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Kermanshah, Iran, 2Department of Biotechnology, Faculty of Agricultural and Natural Sciences,
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The future GCC-connected environmental risk factors expedited the

progression of nCDs. Indeed, the emergence of AFs is becoming a global food

security concern. AFs are lethal carcinogenic mycotoxins, causing damage

to the liver, kidney, and gastrointestinal organs. Long-term exposure to AFs

leads to liver cancer. Almost a variety of food commodities, crops, spices,

herbaceous materials, nuts, and processed foods can be contaminated with

AFs. In this regard, the primary sections of this review aim to cover influencing

factors in the occurrence of AFs, the role of AFs in progression of nCDs, links

between GCC/nCDs and exposure to AFs, frequency of AFs-based academic

investigations, and world distribution of AFs. Next, the current trends in the

application of PPs to alleviate AFs toxicity are discussed. Nearly, more than

20,000 published records indexed in scientific databases have been screened

to find recent trends on AFs and application of PPs in AFs therapy. Accordingly,

shifts in world climate, improper infrastructures for production/storage

of food commodities, inconsistency of global polices on AFs permissible

concentration in food/feed, and lack of the public awareness are accounting

for a considerable proportion of AFs damages. AFs exhibited their toxic e�ects

by triggering the progression of inflammation and oxidative/nitrosative stress,

in turn, leading to the onset of nCDs. PPs could decrease AFs-associated

oxidative stress, genotoxic, mutagenic, and carcinogenic e�ects by improving

cellular antioxidant balance, regulation of signaling pathways, alleviating

inflammatory responses, and modification of gene expression profile in a

dose/time-reliant fashion. The administration of PPs alone displayed lower

biological properties compared to co-treatment of these metabolites with

AFs. This issue might highlight the therapeutic application of PPs than their

preventative content. Flavonoids such as quercetin and oxidized tea phenolics,

curcumin and resveratrol were the most studied anti-AFs PPs. Our literature

review clearly disclosed that considering PPs in antioxidant therapies to

alleviate complications of AFs requires improvement in their bioavailability,

pharmacokinetics, tissue clearance, and o�-target mode of action. Due

to the emergencies in the elimination of AFs in food/feedstu�s, further
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large-scale clinical assessment of PPs to decrease the consequences of AFs is

highly required.

KEYWORDS

Climate change, Aflatoxin, Phytophenolics, Cancer, Diabetes, Alzheimer’s disease,

Oxidative stress, Inflammation

Prologue

Nowadays, the estimations predict that the global demand

for intensified food production has been increased, and the

statistics are expected to be doubled by 2050 (1, 2). Providing

safe foods to nurture the world population requires a significant

improvement in crop cultivation systems, plant breeding

techniques, and the development of climate-smart crops (3).

GCC and environmental forces are two determinant factors

to influence crops’ sustainable growth. GCC influences crop

production practices in sophisticated modes (3, 4). Numerous

studies have been addressed the direct and indirect effects

of GCC on world food demand and agricultural systems

(5, 6). Accordingly, modification of cultivation systems and

increasing the susceptibility of crops to future climate are typical

direct effects of climate change. From a large-scale perspective,

affecting the world economy, food demand, and distributions

of incomes are indirect effects of climate change on world

societies (4).

Abbreviations: PPs, phytophenolics or polyphenols; HSA, human serum

albumin; AD, Alzheimer’s disease; DM, diabetes mellitus; nCDs, non-

communicable diseases; AFs, aflatoxins; GMO, Genetically modified

organisms; GM, genetically modified; N-flavonoids, non-flavonoids;

SOD, superoxide dismutase; OTA, Ochratoxin A, T1D, type 1 DM;

T2D, type 2 DM; EU, European union; US, United states; IARC,

international agency for research on cancer; ROS, reactive oxygen

species; RNS, reactive nitrogen species; BBB, the blood brain barrier;

CNS, central nervous system; NIF, neuroinflammation; AFB1-NIF, AFB1-

induced neuroinflammation; IL, interleukins; TNF, tumor necrosis

factor; IGF2, insulin-like growth factor-2; IGF-IR, IGF1 receptor; HCC,

hepatocellular carcinoma; MetSys, metabolic syndromes; WHO, world

health organization; GSH, glutathione; GST, glutathione-S-transferase;

GSH-Px, Glutathione peroxidase; MDA, Malondialdehyde; AST, aspartate

aminotransferase; ALT, alanine aminotransferase; GGT, gamma glutamyl-

transferase; KCs, Kup�er cells; INF-γ, Interferon gamma; TLRs, toll-like

receptors; MAPK, mitogen-activated protein kinase; MyD88, myeloid

di�erentiation primary response 88; CxCR4, C-X-C chemokine receptor

type 4; PI3K, phosphoinositide 3-kinases; AKT, protein kinase B; COX-

2, prostaglandin-endoperoxide synthase 2; iNOS, inducible nitric oxide

synthase; mTOR, mammalian target of rapamycin; Nrf2, nuclear factor

erythroid 2–related factor 2; HO-1, Heme oxygenase-1; STAT, signal

transducer and activator of transcription; AMPK, 5’ AMP-activated

protein kinase; JAK, Janus tyrosine kinase; NF-κB, Nuclear factor

Studies have shown that changes in climate humidity,

temperature, and precipitation patterns are associated with

the outbreak of some invasive fungal pathogens (7). The

uncontrolled growth of these fungi affects the quality and

quantity of crop yield, stored foodstuffs, grains, processed foods,

and herbaceous products (8). Studies highlighted the possible

health risks linked to fungal toxins to the human body (8). The

APF including Aspergillus, Fusarium, and Penicillium, are well-

knownmycotoxigenic fungal species with potentially fatal effects

on human and animal health (9). The occurrence of AFs in

food commodities depends on environmental factors such as air

temperature, humidity, CO2 levels, pH, susceptibility of foods

to contaminations, and improper harvest and storage of food

products (10, 11). According to scientific reports, nearly 25% of

global food supplies are contaminated with AFs, making them a

serious issue of concern for world nations’ health (12). AFs are

health hazardous environmental risk factors in the onset of liver

cancer, kidney failure, and gastrointestinal problems (13), in

turn, their health consequences depend on duration of exposure

and enzymatic/genetic alterations in target organs (14).

Poverty, hunger and contaminated foods are the foremost

health risk factors to threaten human life. Numerous studies

suggested that mycotoxins, including aflatoxins, ergot alkaloids,

ochratoxins, trichothecenes, zearalenone, and fumonisins, are

kappa B; CCK, cerebral creatine kinase; PKC, protein kinase C; CAT,

catalase; LDH, lactate dehydrogenase; TNFRs, TNF-α receptors; CK,

creatine kinase; AP, acid phosphatase; AChE, acetylcholinesterase;

ADA, adenosine deaminase; p-NF-κB, phosphorylated NF-κB; CYP,

Cytochromes P450; HBC/V, hepatitis B/C virus; PPI, protein-protein

interaction; HPLC, High-performance liquid chromatography; IAC,

immunoa�nity chromatography; LC-MS/MS, Liquid Chromatography

with tandem mass spectrometry; HPLC/FLD, HPLC with fluorescence

detector; LFIA, Lateral flow immunoassay; ME, metabolic engineering;

PBPs, PPs biosynthetic pathways; PAL, phenylalanine ammonia lyase;

MMPs, Matrix metalloproteinases; EGFR, epidermal growth factor

receptor; ERK, Extracellular signal-regulated kinase; FOX, fork-head box;

ALK, Anaplastic lymphoma kinase; JNK, c-Jun N-terminal kinase; VEGF,

Vascular endothelial growth factor; ROS1, Proto-oncogene tyrosine-

protein kinase; PPAR, peroxisome proliferator-activated receptors; IDO,

Indoleamine 2,3 dioxygenase; TIMP3, TIMP Metallopeptidase Inhibitor 3;

PDK, Phosphoinositide-dependent Protein Kinase; MUP1, major urinary

protein 1; GCC, Global climate change; GW, global warming; APF, AFs-

producing fungi.
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among the most lethal naturally occurring toxins (15, 16).

Characterization and elimination of mycotoxins in food/feed

items require specific technical and analytical methods (17).

Developed countries implemented strict regulatory gates to

control and monitor the occurrence of AFs in import/export

sites to reduce the health complications of these toxins (18). In

contrast, many people in low-income countries are at risk of

long-term exposure to AFs, resultantly this might increase the

progression of different cancers in these locations (19).

Studies have shown that natural products (e.g., PPs,

berberine, plant extracts, polysaccharides, etc.) can reduce the

toxicity and production of AFs (20, 21). PPs are a large

heterogeneous group of secondary plant metabolites, display

a wide range of biological activities, and are substantially

studied for their anticancer activities (22–24). The regular

consumption of PPs is associated with lower risks for developing

cardiovascular diseases, obesity, DM, cancer, stroke, and AD

(23–26), though this finding requires further well-designed

clinical validations. Global interest in PPs studies to alleviate

AFs health consequences has been increased during the past

decades. Preliminary studies showed that PPs can directly and/or

indirectly alter the possible toxicity effects of AFs in complicated

ways (27, 28). However, the molecular mechanisms underlying

PPs effects on AFs toxicity in the human body are still not

understood comprehensively, and scientific efforts are ongoing

to find out the health-promoting content of PPs against AFs.

In this regard, this review aims to summarize recent findings

on AFs and the application of PPs in alleviating AFs end effects.

Due to the strategic roles of antioxidant phytochemicals in

preventing human chronic diseases (29), and beneficial effects

of PPs in the cornerstone of therapeutic programs (30, 31), we

have followed five goals herein: (1) providing a comprehensive

insight on the association of GCC and the occurrence of

AFs; (2) characterizing the most potent anti-AFs phenolics;

(3) role of AFs in the onset of nCDs; (4) understanding anti-

AFs mechanism of actions of PPs; and (5) addressing the

current gaps regarding the large-scale application of PPs for

clinical applications.

Literature search strategy

Scientific databases including Scopus, PubMed, Google

Patents, and Scholar were separately searched to find relevant

papers using keywords such as “aflatoxin or human diseases,”

“aflatoxin B1/B2/G1/G2/M1,” “aflatoxin and GMO,” “aflatoxin

and diabetes,” “aflatoxin and cancer,” “aflatoxin B1 or chronic

diseases,” “aflatoxin or transcriptome,” “aflatoxin and/or

Alzheimer’s,” “aflatoxin and flavonoids,” “aflatoxin or

polyphenols,” “aflatoxin and/or stilbenes,” “aflatoxin and

curcumin,” “aflatoxin and/or epigenetic,” “aflatoxin and/or

plant extract,” “aflatoxin and/or crops,” “aflatoxin M1 and/or

foodstuff,” aflatoxin and/or spices,” “aflatoxin and climate

change,” “aflatoxin and/or temperature,” “aflatoxin and/or

CO2 levels.”

