBI system.

The average number of genes expressed in the treatment and control groups was 11410 and

11303, respectively; 11034 genes were expressed in both groups (Fig 2).

In each library, 9.91%–11.74% of reads had reads per kilobase per million mapped reads

(RPKM) values of<0.1; 9.76%–10.98% of reads had RPKM values of 0.1–0.3; 36.58%–37.69%

of reads had RPKM values of 0.3–3.57; 19.12%–20.62% of reads had RPKM values of 3.57–15;

11.25%–12.29% of reads had RPKM values of 15–60; and 9.41%–10.07% of reads had RPKM

values of>60 (S3 Table). Thus, a few genes were expressed at very high levels, but most were

expressed at low levels, indicating that the distribution of our gene expression dataset was

normal.

DEGs, GO enrichment analysis, and KEGG pathway analysis

Overall, 279 DEGs were detected in honeybees exposed to 9.4 mg/L amitraz for 10 d: 237

(84.9%) were upregulated and 42 (15.1%) were downregulated (Fig 3 and S4 Table). S5 Table

lists the 23 most significantly differentially expressed genes; of these, one was downregulated

and 22 were upregulated. Fig 4 shows the 30 most enriched GO terms. In GO classification

“biological process”, most DEGs were involved in translation and metabolic and biosynthetic

processes. In category “cellular components”, most DEGs were associated with the ribosome.

Finally, considering classification “molecular function”, most DEGs were enriched in struc-

tural constituents of the ribosome, structural molecule activity, and oxidoreductase activity.

In total, 135 DEGs (116 upregulated and 19 downregulated) were mapped to 67 KEGG

pathways, 10 of which were significantly enriched (Table 2).

qPCR analysis

To validate our RNA-Seq data, seven DEGs (LOC725381, CYP4C3, LOC41332, Pla2,

LOC724386, LOC100577456, and LOC551385) were checked by qPCR. Consistent with our

sequencing data, LOC724386 was downregulated in amitraz-treated bees, while LOC725381,

CYP4C3, LOC41332, Pla2, LOC100577456, and LOC551385 were upregulated (Fig 5) (The ref-

erence gene is RPS5 and β-actin, LOC725381: t = 18.978, df = 2, P = 0.0276; CYP4C3: t = 3.165,

df = 2, P = 0.0258; LOC413332: t = 15.623, df = 2, P = 0.0262; Pla2: t = 15.812, df = 2,

P = 0.0063; LOC724386: t = −19.756, df = 2, P = 0.0095; LOC100577456: t = 8.232, df = 2,

P = 0.0092; LOC551385: t = 4.551, df = 2, P = 0.0226).
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Discussion

Herein, we exposed honeybees to 9.4 mg/L amitraz for 10 d, which led to the identification of

279 DEGs (237 upregulated and 42 downregulated genes) in the honeybee transcriptome. In

order to further study the metabolic pathways influenced in honey bees after amitraz exposure,

91 detailed related pathways of the differential genes were constructed using KEGG pathway

analysis. Among these, four pathways, relaxin signaling pathway, platelet activation, protein

digestion and AGE-RAGE signaling pathway in diabetic complications were extremely signifi-

cantly affected (P<0.01). Previous reviews have showed that a relaxin was a factor communi-

cating abnormal growth status of Drosophila larval imaginal discs to the neuroendocrine

centers that control the timing of the onset of metamorphosis.[36, 37]. Herein, we found that

the relaxin signaling pathway were activated in honeybees after exposure to amitraz, which

indicates that amitraz potentially influenced developmental processes of honeybees. To facili-

tate feeding, certain hematophagous invertebrates possess inhibitors of collagen-induced

Fig 2. Average number of genes specifically expressed in amitraz and control libraries. Shown as the number of genes expressed in each class.

https://doi.org/10.1371/journal.pone.0228933.g002

PLOS ONE Response of honeybees to amitraz

PLOS ONE | https://doi.org/10.1371/journal.pone.0228933 March 6, 2020 6 / 15

https://doi.org/10.1371/journal.pone.0228933.g002
https://doi.org/10.1371/journal.pone.0228933


platelet aggregation in their saliva, inhibited platelet aggregation need inhibit signal transduc-

tion necessary for platelet activation by collagen[38]. The hemocytes phagocytosis may play an

important role in the cellular immune responses in insects, and the platelet-activating factor

can influence phagocytosis of cells[39]. In our study, up-regulation of two genes (LOC113219
380 and LOC113219382) of Platelet activation pathway after exposure to amitraz (P<0.01),

indicating that amitraz might influence the honeybees immunity. Previous study indicated

that imidacloprid was involved in the intoxication of honeybees, it could compromise the via-

bility of the midgut epithelium and affected protein digestion and absorption[40]. Comparison

of transcriptome profiling between HearNPV-infected and control healthy Helicoverpa armi-
gera larvae during an early stage post-inoculation, KEGG analysis indicated an enrichment of

Fig 3. Volcano plot of differentially expressed genes in honeybees exposed to 9.4 mg/L of amitraz for 10 days. Genes with an adjusted P value of<0.05 (FDR

correction method) were considered to be differentially expressed. Red: upregulated genes in amitraz-treated bees; green: downregulated genes in amitraz-treated bees;

blue: no significant difference.

https://doi.org/10.1371/journal.pone.0228933.g003
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these differently expressed genes some pathways, including protein digestion and absorption,

proved that the DEGs participated in nutritional digestion and exhibited specific expression

patterns in a continuous time-course assessment[41]. In this study, we believe that in response

to amitraz challenge, honeybees could repair the damages by inducing the expression levels of

Fig 4. Gene ontology enrichment analysis of differentially expressed genes (DEGs) in honeybees exposed to 9.4mg/L amitraz for 10 days. Green bars: DEGs

enriched for biological process; orange bars: DEGs enriched for cellular components; purple bars: DEGs enriched for molecular function. � indicates that GO terms were

significantly enriched by DEGs (corrected P values of<0.05, FDR correction method).

https://doi.org/10.1371/journal.pone.0228933.g004

Table 2. The five significantly enriched pathways, corrected P-value< 0.05.

Pathways Pathway ID Genes number Corrected P-value

Relaxin signaling pathway ko04926 2 0.01

Platelet activation ko04611 2 0.01

Protein digestion and absorption ko04974 2 0.01

AGE-RAGE signaling pathway in diabetic complications ko04933 4 0.01

Amoebiasis ko05146 2 0.01

Cutin, suberine and wax biosynthesis ko00073 2 0.02

Cellular senescence ko04218 2 0.03

Leukocyte transendothelial migration ko04670 1 0.04

Taste transduction ko04742 1 0.04

D-Glutamine and D-glutamate metabolism ko00471 1 0.04

https://doi.org/10.1371/journal.pone.0228933.t002
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the protein digestion and absorption pathway. The study showed that six key pathways might

be associated with longevity of Drosophila including the AGE-RAGE-signalling pathway in

diabetic complications[42]. Comparison between control and Cr (VI)-treated samples of man-

tis shrimp, AGE-RAGE signaling pathway in diabetic complications were significantly

enriched[43]. In honeybees, AGE-RAGE signaling pathway in diabetic complications governs

the neural activity to drive the age-specific labor division[44]. In this study, expression levels of

four genes (LOC113219380, LOC113219382, Plc and LOC724607) of AGE-RAGE signaling

pathway in diabetic complications upregulated by exposure to amitraz (P<0.01), Chouquet

et al. clarified the role of Plc in Spodoptera littoralis olfactory transduction[45]. Our study sug-

gest that amitraz probably affected longevity, developmental processes and olfactory transduc-

tion of honeybees.

At the individual level, honeybees elicit both cellular and humoral innate immune

responses against extraneous substances [19]. Antimicrobial peptides (AMPs) are a class of

peptides with low molecular weight; they are encoded by specific genes and are important

effectors of natural immunity [46]. Many studies have reported that pesticides affect immuno-

competence by regulating the gene expression levels of AMPs in honeybees. For example,

exposure to imidacloprid caused most immune related AMP genes (encoding apidaecin, hyme-
noptaecin and defensin-1) to be downregulated in white- and brown-eyed pupae, but in adults

caused an increase in honey bee immune response[47]. Thiamethoxam treated honey bees

were further exposed to either thiamethoxam or Nosema, which caused AMP genes abaecin,

defensin-1 and defensin-2 to be upregulate[48]. In this study, AMP genes, like apidaecin

(Apid1), were induced in amitraz-treated bees, indicating that amitraz also triggers the

immune response in honeybees.