The outputs of searches were used to generate bibliometric

network using VOSviewer software (32). More than 20,000

papers (published from 1990 to 2021) were appeared in search

outputs. To unify the results, we compared the outcomes

together, thus the redundant papers with similar title or content

were deleted from search outputs. To interpret the statistical

output of literature searches, we used Scopus data to illustrate

the relevant graphs. We also used Cytoscape (ClueGo module)

software (33) to construct simplified protein-protein interaction

networks where it was needed. Because the exact binding

modes of all AFB1 metabolites into human serum albumin

(HSA) were not available in the literature, we used AutoDock

Vina tools (34) to generate the expected interactions. The

Protein-Imager software (35) was recruited to inspire some of

graphical illustrations.

General overview of AFs chemistry

Fungal AFs including B1(AFB1), B2(AFB2), M1(AFM1),

G1(AFG1), and G2(AFG2) are well-knownAFs in contaminated

crops, foods, dairy products, herbal materials, spices, and

processed foods (19, 36). AFs showed mutagenic, carcinogenic,

hepatogenic, teratogenic, and immunosuppressive toxicological

properties. The toxic properties of AFs depend on alteration

of enzymatic activity, modification of gene expression patterns,

epigenetics changes, and dysregulation of signaling pathways

(11–13, 37, 38).

Chemically, AFs can be classified into two main groups

including difuran-coumarin lactones (AFG1/2) and difuran-

cyclo-pentanones (AFB1/2 and AFM1/2) (39, 40). These fungal

toxins displayed a “CHO” molecular formula with a different

number of H/O atoms. Themolecular weight of AFs ranges from

312 to 330 g·mol−1. AFs displayed a colorful fluorescent pattern

under the UV light. In this respect, AFB1/2 showed a blue color

while AFGs displayed green color (39, 40) (Figure 1). To date,

more than 20 different AFs have been identified with moderate

to high toxicity effects on the human body (40). The evidence

suggests that AFs are potent carcinogenic toxins with potential

side effects on human liver organs and tissues (37).

The laboratory analysis of AFs identified several metabolized

AFs derivatives that rarely found in the human body (40).

The most abundant AFs derivatives found in human and

animal bodies are AFM1/2 metabolites-the derivatives of AFB1

metabolism in the liver (41). These AFs are widely found in milk

and milk-based products, and recently received much attention

from the literature due to their potential health problems for

consumers of dairy products (41). Studies have shown that

AFs are thermostable substances, therefore elevated temperature

might not destroy these mycotoxins (40). The toxicity content

of AFs is in the order of AFB1 > AFG1 > AFB2 > AFG2
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FIGURE 1

The chemical structure of well-known AFs (green box) and emerging mycotoxins (pink box); FB: Fumonisins B.
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(42). These mycotoxins have been considered as group I highly

carcinogenic substances by IARC (40, 43). No only structural

features of well-known AFs, but also the chemistry of emerging

toxins mainly produced by Fusarium species should be taken

into account because of their potential to outbreak and influence

the future food safety and security (44). For more details, the

chemistry and distribution of emerging mycotoxins have been

reviewed by Gruber-Dorninger and colleagues (45).

The upcoming GCC and future AFs
contamination risks

The GCC is becoming a serious concern, and being the

future driver of food safety and security (46). The expanded

worldwide industrial activities and the increasing rate of

world population are the two of the most crucial components

of countries’ climate modification (47–49). The outbreak of

invasive plant pests/pathogens, soil erosion, drought, erratic

rainfall patterns, GW, salinity, crop cultivation failure, shortage

of irrigation water, and reduction in the fertility of arable soils

are the foremost consequences of the GCC (47, 48, 50, 51).

Studies disclosed that GCC induces the occurrence of

plant fungal pathogens by providing appropriate environmental

requirements for their growth and development (52, 53). While

elevated temperatures and irregular precipitation patterns can

significantly reduce crop yield, the growing evidence suggests

that these climatic consequences also triggered the production

of AFs at the beginning of crops growing seasons (53).

The emerging evidence postulates that under at least +2 to

+5◦C climate temperature increase, maize and wheat crops

might prone to higher levels of AFs contamination (46).

Studies also demonstrated that APF tolerated a wide range of

temperatures, resultantly enabled these fungi to grow easily in

the production/storage sites of crops (54).

The GCC might support the growth and development of

APF in crop production sites (7, 55). The overgrowth of these

fungi leads to a rapid expansion of spores in the environment,

increases AFs contaminants level, ultimately leading to health

impacts on consumers (7, 54). Due to the increased universal

demand for food, the GCC intensifies crop cultivation and

production, in turn, might lead to the establishment of single-

crop cultivation systems (56). Additionally, underestimating

of crop rotation and plantation of susceptible crops may also

increase the risk of future AFs occurrence (57).

Different strategies have been applied to address the GCC

in advanced and developing countries (3, 54). These policies

mainly focused on improving breeding strategies (3) and

recruiting integrated and novel methods to control plant

pathogens (58). In contrast, farming systems in undeveloped

countries are almost entirely influenced by GCC (1). On such

occasions, traditional methods of crop cultivation, harvest, and

storage have mainly been followed by local farmers, these

may in turn be leading to the exacerbation of APF outbreak

(59). Although a variety of sophisticated methods have been

employed in developed countries for integrated control of

mycotoxin-producing fungi in food and feed (54, 60), the

outcomes, however, suggested that these methods were rarely

successful to completely reduce the occurrence of AFs (18, 61).

The emerging reports on the GCC demonstrated that GW

has begun to occur but the empirical data on how GW might

affect crops yield is markedly overlooked (62). Strategically,

GW and GCC might alter the distribution of plant pests and

diseases, resulted in a significant damage to crop production.

The literature suggests that pest-infested crops are prone to

AFs contaminants (63). Therefore, predicting the exact roles

of GCC on the prevalence of AFs relies the development

of accurate models to estimate the future damages of AFs

under GCC (64). Presently, mechanistic (65), empirical, and

hybrid models in predicting future economic costs of AFs

occurrence have been developed in Australia, the USA and

some European countries (64) while the lack of comprehensive

predictive models in less developed countries (e.g., Africa,

Middle-East, Latin America) might decrease the effectiveness of

such estimations in preventing future AFs production (64, 66).

Therefore, recruiting predictive models to simulate the

occurrence of AFs requires an in-depth knowledge of future

AFP-GCC interactions (67) to know where and how these

mycotoxins will be emerged in the target production/storage

sites (64, 66), which future crops are more susceptible to AFs,

and ultimately which future country-specific regulations must

be taken into consideration in order to better elimination of

AFs production. Indeed, in addressing modeling of future APF-

GCC interactions, it is also meritorious to highlight this note

that the contemporaneous predictive studies have been validated

in limited geographical regions, therefore it is imperative

to conduct large-scale multinational investigations for better

understanding of GCC impacts on future APF mycoflora and

global pattern of AFs distribution (68).

In this regard, Yu et al. reported that global temperature

modification has an impact on the prevalence of AFs

contaminants (62). According to the given model for simulation

of AFs occurrence based on corn phenology, it is believed that

some corn grown US states will experience an increased level

of AFs occurrence by 2031–2040 (62). On the contrary, this

estimation also postulated that under elevated temperatures AFs

might be inactivated, therefore, some the US counties might

experience lower level of AFs occurrence (62). Correspondingly,

other outcomes also suggested that water stress and elevated

temperatures are two determinant factors in changing the

relative expression pattern of structural genes (aflD, aflR)

involved in the production of AFB1, leading to higher

occurrence of this carcinogenic mycotoxin (67).

Scientists recruited high-throughput multi-omics

technologies to assess the impact of GCC on the production

of AFB1 (69). The outcomes unraveled that the elevated
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CO2 levels, as a consequence of GW, might alter aflR gene

expression in AFB1 biosynthetic pathway (69). In another

study, researchers simulated climate change condition to

investigate how it might influence the growth of A. carbonarius

and OTA production under elevated temperature/CO2 levels

(70). The results surprisingly displayed that the interaction

between elevated CO2 levels and temperature lead to the

up-regulation of velvet complex regulatory elements and OTA

biosynthetic genes in A. carbonarius. This finding suggests

that elevated CO2/temperature levels are two quintessential

factors in increasing the risk of OTA contaminants in grape-

based products (70). The outcomes from a similar study also

demonstrated that changes in temperature/CO2 levels in

stored coffee beans and coffee-based media attributed to OTA

production in A. westerdijkiae compared to A. carbonarius (71).

In another study, it was also reported that the GCC-

associated factors have differential impacts on AFB1 production

in pistachio nuts (7). In a case study conducted on maize

grown in Eastern Europe using different climatological models,

the estimations predicted that climate change can lead to

a probable increase in the occurrence of maize AFB1 and

cow’s milk AFM1 (72). Other studies on the effects of GW

on the occurrence of AFB1 and trichothecenes mycotoxins

in wheat and maize crops also suggested that the prevalence

of these hazardous mycotoxins is expected to increase as

consequences of the future GCC (46, 68). Although little is

understood on the effects of future GCC on mycotoxigenic

fungi growth and mycotoxins production, developing accurate

predictive models to characterize mechanistic interactions of

APF with climatological factors will provide a ground for better

controlling of these fungi (68).

It is estimated that economic losses due to the occurrence of

AFs are between $500 million to $1.6 billion for maize, peanuts

and other crops in the USA (73, 74). These obvious economic

costs, however, are associated with GCC and its impact on AFs

production (73). Another pivotal issue, that is crops grown in

low and northern latitudes might negatively or positively deal

with future GCC (44). In this regard, the evidence suggests that

low latitude regions will be suffered from consistent and negative

consequences of GCC compared to the northern regions where

its effects may be positive or negative (44).

Considering the relationship between GCC and increased

global demand for food, this might threaten the production of

certain crops such as maize using the available infrastructures.

In this respect, the occurrence of AFs and other mycotoxins

is expected to increase on such occasions (75). In spite of the

fact that the universal temperature may be rising above the

optimum condition for APF, it is pivotal to consider the threat

posed by emerging thermotolerant fungi that can produce novel

health hazardous toxins (76). Therefore, smart crop breeding for

developing resistance against both GCC/GW and APF might be

considered as an alternative scenario in managing the reduction

of AFs occurrence in food and feed (75).

In addition to financial losses to animal and agricultural

commodities, AFs-contaminated foods are leading to significant

clinical costs due to the side effects of long-term exposure to

these toxins for the human body (18). However, decreasing

milk production, reducing of crops quality, weakening

animal immune system, and many other demerits are few

examples of AFs financial burden for animal and crop

products (18). Various chemical and biological methods

have been suggested in controlling AFs-producing molds

(60, 77, 78), nevertheless, the evidence suggests that there

has been no efficient method to completely eliminate these

molds (60, 78, 79). It should be expected that the universal

quantity/distribution of AFs will probably be grown under

GCC/GW. Therefore, due to the upcoming future GCC,

systematic modification of crop cultivation practices, applying

crop rotation, developing climate-smart crops, set limits

to APF growth in production sites, modernizing crop

storage facilities, utilizing modern crop irrigation systems,

and increasing public awareness about the association of

climate change and AFs risks are influential scenarios to

reduce the occurrence of AFs under modified future climate

(Figure 2).

Studies have also highlighted the role of GCC in the

prevalence of nCDs such as cancer, MetSys, stroke, chronic

respiratory disorders, and cardiovascular diseases (80, 81). In

this regard, several investigations purported that the future

GW/GCC will highly increase exposure levels to GCC-

associated health hazardous risk factors (49, 66, 68, 72),

consequently leading to higher rates of global deaths (49, 81).

As discussed, AFs exposure will probably be growing in the

upcoming years owing to a significant modification in countries’

climate patterns (82), nevertheless, the current estimations

require further validations to address all gaps and challenges in

preparing world communities for future changes (68).

The co-occurrence of GCC-associated risk factors offering

synergistic effects on human health and the onset of nCDs (83,

84). Therefore, due to the complexity of interactions between

GCC/exposure to AFs (and other emerging mycotoxins) (85),

and the onset of nCDs (86), it is obligatory to establish country-

specific regulations to deal with the upcoming challenges (64)

and decrease the global burden of incurable human diseases.

While only 2% of global health funds allocated to treat

these diseases, the estimations predicted that the number of

people affected by nCDs have dramatically been increased

over the past decades (81, 87). Therefore, due to the lack

of specific international leadership to combat nCDs (81), the

increased exposure to AFs and other emerging mycotoxins

under countries’ climate change will worsen global health status,

particularly in low and middle-income countries (88, 89). In this

regard, to decrease the economic costs of AFs exposure and the

progression of nCDs, the possible threats of future GCC should

be taken into account in alleviating the health consequences of

AFs risks.
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FIGURE 2

The possible e�ects of GCC: (1) general side e�ects of GCC, (2) consequences of GCC on food security and public health, (3) the suggested

strategies to deal with future GCC, and (4) developing climate-smart crops as alternative way to decrease the occurrence of AFs and neutralize

the consequences of future GCC.

Increasing world studies on AFs

According to the Scopus statistics (https://www.scopus.

com/), the global studies on AFs have markedly increased

during the past few decades. The literature mining of scientific

databases showed that more than 20,000 papers have been

published on different classes of AFs from 1990 to 2021. As

depicted in Figure 3, the frequencies of studies on different

types of AFs metabolites displayed that most of these studies

had targeted AFs metabolites such as AFB1/2, AFG1/2, and

AFM1. Interestingly, the number of studies on AFM2 was lower

than other AFs metabolites during the investigated timeline,

and these investigations have increased from 2008 to 2021.

Accordingly, a large proportion of scientific studies on AFs

were conducted in field of agriculture and biological sciences,

followed by biochemistry, medicine, and chemistry, respectively.

These frequencies of studies on AFs displayed that these

mycotoxins received much attention from academia and clinical

sectors due to their health hazardous risks.

Evaluating the searched papers to highlight the top countries

for research on AFs showed that the USA, China, and India

were occupied the top ranks for studies on AFB1. In the case of

AFM1, the USA, China and Iran were the three top countries

to publish academic investigations on this aflatoxin. Indeed,

China, the USA, and Brazil published many articles on AFG1

and ranked first to third countries to conduct research in this

area. Interestingly, these results are in consistent with previous

outcomes on the frequency of global studies on AFs in which

the USA, China, and India were the top publishing sources

from 1998 to 2017 (90). These outcomes together suggest that

the global frequency of scientific studies on AFs has markedly

extended over the past few years. Evaluating and monitoring

academic publications on AFs can support researchers to

identify the critical gaps in these studies for improving current

regulatory policies, local and international awareness programs

and making political decisions to protect target consumers from

complications of AFs. Figure 4 shows a detailed representation

on the proportion of the top 10 countries to conduct studies on

different classes of AFs metabolites.

The review of literature unraveled that the conducted studies

on AFs can be specified in different clusters. The majority of

these studies targeted technical procedures for detecting and

monitoring AFs in food sources, crops, spices, dairy products,

nuts, and herbaceous products. Additionally, research interest in

characterization of AFs in vegetable oils has been increased over

the past 5 years. For example, a recent meta-analysis disclosed
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FIGURE 3

The frequency of studies on AFs metabolites from 1990 to 2021. Each plot represents the number of papers published on searched keywords

and the percentage of documents per subject area.

that vegetable oils such as sesame oil showed a differential AFs

contamination (91). In another study, vegetable oil samples

such as coconut oil was contaminated with different AFB1

concentrations (92). This indicates that consumption of such oil

samples may pose serious health risks.

Analytical methods such as HPLC, ELISA, TLC, HPTLC,

UHPLC, mass spectroscopy, and immunoassays were the most

frequent procedures used for diagnosing the AFs contaminants

in foods/feeds. Although the basic concept of these methods was

previously reviewed in several studies (93–95), however, a fast

and accurate method to characterize AFs in suspected sources

has not been reported. Miklós et al. reviewed recent trends in

developing accurate analytical/immunological measurements to

identify AFs in different food and feed items (94). According to

their finding, ELISA and LFIA are two promising methods to

quantify the minimum concentrations of AFs in food or feed

items. Indeed, IAC-clean up followed by HPLC-FLD is another

accurate system for AFs measurements (94).

Due to the co-occurrence of mycotoxins in food/feed

items, the currently applied diagnostic methods might

not appropriately detect different types of mycotoxins in

evaluated items, therefore, the application of LC-MS/MS

technique has been received much attention from academia

owing to its ability in multiplex identification of AFs (94).

As shown in Figure 5, a considerable number of studies

also highlighted the carcinogenic effects of AFs and

their role in the development of human cancers such as

liver and gastrointestinal tumors. Studies on biological

and chemical control of APF were also frequent among

screened investigations.

We also found that studies on the effects of AFs on human

and animal reproduction systems were increased during the past

two decades. This is an interesting topic because the evidence

suggests that AFs have negative impacts on reproductive organs

(96). Studies on the toxicity of AFs for animals and chickens

were also increased up to 5–10 folds over the past few

years. More interestingly, the frequency of intervention studies

using synthetic and/or natural compounds to alleviate the

complications of AFs were also grown during the past decade.

According to these statistical data, AFB1 and AFM1 were the

most studied AFs during the past decades, though studies on

AFB2, AFG1/2, and AFM2 were remarkably increased in the
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FIGURE 4

The proportion of academic investigations on AFs. For each class of AFs metabolites, the percentage of published studies has shown for the top

10 countries.

same time. Figure 5 highlights the major clusters for studies on

AFs using searched keywords in scientific databases.

Literature mining using available scientific resources

has also manifested that the risk assessment investigations

for characterization of AFs contaminants were dramatically

increased. As depicted in Figure 6, the detailed bibliometric

networks of studies on AFs unraveled that the carcinogenic

effects of AFB1 in inducing hepatocellular carcinoma were

significantly investigated. Interestingly, the outcomes showed

that the application of PPs (e.g., curcumin and resveratrol)

to alleviate health-related complications of AFs has increased

during the last 10 years due to the health-promoting effects

of these natural metabolites. In this regard, studies suggested

that antioxidant therapy might ameliorate the hepatotoxicity

of AFs metabolites, leading to lower health risks for cancer

development (97). As it is discussed in the next sections,

antioxidants are critical chemical agents provided the human

body with ability to protect both lipid and protein elements from

free radicals and oxidative agents (98). Therefore, considering

antioxidants as promising agents in the prevention of AFs

complications might decrease the deterioration of hepatic

cells and prevent the development of liver cancer, though

this claim requires further clinical assessment. Based on the

data discussed in this section, it can be concluded that in

which fields AFs have considerably studied and where they

have been ruled out in scientific investigations. Because AFs

are emerging health hazardous threats to the human society,

studies on the complications of these fungal toxins, developing

reliable medicines to decrease the toxicity of AFs and integrated

management of AFs in production/storage sites should be

increased to mitigate the quantity of AFs in food/feed items.

Prevalence of mycotoxins in
di�erent geographic regions

As discussed in the previous sections, the worldwide

occurrence of AFs depends on several factors such as

climate, the availability of standard crop/food storage facilities,

the awareness of local farmers, food processing methods,

post-harvest contaminations, and temperature and moisture

of post-harvest storage sites. Of all, air humidity and
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FIGURE 5

The bibliometric network of studies on AFs from 1990 to 2021 in scientific databases. As detailed in this figure, the majority of studies have been

targeted the technical methods to identify the AFs contaminants in suspected samples. Research on carcinogenic e�ects of AFs was also

occupied a large proportion of studies in this field.

temperature are two determinant factors to enhance the

emergence of APF (99, 100). In an interesting study, the

worldwide occurrence of several mycotoxins in feed has been

summarized (101). Accordingly, in some geographic regions,

the average concentrations of mycotoxin contaminants in

feed are considerably higher than other ones owing to the

imbalance distribution of these toxins. For instance, the highest

median concentration of AFB1 was reported for Sub-Saharan

Africa (23 µg/kg), South Asia (20 µg/kg), Southeast Asia (10

µg/kg), and East Asia (10 µg/k) (101). Fumonisins (B1, B2,

and B3) are other mycotoxins that pose high health risks

to the human societies. The highest median concentration of

fumonisins was reported for South America (1390 µg/kg),

Central America (929 µg/kg), and Sub-Saharan Africa (789

µg/kg) (101). Compared to other mycotoxins, fumonisins

showed a broader geographic occurrence. In contrast, OTA

displayed a domineering abundancy ratio in Central Asia (22

µg/kg) and South America (17 µg/kg), respectively (101).

Figure 7 represents the worldwide median concentration of five

mycotoxins found in feed in different geographical regions based

on information adopted from Gruber-Dorninger et al. (101).