Among the identified DEGs, four serine/threonine-protein kinase (STK) genes were pres-

ent: STK CG31145, STK A2, STK PAKm, and STKMKNK1II. STKs are enzymes involved in

metabolism, cell differentiation, gene expression, disease resistance, and other processes [49,

Fig 5. Real-time quantitative PCR and RNA-seq analysis of LOC725381, CYP4C3, LOC41332, Pla2, LOC724386,

LOC100577456, and LOC551385 genes expression multiple in honeybees exposed to 9.4 mg/L of amitraz for 10

days. Reference gene were RPS5 and β-actin. Values represent means ± SEM. � indicates a significant difference in

comparison with controls (P< 0.05) and �� indicates a statistically significant difference in comparison with controls

(P< 0.01).

https://doi.org/10.1371/journal.pone.0228933.g005
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50]. STKs participate in stress resistance in insects [51]. In honeybees, STKs are related to cold

and heat stress [52, 53]. Herein, we found that the expression levels of STK CG31145, STK A2,

STK PAKm, and STKMKNK1II were upregulated by exposure to amitraz, which indicates that

they are potentially involved in conferring tolerance to amitraz.

Further, we found that two detoxification-related genes, CYP4C3 (encoding cytochrome

P450 4c3) and CaE-I1 [encoding carboxylesterase (CarE) clade I], were differentially

expressed. Cytochrome P450 monooxygenase (CYP) enzymes have been linked to insecticide

resistance (i.e., detoxification) or environmental response [54]. Many xenobiotics and pesti-

cides are metabolized by CYPs, such as pyrethroid lambda-cyhalothrin [55, 56], neonicotinoid

insecticides [57, 58], aflatoxins [59], and the organophosphate coumaphos [60]. Honey bee are

known to have the far fewer numbers of CYP family genes compared to other insects[61, 62],

and some subfamilies that have been analyzed include CYP6 and CYP9. The CYP6 subfamily

is insect-specific [54] and is involved in phytochemical metabolism [63]. The CYP9 subfamily

is responsible for the degradation of various classes of plant protection products [56, 57], such

as organophosphates, the pyrethroid cypermethrin, and chlorantraniliprole [64]. CYP9Q3 is

known to metabolize tau-fluvalinate, and CYP9Q1 and CYP9Q2 are responsible for degrading

bifenthrin [15]. However, the function of CYP4C3 has not yet been elucidated in honeybees. A

previous study used transcriptome sequencing and bioinformatic analysis to compare tran-

scription levels between a susceptible and resistant strain of Aedes aegypti; it was reported that

the expression of genes such as CYP4C3 were significantly upregulated in resistant strain, sug-

gesting the existence of a potential relationship between the expression of genes participating

in metabolic processes and insecticide resistance [65]. CarEs include a group of enzymes

involved in endocrine control, detoxification, and metabolism of nonpolar carboxyl hydrolases

[66–68], such as malathion [66], methyl parathion [69], dichlorvos [70], and thiamethoxam

[71, 72]. CarE has six isoforms in A. mellifera [73]; three isoforms (CarE1, CarE2, and CarE3)

are involved in the metabolism of pesticides [74]. For example, CarE1 is directly involved in

the detoxification of imidacloprid [71]. In the current study, the expression levels of CYP4c3
and CaE-I1 were upregulated by exposure to amitraz, indicating that these genes may be

involved in amitraz degradation in honeybees.

Among the identified DEGs, genes encoding the protein Big Brother, fibrillin-2, Ral

GTPase-activating protein, and Brachyury protein are vital for the growth and development of

insects. An earlier study reported that Big Brother proteins are required during Drosophila
development [75], and the fibrillin-like protein AD10 was found to affect wing morphogenesis

in Bombyx mori [76]. The small GTP-binding protein Ral was reported to control the cytoskel-

etal structure required for cell shape changes during Drosophila development [77], and Bra-

chyury is known to regulate gastrulation in Drosophila [78]. Our data show that expression of

genes encoding these four proteins was upregulated in response to amitraz treatment. A previ-

ous study found that acute exposure to amitraz caused cell death in the honeybee larvae mid-

gut [22]. Thus, we believe that in response to amitraz challenge, honeybees could repair the

damage to the midgut by inducing the expression levels of the four aforementioned genes.
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