Other studies have also highlighted the observed level of

AFs in different geographical regions (102, 103). The results

showed that the occurrence of AFs in various foods, cereals,

nuts, oilseeds and processed foods is inevitable and these

sources showed a differential level of contaminations with AFs

derivatives (102). According to these outcomes, the prevalence

of AFs in each region might be affected by local climate and the

abundancy of crops found in these regions (103, 104). Therefore,

it can be concluded that AFs are almost not equally distributed

in production/storage sites. Therefore, the construction of

predictive models for the occurrence of AFs during specific

seasons is helpful in identifying the contaminated food/feed

items to prevent the circulation of AFs in local and international

food chains (105, 106).

AFs contaminants in cereals and nuts

Over the past decades, studies on various food/feed items

to trace the fingerprint of AFs contaminants have been

increased (13). Cereals are most commonly cultivated in

the world, supporting human societies in reaching essential

nutrients in their diet (10, 107). Studies reported that

AFs occurrence in cereals is becoming a serious worldwide

concern (11). The formation of AFs in cereals and cereals-

based processed products depends on several factors such as

fungal genotype, processing methods (drying, milling, blending,

chemical additives), and environmental factors such as oxygen

level, environmental pH, field temperature and humidity

content (11).
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FIGURE 6

The detailed bibliometric network of studies on AFB1 in association with relevant fields.

A comprehensive analysis of different cereals samples using

published records in GEMS/Food database showed that around

12.7% of all samples were positive for contamination with at

least one of AFs (10). Correspondingly, rice, sorghum, and

maize samples possessed a higher level of AFs (10). Other

investigations also suggested that the highest level of AFs was

detected in maize in the concentration of 3,760 µg/kg, which

extremely exceeded from the USA and EU permissible standards

(108). Among cereals, rice is surprisingly a susceptible crop

prone to AFs pollutants (103, 104, 109). After rice, corn and

sorghum are prone to AFs contaminants (109). The evidence

suggests that AFB1 is the main AFs found in cereals (11).

Another study on 108 Brazilian wheat and wheat by-

products samples disclosed that 30.6% of studied samples were

positive for at least contamination with one of the AFs in

which AFB1 was the most dominant fungal mycotoxin in these

samples (110). The highest contamination levels were observed

for wheat grains, followed by the barn, whole and refined

flour (110). Presently in EU and other countries, only limited

concentrations of AFs are allowed to be found in food products

(36). In this regard, the allowed concentration of AFB1 and

total AFs for nuts and cereals in the EU is 2 and 4 µg/kg,

respectively (109). In cereals, applying inappropriate drying

methods allowed for maintaining higher humidity content in

these crops, leading to a higher ratio of AFs-contaminated crops

(13). Recent studies on contaminated cereals demonstrated that

differential concentrations of AFs are found in cereals grown

in different countries (109). However, nuts, groundnuts, and

cereals are prone to AFB1 contaminations under field and non-

standard storage whenever temperature, humidity, and field soil

are suitable for APF growth (13, 111).

A recent study on the prevalence of AFs in nuts from

different origins demonstrated that peanuts from Argentina,

Congo, Nigeria, and South-western Uganda were differentially
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FIGURE 7

The median concentration (µg/kg) of AFB1 and other mycotoxins in feed from di�erent geographic areas.

contaminated with AFB1 (112). Accordingly, the average

concentrations of AFB1 in peanuts from these countries were

530, 163.22, 110.95, and 103.10 µg/kg, respectively (112).

Countries such as Taiwan, Morocco, and Iran ranked as first

to third countries for contamination of pistachio with AFs

(112). The maximum average concentration of AFB1 in almond,

hazelnut, walnut, and Brazilian nut samples was observed for

countries such as Cyprus, Italy, Morocco, and Brazil (112).

Other interesting studies have also reviewed the contamination

of Iranian pistachio with AFB1 using different procedures

(113). Accordingly, the outcomes suggested that there has been

differential AFB1 concentrations in this nut. Based on these

results, around 37% of studies reported AFB1 contaminations

in the concentration of≥10 µg/kg, 35% of studies reported≤10

µg/kg, and 28% of studies reported≤5µg/kg, respectively (113).

In another interesting study, Bui-Klimke et al. also analyzed

the global regulations on prevalence of AFs in pistachio samples

and reported that pistachio nuts are accounting for substantial

quantity of dietary AFs (114). Accordingly, estimations showed

that contaminated pistachio nuts remarkably affected the global

market of this valuable nut and ignoring the presence of AFs in

these samples will increase the health risks of these mycotoxins

for target exported/imported locations (114, 115). Presently,

global markets between Asia and other world countries have

been spectacularly increased (116). Due to the higher rates of

AFs occurrence in pistachio samples (114), top producers of

this nut should develop modernized infrastructures for drying

and processing pistachio to eliminate the expected level of AFs.

Increasing monitoring gates in import/export gates of target

consumers of pistachio can help to early detection of AFs sources

and prevention of APF growth.

Walnut kernel and oil are two important products

worldwide. Studies have shown that walnut kernel and oil have

an interesting metabolic profile which in turn can be considered

as a source of antioxidants and mineral elements (117, 118).

Recent findings on the contamination of Iranian walnuts with

AFs showed that nearly half of these samples were contaminated

with AFB1 in concentrations of 0.8–14.5 µg/kg, respectively

(119). Nuts such as walnut maintain remarkable moisture in

their structure, leading to providing a favorable environment for

APF growth (119). The grown fungi inside walnuts significantly

affect these tree nuts quality and destroy their taste and flavor.
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Applying modern drying technologies to process, drying and

shipping walnut and other nuts can extraordinarily decline the

occurrence of AFs in such nuts. The prevalence of AFs in

salt-roasted nuts is also becoming an emerging concern. In

this regard, Ostadrahimi et al. (120) reported that salt-roasted

pistachio and peanuts possessed a differential concentration of

AFs. Correspondingly, the observed average AFs concentration

in these samples was about 19.88 µg/kg in comparison to pure

nuts (6.51 µg/kg), respectively (120). These outcomes indicate

that processing of economic nuts should be carefully conducted

because the occurrence of AFs after nut preparing steps for

increasing their taste and flavor is inevitable; therefore, it can

pose health risks to target consumers.

Considering the world climate zones map

(Supplementary Figure S1), it can be said that the higher

prevalence of AFB1 in peanuts harvested from different

geographic regions may be related to the type and dominancy

of countries’ climate. The literature suggested that the moisture

content above 17% and warmer temperatures (above 24◦C) are

effective in inducing the formation of AFs in corn and feed

(121, 122). Indeed, the review of literature manifested that

due to the higher moisture content of nuts, these products are

the main susceptible foodstuffs for AFs contaminations (123).

Therefore, in addition to local climatological factors, standard

storage of nuts and decreasing the moisture content of these

products before entering storage sites and local/global markets

can dominantly affect the prevalence of AFB1 in such foodstuffs.

AFs in animal products

Amajority of AFB1/2 concentrations in contaminated crops

have entered the animal feed network and metabolized to AFM1

(109). In this regard, the evidence suggests that nearly 1% of

AFB1 metabolized into AFM1 in dairy cows (124). About 1–

3% ingested AFB1 and metabolized AFM1 are excreted by feces

and urine (109). However, the remained AFM1 level in the

animal body will later enter the human food chain through

dairy products. Due to the considerable affinity of AFM1 to

dairy proteins (125), it seems that in dairy products with higher

protein content (e.g., cheese), the occurrence of AFM1 is more

probable compared to other AFs (109, 125). Generally, the

occurrence of AFM1 in milk, cheeses, butter, and yogurt is

surprisingly high; however, the final concentration of AFM1 in

these products depends on processing methods and the quality

of animal feed (109, 126).

Today, the presence of AFM1 is becoming a global concern

(127), as discussed in previous sections, the frequency of studies

on AFM1 has been dramatically increased over the past decades.

A recent meta-analysis indicated that the prevalence of this

mycotoxin among dairy products is averagely between 40 and

60% which has seriously been considered a biological threat

to public health (128). Although the toxicity of AFM1, a

hydroxylated derivative of AFB1, is relatively lower than other

types of AFs (129), the available evidence indicates that the long-

term exposure to AFM1 might be effective in the onset of liver

cancer (39, 128). Animals supplemented with AFs-contaminated

feed are major sources of AFM1. Because dairy products are

unique sources of proteins, vitamins, and calcium, they are

becoming the principal part of the human diet (127). Therefore,

AFM1 contaminants in these products pose a threat to public

health (128), and regular monitoring measurements should be

conducted to diagnose target AFs in dairy products. However,

to eliminate the AFM1 in animal products, increasing public

awareness and regular monitoring of dairy products can be

helpful (130).

Scientific studies also reported that the occurrence of AFs

contaminants in livestock meat products is probable (131–

133). Accordingly, AFs such as AFB1/B2 and AFG1/G2 with

different concentrations occurred in meat-based foods (132–

134). In an interesting study on meat products collected in

Riyadh, Saudi Arabia, incredibly 37.5% of gathered samples

were contaminated with AFs, and 4% of samples have exceeded

from permissible standards (the acceptable Saudi limit: 20

µg/kg). Correspondingly, AFB1 and AFG1 were the most

commonly identified AFs, followed by AFB2, respectively (133).

In another study, the occurrence of AFs in meat products such

as basterma, sausage, kofta, and luncheon was investigated,

and the results unraveled that AFB1/2 occurred in higher

concentrations compared to AFG1/G2 (132). Investigations on

domestic fowls feeding diets containing AFs also displayed that

the accumulation of AFs in their liver is higher than other organs

(135). Indeed, the outcomes showed that the highest abundancy

of AFB1 was observed for tissues of quails compared to other

birds (135).

In another study conducted on meat, milk, and eggs

samples, collected in Jordan, the outcomes indicated that

the samples were contaminated with AFB1/2, AFG1/G2, and

AFM1/AFM2 (136). In milk samples, however, the highest

concentration of AFM1 was exceeded from EU standard for

liquid milk (50 ng/L) (136). These outcomes suggested that the

proportion of AFs contaminants in meat samples depends on

several factors, including meat processing methods, post-storage

contaminations, and non-standard transportation and shipment

facilities of meat products to local and international markets.

Presently, the maximum permissible AFs concentration in

animal feeds is 5 µg/kg based on EU limits (137). Therefore,

preparing animal feeds from credited sources, improving of

the storage condition of livestock inputs (137), improving the

quality and accuracy of AFs detection systems (138), improving

of animal feed manufacturing procedures (139), and regular

monitoring of animal feeds to identify the source of AFs

contaminants are possible strategies to reduce the concentration

of AF pollutants in dairy products. Governments must seriously

deal with providers of livestock feeds that might supply

contaminated animal inputs to dairy farms by imposing strict
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limitations on their business to prevent further consequences

of AFs. It is now well-documented that AFB1 was widely found

in contaminated livestock products fed on contaminated forage

and grain (140). Therefore, due to health threats of fungal toxins

to public health, dairy products should be repeatedly monitored

to decrease the quantity of AFs contaminants. Such strategies

will later decrease the health consequences of AFs and help

consumers to reach safe and AFs-free dairy items.

In practice, however, characterization of AFs-contaminated

animal feeds is difficult because the available techniques

require allocating sufficient time and financial support for

early detection of different types of AFs metabolites (137–

139). Governments should support researchers in developing

accurate, fast and low-cost measuring systems to abate AFs

metabolites from suspected feeding resources. As discussed in

the previous sections, large quantities of scientific studies have

been conducted on measuring processes of AFs diagnosing

systems. Expanding academic studies without practical

innovations cannot alone help the elimination of AFs in animal

feeds; therefore, efforts to convert the results of academic

investigations into touchable outcomes should be highly

followed to recruit the power of science in controlling health

hazardous mycotoxins. As we discussed later, AFs are major

environmental risks factors in developing nCDs. Therefore,

elimination of these fungal toxins in animal feeds can primarily

decrease their occurrence in human food chain.

AFs contaminants in spices and
medicinal herbs

Spices are interesting food additives that constructed a

valuable financial global market for spice-producing countries

(141, 142). Presently, countries such as India, China, Nigeria,

Indonesia, Thailand, Vietnam, Bangladesh, Nepal, Ethiopia, and

Turkey occupy the first to tenth ranks of the top spice-producing

countries (143). Estimations indicated that the demand for

fresh, powdered, and processed spices have been increased over

the past decades due to multi-functional applicability of these

products for various purposes such as traditional medicine,

cooking, etc. (142, 144). Interestingly, AFs contaminants also

occur in spices with higher content of moisture. Since 2002, the

EU has implemented rigorous regulatory policies to identify AFs

in spices (36, 144). Accordingly, the permissible concentration

of AFB1 and total AFs in spices has been reported up to

5 and 10 µg/kg, respectively (36). Studies proclaimed that

well-distinguished spices such as pepper, ground red pepper,

paprika, curcumin (or turmeric), chili, nutmeg, and ginger are

the susceptible natural food additives prone to AFs pollutants

(36, 109).

The evidence also suggests that the highest permissible AFs

limits for all foods in the USA are 20 µg/kg (145). In Croatia,

the permissible AFB1 and total AFs levels for spices are 30

and 15 µg/kg, while in Bulgaria, the accepted limits are in the

concentrations of 2 and 5 µg/kg (144). Iran also follows the EU

regulation on spices and the permittedmaximum levels of AFB1,

and total AFs range in the concentrations of 5 and 10 µg/kg

(144). In this respect, several studies comprehensively reviewed

the occurrence of AFs in spices (144, 146, 147). The outcomes of

these scientific investigations demonstrated that the occurrence

of AFs in spices depend on the type and processing methods

of spices (144, 146, 147). Compared to cereals, and edible

nuts, spices and plant-based food additives are highly prone to

maintain higher humidity levels in their structure (148).

On such occasions, opportunist APF can easily grow among

stored spices to decrease the quality, taste, fragrance, color

and marketability of these popular plant-based food additives

(149). In Asian countries, in particular Iran and India, food

spices (or additives) are indispensable parts of daily cooking

and different forms of spices including raw and processed

stuffs can be purchased from local providers. Due to bulk

production of spices, these products short immediately after

harvest would send for local and international markets. Recent

studies on herbal products and spices of different locations of

Iran indicated that AFB1 is the most prevalent AFs among these

spices and nearly 100% of analyzed red pepper samples were

contaminated with AFs (148).

In another interesting study, different samples of

commercial spices in Iran has been analyzed using HPLC

method to identify the quantity and abundance of culprit AFs

(149). According to these results, spices such as cinnamon,

turmeric, black and red pepper diagnosed with different

concentrations of AFs (149). Similar to the previous results

(148), AFB1 was the most domineering AFs among analyzed

spices, though different concentrations of AFB2, AFG1/2 were

also observed among the evaluated samples (149). These results

are in agreement with previous studies that confirmed herbal

spices are remarkably prone to AFs contaminants (150, 151).

Monitoring of spices marketed in Africa also showed that

the Ethiopian ground red pepper was extremely contaminated

with AFB1 in a dose of 250–525 µg/kg (152). Simultaneous

investigations on Iranian and Indian spices to detect AFs

contaminants purported that spices from these origins were

differentially contaminated with AFB1 in a concentration of

63.16–626.81 ng/kg (Iranian samples) and 31.15–245.94 ng/kg

(Indian samples), respectively (153). More interestingly, the

outcome of this investigation demonstrated that contamination

of studied samples was not exceeded from EU standard

concentration of AFB1 in spices (5 µg/kg) (153), though AFs

metabolites were characterized in the monitored samples. In

another study in Turkey, 93 spices and 37 medicinal herbs

were evaluated to identify hazardous AFs derivatives. The results

manifested that AFB1 was domineering fungal metabolite in

nearly 32 herbs and 58 spice samples (154). Resultantly, the

maximum concentration of AFB1 was found in cinnamon at the

concentration of 53 µg/kg so that the measured concentrations
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in these samples were obviously exceeded from EU permissible

values (154).

Evaluation of marketed spices in Doha, Qatar, showed

that Aspergillus and Penicillium spp. were the most prevalent

fungi in these samples (155). Interestingly, this investigation

demonstrated that five spices, including turmeric, black paper,

chili, tandoori and garam masala, were contaminated with

AFB1 (155). For the first four samples, the detected AFB1

concentrations have deviated from EU standards (155). Indeed,

according to the outcomes of a recent meta-analysis on the

occurrence of AFB1 in red pepper, the prevalence of AFB1

among studied samples was 50.8%, respectively (156). This study

reported that the minimum and maximum concentrations of

AFB1 were detected in Korean and Turkey samples in the

concentration of 0.14 and 31.13 mg/kg, respectively (156).

The growing body of evidence suggests health promoting

medicinal plants are also prone to AFs contaminants because

of their ability to support AFs-fungi growth (12, 157). In

an interesting investigation the results displayed that AFB1

metabolite was found among medicinal plants with a significant

prevalence percentage (12). The results also confirmed that

other AFs metabolites, including AFB2 and AFG1/2, were

also characterized in herbal supplies (12). These outcomes

are in agreement with other studies that confirmed that AFs

are commonly found among medicinal plants in different

concentrations (157, 158). More interestingly, herbal products

not only hosted AFs metabolites, but also various scientific

reports confirmed that OTA is another hazardous mycotoxin

found in these herbal stuffs (159). In some studies that revolved

around the occurrence of AFs in medicinal plants, spices and

herb-teas incongruous results come to view in which spices

were contaminated with AFs while medicinal plant samples

from tropical countries were free of these hazardous fungal

metabolites (36). Evaluation of medicinal plants fungal flora also

showed that Aspergillus species were the most superior fungal

strains isolated from target medicinal herbs (160).

Monitoring of medicinal herbs in Thailand for AFs

contaminants showed that these fungal toxins in the range

of 1.7–14.3 ng/g have been occurred in these samples and

AFB1 was abundantly detected in the evaluated herbal

products (161). Although medicinal herbs are at risk of

AFs pollutants, however, it is trustworthy to note that

these herbal supplies have the ability to produce specific

metabolites to detoxify AFs metabolites. In this regard, in

vitro studies have shown that aqueous extracts of medicinal

herbs such as Centella asiatica, Hybanthus enneaspermus and

Eclipta prostrata displayed nearly 70% degradation of AFB1

(162). Meanwhile, it can be said that the concentration of

characterized AFs in medicinal plants and herbal supplies

depends on the type of plants, herbal processing methods,

storage condition, variation of grown mycotoxigenic fungal

strains, temperature and humidity of storage sites, secondary

contaminations during herbal supplies storage, and the

infestation of pests and plant pathogens to stored herbal

products (163).

Contaminated herbal products in local markets are potential

health risks to consumers because there are no accurate

scrutinizing systems to monitor local herbal suppliers and

identify contaminated commodities (164). The local and

international markets of medicinal herbs are flourishing yearly,

and it is now valued at more than 100 billion dollars (165).

Therefore, by regular risk assessment of spices and herbal

supplies as well as increasing the number of monitoring gates

for local and international markets and also by increasing

the quality of processed spices and herbal products and

suitable storage and packaging of these supplies, official health

and agricultural organizations can significantly mitigate the

prevalence of AFs contaminations in this industry (144).

As shown in Figure 8, many herbal products and spices

are marketed outdoors in local markets, which in turn might

lead to post-harvest contaminations. Because herbal and spice

providers might be not cautious enough to identify the source

of AFs contaminants; sequentially, AFs-contaminated products

may be intentionally or inadvertently passed to consumers,

eventually leading to the progression of nCDs. Therefore,

increasing the awareness of herbal farmers, manufacturers, and

consumers is an effective strategy to eliminate AFs in such

herbaceous products (166).

As discussed in previous sections, likemany other foodstuffs,

spices and herbal products were prone to AFs contaminants

(148). In some cases, however, the occurrence of AFs is

not in detectable concentrations. Additionally, due to the

increasing demand for herbal spices and plant-based food

additives (142), many national and international suppliers

adhered to spice markets, leading to intensified cultivation and

extensive processing of these products. The lack of fundamental

infrastructures and suitability of climate factors enhanced the

growth of APF, consequently leading to an increased level of

detectable AFs contaminants. Therefore, to mitigate the total

level of AFs in spices, medicinal herbs, and other popular plant-

based food additives, local and international herbal markets,

however, should be constantly monitored for detection of AFs

metabolites (167, 168). Keeping in mind the most popular quote

perhaps assigned to Hippocrates (400 BC) “let food be thy

medicine and medicine be thy food” (169), healthy foods are

indispensable parts of our dietetic regime and are complement

to modern pharmacology (169). Therefore, preparing foodstuffs

from mycotoxin-free sources not only improve our lifestyle, but

also can decrease the progression of nCDs and improve the

quality of daily diet.

In this regard, to bring concentration of AFs in spices and

herbal products down, taking precautionary actions, such as

raising public awareness, might support consumers to purchase

healthy and AFs-free products (170, 171). According to scientific

data, AFs contaminants in herbal products used in traditional

medicine mainly occur in two stages during drying/processing
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FIGURE 8

Local herbal and spices markets in Iran. Consumers should

carefully check the flavor and taste of purchased spices and

herbal products to reduce the health risks of AFs. The color of

AF-contaminated spices, in some cases, changed significantly,

and characterization of contaminations and spoiled materials is

easy. In the case of invisible AFs contaminants, preparing regular

samples from local herbal and spice markets will decrease the

occurrence of these carcinogenic mycotoxins.

and storage of target herbs/spices (172–174). Therefore, the lack

of strict regulations on herbal ingredients used in traditional

medicine might increase the occurrence of AFs in these

health-promoting products (174). It is pivotal to implement

rigorous regulations on the production, processing, packaging,

manufacturing and exporting/importing of herbal products

that are prone to AFs contaminations. Improving packaging

systems (108) and developing standard infrastructures for the

distribution, storage, and transportation of medicinal herbs and

spices can also help consumers to use more safer products (175,

176). Providing safety guidelines for preparing herbal products

and spices helps the public to broaden their knowledge about

the consequences of AFs and associated health complications;

therefore, leading to increasing demands for mycotoxin-free

commodities and a healthy lifestyle. In the next sections, we will

discuss the circulation of AFs in the human body and major

AFs health consequences reported in the literature. This helps

readers to a better understanding of AFs biological properties

and their role in developing human chronic diseases.

Interactions of AFs and human
serum albumin protein

Studies have shown that AFs metabolites are prone to bind

human serum albumin (HSA) (177). HSA is one of the most

prevalent proteins in human blood plasma (178). HSA is a

globular protein produced in the liver and constructed from

a monomeric structure with several subdomains (179, 180).

HSA functions as a carrier in the human body to transport

fatty acids, drugs, hormones, and other biomolecules (178).

This multifunctional, negatively charged, and non-glycosylated

protein also participates in the regulation of plasma osmotic

pressure. HSA is formed from 585 amino acids, and its 3D

crystallographic structure is well-documented (179).

Structurally, HSA spatial conformation is formed by a heart-

shape molecule, possesses three helical domains (I, II, and III),

and is divided into A and B subdomains (IA, IIA, IIIA and IB,

IIB, and IIIB) (178, 179, 181) (Figure 10). In the structure of

HSA, there are two distinct binding sites, including Sudlow’s I

and II, each prone to bind different types of chemical agents

(178, 182). Generally, negatively charged large heterocycles bind

to site I, whereas small molecules prefer to interact with site II

(182). The decreased concentration of HSA in blood plasma is
associated with AD (183), cancer, obesity, diabetes, heart failure,
stroke, and venous thromboembolism (178, 184).

HSA plays a critical role in the tissue distribution of
AFs metabolites (185). To date, only few studies have been
conducted on the possible interaction of AFs and HSA binding
sites. The available evidence suggests that AFs could non-

covalently bind to HSA binding cavities (185). Evaluating the
binding mode of chemical ligands to target receptors helps
researchers to characterize the molecular behavior of these

molecules in vivo (186). To understand how AFs metabolites
might interact with HSA, we computationally investigated the

binding affinity of AFs and AF-derived metabolites and HSA

binding sites. As explained, only few studies are available

to show the exact binding mode of well-known AFs to
HAS (185). Therefore, to broaden the literature consistency

on this topic, as part of this review 14 AFs metabolites,

including AFB1/2, AFG1/2, AFM1/2, AFB2a/G2a, AFP1, AFH1,

aflatoxicol, AFB1exo-8,9-Epoxide-GSH, AFB1exo-8,9-Epoxide,

and aflatoxin-N7-guanine have been structurally prepared and

docked into HSA using supervised and blind docking protocols

(187, 188). The docking results for the interaction of AFs

metabolites and HSA binding site I showed that docked AFs

possessed different binding affinities to interact with HSA site

I residues. The calculated binding energies for these metabolites

ranged from −6.2 to −9.5 kcal·mol−1, respectively (Figure 9).

AFB1exo-8,9-Epoxide, AFB1, aflatoxicol, AFG1/2, and AFM1

significantly formed H-bonds and Van der Waals forces to

interact with HSA binding site I.

Interestingly, docking results demonstrated that

AFs metabolites such as aflatoxicol, AFB1, and
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FIGURE 9

The 3D structure of HAS (PDB id: 1AO6) and interacted AFs metabolites with HSA binding site I. As shown in this figure, AFs metabolites bind to

critical active sites of HSA by forming H-bonds and other relevant chemical bonds.

AFB1-exo-8,9-epoxide, might also interact with HSA

subdomain IB. Previous studies suggested that AFB1/2,

AFG1, and AFM1 mainly interacted with HSA binding site I

(185), but the binding affinities of the remaining AFsmetabolites

are not comprehensively investigated in the literature. In the

case of other mycotoxins such as zearalenone, the binding

mode inhibitory assays showed that this fungal toxin could

strongly bind to a non-conventional binding cavity between

Sudlow’s site I and II (189). More interestingly, OTA has two

binding sites in the structure of HSA with different binding

constants so that the highest binding affinity for this toxin

was observed for subdomain IIA HSA protein (190). Other

interesting experimental studies also confirmed that AFB1 is

mainly bound to HSA in binding site I located in subdomain

IIA with a binding affinity around 104 M−1 (177, 191).

Similarly, the results of spectroscopic and computational assays

also determined that AFB1 and AFG1 also interacted with

subdomain IB residues in HSA (192). AFB1 also displayed a

similar binding affinity to interact with bovine serum albumin

(BSA) binding site I with a binding constant of nearly 4.20

× 104 M−1 (193). These outcomes together demonstrated

the precise interaction of AFs and HSA, leading to a better

understanding of toxicokinetic properties of these mycotoxins.

Therefore, displacement of HSA-AFs complexes has been

suggested as a therapeutic strategy to diminish the affinity of

these mycotoxins to HSA and decrease the tissue delivery and

uptake of AFs (177).

Decreasing the affinity of HSA to AFs with chemical

compounds sharing similar binding patterns with higher

affinities in comparison to AFB1 might bring down the

toxicity of this mycotoxin for the human body (193). Studies

have shown that natural products such as PPs interfere with

the interaction between AFB1 and HSA and reduce the

transportation of AFs to delivery locations (177, 194). More

interestingly, scientific outcomes reported that administration

of vitamins A and E could reduce carcinogenic properties

of AFs in studied animals (195–197), though controversial

results on the protective roles of vitamin E in cancer therapies

have been reported (198). These findings are in agreement

with previous outcomes demonstrated that exposure to AFs

metabolites is associated with plasma micronutrient deficiencies

(199). However, mycotoxin metabolites could bind to HSA

(189, 193); therefore, these toxins are easily transported to

different parts of the human body and causing chronic health

consequences (189). In the next section, we explain how

metabolized AFs derivatives are accounting for prevalence of

nCDs. The discussed nCDs have been selected based on the

frequency of conducted studies on each field of interest.
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May AFs promote the onset of
diabetes mellitus?

DM is a chronic metabolic disease mainly characterized by
elevated blood glucose level and insulin deficiency (200, 201).
More than 422 million people are expected to suffer from

DM in which the number of DM affected people in low-
income countries has steadily grown during the past decades
(202). To date, various subtypes of DM have been identified by
which scientists can treat affected individuals through observed

symptoms. Generally, type 1 DM (T1D) and type 2 DM (T2D)
are the two the most prevalent subtypes of DM, leading to

thousands of deaths yearly. T2D is responsible for more than
95% of all diabetic cases, while T1D only represents 5% of
diabetic individuals. T1D is more prevalent among juvenile

people and is significantly dependent on insulin deficiency

(188, 203). In contrast, T2D is insulin-free DM, by which
affected people suffer from elevated blood glucose and associated

complications (203).

The emergence of modern drug design technologies leads to

the development of potent anti-diabetic drugs. Different anti-

diabetic medicines with specific molecular targets have presently

been introduced into global markets (200). However, these drugs

could not entirely suppress the complications of DM (200, 201),

in turn, leading to an increased economic healthcare cost that

allocated on caring for DM-affected people.

Recently, the role of exposome measurements has been

highlighted in the progression of DM (204, 205). Exposome-

associated factors can be divided into external and internal

factors. External factors are features that directly linked to

nearby environment such as pollutants, chemical materials,

lifestyle and dietary regimes (205). Instead, internal factors

are accounting for epigenetics alterations, gut microbiota and

relevant molecular processes (204). This ongoing paradigm

helps to understand how and where exposure to environmental

factors lead to the progression of MetSys and other human

diseases (204).

As a complicated metabolic disorder, DM progression

depends on various factors (206–208). By considering

exposome-associated factors in the development of DM, it

is worthy to note that the adopting of a healthy lifestyle

can decrease the incidence of this metabolic disorder (206).

Environmental factors such as exposure to hazardous chemical

agents (209) and toxins might increase the onset of DM (210).

Indeed, the complex interaction between environmental and

genetic risk factors might worsen the health complications of

DM (206, 211). Biological toxins might act as health hazardous

diabetogenic agents to disrupt normal function of the human

body in controlling blood sugar levels and associated signaling

pathways (212).

In this regard, evidence-based studies imparted that long-

term exposure to particular types of AFs, such as AFM1, might

increase health risk factors for developing T2D and other

metabolic disorders (213). Interestingly, long-term exposure to

AFB1 increased liver injuries in mice, disrupting blood glucose

levels, insulin sensitivity, and a high chance of inducing liver

cancer (39). Recent studies have shown that type 1 diabetic mice

exposed to AFB1 showed a significant reduction inMUP1 levels,

in turn, indicated an elevated blood glucose level and decreased

insulin sensitivity (214). Molecular mechanisms underlying

the diabetogenic effects of AFs are not completely understood,

however recent investigations reported that AFs metabolites,

in particular AFB1, might influence the regulatory switches of

specific signaling pathways, genes, transcription factors, and

receptors such as IGF2 and IGF1 receptor IGF-IR (215). In this

regard, the evidence suggests that the increased level of IGF2

expression in pancreatic islets is associated with the onset of DM

and dysfunction of β-cells (216).

The overexpression of IGF2 affects the functionality of

β-cells, leading to chronic endoplasmic reticulum stress and

dysfunction of pancreatic islets (216). Indeed, the evidence also

suggests that IGF1 plays a critical role in DM by lowering

blood glucose levels and insulin secretion (217). Therefore,

the interaction of AFs with such molecular targets might

negatively cause molecular abnormalities, which later lead to

the development of DM. Additionally, hepatorenal injuries, lipid

peroxidation, DNA damage, oxidative stress, and inflammation

are other symptoms of animal models exposed to AFB1

metabolite (218).

In an interesting study (219), it has shown that the long-

term exposure to mycotoxins was significantly associated with

DM development in affected rats (219). In this finding, OTA

could remarkably increase blood glucose levels, cause damage to

pancreatic islets, and decrease insulin secretion (219). The cross-

talks between the progression of MetSys and prevalence of HCC

have been widely investigated (220, 221). The evidence suggests

that MetSys might be connected to the progression of cancer

(221). Yesheng et al. meta-analysis (221) reported a possible

link between MetSys and pathogenesis of HCC among Euro-US

societies, though there has not been association between HCC

and MetSys clinicopathological feature (221).

In another study, Marchioro et al. (222) reported that

in broilers chickens supplemented with a mixture of AFs

(B1/2-G1/2) in the concentrations of 0.7–2.8 mg/kg for 42

days, chickens’ performance features and enzymatic activity

of pancreas have notably been altered (222). The outcomes

imparted that long-term chronic exposure to AFs mixture

increased the activity of pancreatic α-amylase and lipase

while trypsin levels has been affected by the maximum

concentration of AFs mixture (2.8 mg/kg) (222). The literature

has disclosed that AFs altered the accumulation of lipids

droplets and lipoproteins in addition to the dysregulation of

lipid metabolism-related genes (CHO, TAG, PHOL, MDA, Lipc,

Lcat, Scarb1, etc.) (223, 224). The evidence imparted that

the dysregulation of fatty acids, cholesterol, and other health

affecting lipids biosynthesis and metabolism is accounted for
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the progression of DM (225). Therefore, exposure to AFs in the

dose-dependent fashion might contribute to the development of

DM and cardiovascular diseases via alteration in the body lipids

metabolism pathways (223, 226), though this claim requires

future confirmation.

In rats exposed to penitrem A, a highly toxic mycotoxin

from Aspergillus genus, a considerable diabetogenic properties

has been observed (227). In this regard, chronic exposure to

OTA (45 µg/daily diet) for 6–24 weeks caused a significant

decrease in insulin levels and increase in blood glucose and

glucagon levels (227). The observed diabetogenic activity of

OTA is attributed to its impact on degeneration of pancreatic

Langerhans islets (227). The elevated diabetogenic effect of

mycotoxins in combination with chemical agents such as

insecticides has also been investigated (228). Correspondingly,

the outcomes displayed a remarkable synergistic interaction

between mycotoxins and chemical agents in the onset of

DM by increasing blood glucose and dysregulation of liver

enzymes (228).

In a cross-sectional study conducted on Guatemalan

participants, the outcomes manifested a significant association

between AFB1-albumin adduct levels and pathogenesis of

DM (229). Additionally, there was no significant association

between AFB1-adducts and the progression of other metabolic

diseases such as central obesity, obesity, non-alcoholic fatty

liver diseases (229). This result, however, was aligning with

previous animal-based studies that confirmed the association

between exposure to mycotoxins and the onset/progression of

DM (219). The evidence imparts that fungal toxins may increase

the susceptibility to the onset ofMetSys; therefore, well-designed

human-based studies are needed to show how mycotoxins and

AFs may contribute to the progression of MetSys (213, 230).

AFs and pathogenesis of Alzheimer’s
disease

According to WHO statistics (231), there are more than

50 million AD-affected people worldwide such the statistics

that have projected to increase by 2050 (187, 232). This

prevailing neurodegenerative disorder is chiefly characterized

by a remarkable decline in thinking, memorial dysfunction,

unpredictable behaviors, language problems, and cognitive

impairments, in turn, sequentially causes significant damage to

the brain cells (231–233). Accordingly, the lesion of brain cells,

the accumulation of amyloid plaques, neurofibrillary tangles,

oxidative stress, NIF, and synaptic dysfunction are typical

clinical symptoms of AD (187, 232, 234).

Different hypotheses have been postulated for the

progression of AD; however, it is not completely clear which of

molecular switches drives the inception of AD to cause obvious

damages to the brain (234, 235). Scientists suggested that

environmental and genetic risk factors, exposure to chemical

pollutants, heavy metals, mycotoxins, lifestyle, age, infections,

cardiovascular dysfunctions, T2D, cellular senescence, and

head injuries may play a critical role in pathogenesis of AD

(232, 236–238). Studies have shown that the AFs metabolites

can alter various brain enzymatic actions, leading to AD

development. For instance, in rodent models, exposure to

AFB1 could significantly decrease the activity of brain protein

kinases (239). The SH-SY5Y human neuroblastoma cell lines

exposed to 100 and 50µM AFB1 and FB1 mycotoxins for 24 h,

manifested a significant increase in ROS formation, though the

trace of endoplasmic reticulum stress was not observed (240).

On the contrary, in adult male rats treated with 25 µg/kg/week

AFB1 for 8 weeks, AFB1 could trigger obvious neurotoxicity,

inflammatory responses, oxidative stress and, anxiety and

depression-like behaviors (241). The finding showed that AFB1

supplementation was linked to a reduction in the activity of

GSH, GST, SOD, and GSH-Px enzymes and increased MDA,

IL-1 and TNF-α levels in right region of cerebral tissues (241).

The AFB1 also negatively influenced the distribution of

astrocytes in rats’ cerebral cortex and hippocampus (242). The

effects of AFs on the BBB were also investigated such that the

outcomes showed that AFs (in particular AFB1) could alter

mitochondrial gene expression profile in the human BBB cells

model (243). More interestingly, AFB1 could inhibit the electron

transport chain function, affect ATP synthesis and dysregulate

key genes in mitochondria (243), leading to genetic mutations

and DNA damage (244).

The AFB1-NIF is attributed to the interaction of

AFB1 metabolized derivatives with neuroinflammatory

signaling pathways (245). It is now well-established that

neuroinflammation promotes the pathogenesis of AD and other

neurodegenerative diseases (246). The molecular mechanisms

underlying neuroinflammation have partially been investigated,

however, little is known on how exposure to mycotoxins may

have impact on the incidence of AFB1-NIF (247).

To elucidate the AFB1-NIF mechanism of action, it is

important to take this question into consideration how AFB1

metabolites may alter the NIF signaling pathways? Briefly,

the activation of microglial cells elevates glial neuroimmune

responses (248, 249). Next, CNS-related genes might be up-

and/or down-regulated, sequentially resulted in the reactivity

of astrocytes and expression of pro-inflammatory molecules

such as IL-1/1β/6, INF-γ, and TNF-α (248). Activation of

these neuroinflammatory signaling mediators will increase

the ROS/RNS levels in the brain, leading to a significant

oxidative/nitrosative stress and neuronal damage (246, 250).

Studies have proven that TLRs, MAPK, MyD88, CxCR4,

PI3K/AKT, mTOR, COX-2, iNOS, Nrf2, HO-1, γ-enolase,

STAT, AMPK, JAK, and NF-κB signaling pathways are

major components of NIF (248, 251, 252). The alteration

of kynurenine/tryptophan ratio (253), dysregulation of

intracellular protein kinases (PKs) (254), the loss of neuronal

integrity (255), and dysregulation of neurotransmitters signaling
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circuits are other pivotal components of NIF in response to

brain abnormalities (256). The evidence introduced thus far

supports the scenario that AFB1 enhances the secretion of

pro-inflammatory cytokines such as TNF-α and IL-6 in CNS-

derived cells, leading to the promotion of immune responses

and significant oxidative stress in the CNS (247). These

elevated level of neuroimmune reactions and activated signaling

pathways in astrocytes and glial cells have been reported as

consequences of AFs (257). Interestingly, low and high-dose

exposure to AFs might alter the activity of brain signaling

cascades based on exposure time duration and toxicodynamic

properties of culprit AFs (258).

The acute exposure to AFs could notably affect the

expression of genes and enzymatic activation in the brain. In

rats, acute treatment with AFB1 influenced the activation of

protein kinase C by phosphorylation of Ser957 position in the

cerebral cortex (259). CCK is another critical protein kinase in

the brain accounted for pathogenesis of AD (260). Studies have

revealed that the functionality of brain cells depends on ATP

molecules produced by CCK (245). Blocking CCK activity is

associated with energy depletion in the brain, which can lead

to significant oxidative stress and brain abnormalities. AFB1

inhibited the CCK enzyme to decrease ATP metabolism and

trigger oxidative stress in the brain (245, 261).

Park et al. reported that AFB1 decreased human astrocyte

cell proliferation by arresting cell cycle, sequentially induced the

mitochondrial dysfunction and apoptosis of astrocytes (262).

Accordingly, the interesting part of this finding that is AFB1

dysregulated calcium hemostasis and increased ROS formation,

leading to neurotoxic effects on astrocytes cells in vitro and

in vivo (262). In female Wistar rats given 15.75 µg/kg/orally

for 8 weeks, the outcomes suggested that AFB1 decreased the

distribution of astrocytes in frontal cortex without effect on

neuronal numbers (242). In contrast, AFB1 increased neuronal

number and decreased astrocyte distribution percentage in

the hippocampal CA1 subfield. Importantly, the withdrawal of

AFB1 restored the observed changes in rat brain (242).

In the support of these outcomes, Alsayyah et al. reported

that the severity of chronic neurodegenerative effects of

exposure to AFB1 is associated with astrocyte immune responses

and alteration of brain enzymes (239). Accordingly, chronic

exposure to AFB1 altered the activity of antioxidant enzymes

(GPX, CAT, SOD, GSH), increased the activity of AP and LDH,

and decreased CK activity (239). The observed AP and LDH

increased activity are attributed to neuronal death, astrocytes

damage, and necrosis (239). This finding also indicated that the

chronic side effect of long-term exposure to AFB1 depends on

the passed quantity of these toxin from the BBB and duration of

exposure (239). In another study, animals feed with 5ml AFB1

for 8 weeks also showed noxious neuronal degenerative changes

in cerebral cortex (263). Another animal-based investigation

also manifested that AFB1 increased the activity of AChE and

ADA enzymes (264). The up-regulation of these enzymes might

be responsible for elevated level of inflammatory responses

due to tissue damage. Additionally, AChE and ADA may

be contributed to clinical signs of apathy because of their

participation in neuromodulation and neurotransmission (264).

By the way of illustration, the evidence suggests that

AFB1 triggered acute neurodegenerative consequences in

the CNS, induced encephalopathy by influencing glutamate

neurotransmitters, increased ATP depletion, modified brain

catalase, SOD,MDA levels, and GST concentrations (245).What

is outstanding in these outcomes is that differential exposure

to AFB1 induces oxidative stress (265, 266) and neuronal

damage in the brain (245). Additionally, exposure to AFB1 is

associated with reduction in CNS phagocytic ability, increased

levels nitrosative stress, increased expression of cytokines (TNF-

α and IL-1β/6/8/10) (267), induced microglia cell apoptosis,

dysregulation of p-NF-κB signaling pathway (268), significant

alteration in brain integrity, substantial DNA damage, S-

phase cell cycle arrest (269), and other neuroimmunotoxic

complications (245). AFM1 also could degrade the BBB

structure by influencing astrocytes, vascular endothelial and

microglia cells to trigger remarkable neurotoxicity in the brain

(262, 270). These data indicated that AFB1-NIF affected brain

enzymatic and none-enzymatic reactions as well as other CNS

molecular components, ultimately leading to the onset of AD.

As an epidemiological standpoint, the clinical framework of

AD pathogenesis and exposure to AFs has still not transparent,

consequently further well-supervised trials should be conducted

to know how do exactly these mycotoxins contributed to

molecular dysfunctionalities in the brain (245). As explained

earlier, the neurotoxicity and side effects of AFs in the brain have

been documented through in vitro and animal studies, therefore,

for cautionary reasons the elimination of these mycotoxins in

food/feed should be repeatedly followed to reduce their clinical

end effects.

AFs and the onset of cancer

Cancer is one of the most lethal chronic diseases, leading to

millions of deaths yearly (271, 272). According to global statistics

(271, 273), the prevalence of cancers is remarkably increased

during the past decades (271, 273). Still, an efficient and safe

medicine for the treatment of cancer has not been introduced

(274). Among all influencing environmental and genetic risk

factors, the carcinogenic effects of fungal toxins in contaminated

foods raised global concerns about the prevalence of cancer

(271). As discussed, studies have reported that AFs are toxic,

carcinogenic substances (154). These fungal metabolites disrupt

the normal activity of signaling pathways, gene expression,

and enzymatic activities in the human body. The evidence

suggests that long-term exposure to high concentrations of AFs

remarkably influences liver and kidney function (19). Briefly,

AFs affect the expression level of many genes involved in phase I
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and II metabolism in the human body (275). Compared to other

xenobiotics, the highly liposoluble AFs are rapidly absorbed at

the site of exposure (276). Studies have shown that respiratory

tracts and gastrointestinal organs are two major sites for the

absorption of AFs into the body (276, 277).

AFs affinity to carrier proteins in the body helps these

carcinogens to enter the blood and circulate around tissues and

organs (191, 194). Highly toxic and reactive AFs metabolites

bind to DNA to form AFs-DNA adducts (278, 279). Studies have

reported that the interaction of AFs and DNA causes significant

damage to DNA and associated biological processes such as

transcription and chromatin packaging (280). Binding AFs to

DNA and key enzymes in the liver and other organs can induce

cancer in different ways. Studies suggest that occurringmutation

in specific sites of DNA and proteins is linked to the pathogenesis

of cancer (281).

The formation of AFs-DNA adducts can affect the topology

of packaged DNA and DNA conformation (276, 278). The exo-

8, 9-epoxide metabolites of AFB1 are surprisingly prone to

construct DNA adducts. This AFB1metabolite is highly reactive,

and its genotoxic effects have been well-documented (276,

278). Aflatoxin-N7-guanine metabolite also binds to the DNA,

induces transversion mutations (pyrimidine ⇆ purine), affects

the expression of tumor suppressor proteins and transcription

factors, and ultimately dysregulates cell cycle events (276, 278).

Acute exposure to AFs pollutants disrupts the fundamental

function of genes involved in the glutathione pathway (282,

283). Studies reported that AFs could dysregulate the cellular

levels of PKC, PKA, p53, CDK, NF-κB, Bcl2, CKI, and cyclins

(276). Disruption of mitochondrial function, ATP synthesis, and

mitochondrial gene expression profile have been observed as

side effects of AFs in the animal and human bodies (276).

The growing evidence suggests that AFs also influence

the expression of xenobiotics metabolism genes, leading to

upregulation of CYP3A4 and pregnane X receptor (PXR)

(275). In this regard, scientific outcomes have proven that the

activation of PXR upregulates phase I and II metabolism genes

and proteins such as CYP2B6, CYP2C9, CYP3A4, CYP3A7,

UGT, GST, and SULT enzymes (275, 284). The dysregulation of

MDR1 and OATP2 genes after activation of PXR has also been

reported in several studies (275, 285). Studies reported that in

primary liver cancer and cirrhosis, these genes are significantly

overexpressed, leading to highlighting their critical role in

the pathogenesis of cancer (286, 287). Considerable number

of scientific investigations also demonstrated that exposure to

AFB1 could disrupt the expression of ERK, PKC-β, COX-

2, caspases3/7/9, ASK1, SAPK, STAT3, E2FA, MYC, Bax/Bak,

PUMA, CDKN1A, p21, DNA/RNA polymerases, PLK, MAPK,

and TRPs signaling pathways (288–291).

Additionally, continuous exposure to AFB1 promotes

epigenetic modifications in liver cells (292). As detailed in

the literature, AFB1 triggered various epigenetic alterations

such as increased levels of aberrant DNA methylation, histone

post-translational modifications, and up/down-regulation of

non-coding RNAs (ncRNAs) and transcription factors (TFs)

(293). AFB1-induced epigenetic drivers in the liver cells are

associated with the development of hepatocellular carcinoma

(14). Both AFB1-Lysine-protein and AFB1-DNA adducts

inhibited the fundamental molecular process of infected cells

by preventing transcription/translation of target genes. AFB1-

based epigenetic alterations potentially increased the level

of genomic mutations, inhibited the interaction TFs-gene-

promoter complexes, modified the normal pattern of ncRNAs

expression (e.g., miR34a/21/221 and lncRNA-H19), and altered

signaling pathways (14, 293).

The evidence suggests that AFs strengthen the consequences

of hepatocellular carcinoma risk factors such as DM, obesity,

over-drinking alcohol, and viral infections (HBV, HCV) to

influence the onset and progression of this catastrophic diseases

(294). On the other hands, studies proven that AFB1/M1 end

effects are not limited to liver cells so that it was shown that

these AFs could also influence the metabolic profile of kidney

(295). For example, in CD-1 mice co-treated with AFB1+AFM1

(0.5 mg/kg + 3.5 mg/kg) for 35 days, the results manifested

that AFB1/M1 promoted the onset of oxidative stress in mice

kidney, altered proline dehydrogenase and L-proline levels,

sequentially induced upstream apoptosis, in turn, leading to

kidney damage (295).

Evaluation of PPI networks of genes/proteins involved in

AFs and xenobiotics metabolism unraveled that these genes (or

proteins) constructed a network of interactions with various

key proteins in cancer-linked signaling pathways. Up or down-

regulation of these genes provides a ground for toxicity of

AFs. In the human body, genes including CYP1A2, CYP3A4,

CYP2A13, GSTT1, GSTM1, EPHX1, AKR7A2, and AKR7A3 are

driving AFs metabolism (296). The upregulation of these genes

affects the expression of upstream/downstream genes, leading

to a remarkable disturbance of cancer-associated signaling

pathways (296) (Supplementary Figure S2). Studies have also

shown that genetic polymorphisms in the structure of dominant

genes involved in AFs metabolism might increase the risk of

developing cancer (297).

Due to the presence of complex interactions between

genes, proteins, and transcription factors in the human

body, modification of gene expression levels after

exposure to AFs can surprisingly affect the genotoxic,

immunosuppressive, and mutagenic properties of these

fungal metabolites (278). However, our literature searches

showed that AFs interfere with DNA integrity, increase

the secretion of pro-inflammatory factors, cytokines,

and chemokines, inhibit DNA repair mechanisms,

induce genomic instability, increase lipid peroxidation,

induce DNA damage, cause tissue necrosis and organ

failure, and dysregulate innate and adaptive immunity

(290, 298–300). Reactive metabolites generated from AFs

metabolism are highly toxic for body tissues, leading to
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obvious oxidative stress and the accumulation of ROS/RNS

radicals (301).

Indeed, DNA-AFs structures can inhibit protein synthesis

by disrupting the interaction of transcription factors and

polymerase enzymes with DAN or increasing the occurrence of

mutation in promoters and coding sequences (290). Considering

the PPI networks, it is trustworthy to note that the dysregulation

of the AFB1 metabolism network might be associated with

disruption of gene expression networks in hepatocarcinoma,

colorectal, pancreatic, melanoma, thyroid, bladder, and other

types of cancers (Supplementary Figure S3). It seems that

chronic exposure to AFs expedites a wide range of molecular

irregularities in cells, ultimately leading to the pathogenesis of

cancer, and more probably other nCDs.

Cross-links between exposure to AFs
and the onset of NCDs

According to WHO statistics (302), nCDs are accounted

for more than 41 million deaths yearly, in turn, 77% all

deaths occurred in low or middle-income countries (302).

Environmental and genetic risk factors, such as exposure to

biological toxins, pesticides, air pollutants, smoking, alcohol,

unhealthy diet, cholesterol, obesity, physical inactivity, mental

stress, work tension, elevated blood glucose, and blood pressure

are common factors in triggering nCDs (303–306). Studies

manifested that withdrawal of environmental risks factors and

decreasing the exposure rate to health hazardous substances are

effective strategies in preventing nCDs (306).

In the case of AFs, however, it is worthy to point

out this fact that the elimination of these mycotoxins in

food/feed is impossible, leading to the continuous existence

of these risk factors in the environment. As evidenced in

the previous sections, exposure to AFs is associated with

development of liver cancer, though its role in the progression of

MetSys and neurodegenerative diseases has not extensively been

investigated. Therefore, this part of our review, by focusing on

data obtained from high-tech omics-assisted outputs, describes

how AFs may alter biological networks and/or gene expression

profile being effective in the onset and development of nCDs.

Integrated transcriptomics and metabolomics analyses

conducted onmale Fischer rats given 0.25–1.5 mg/kg/b.w. AFB1

for 7 days reported that exposure to low-high concentrations of

AFB1 is associated with dysregulation of tumor suppressor genes

(at least 27 critical genes were up/down-regulated), antioxidant

enzymes, cyclins, cyclin-dependent kinases, cytokine receptors,

and inflammatory signaling pathways (307). According to

this finding, acute exposure to AFB1 resulted in p53-induced

oxidative damage, dysregulation of gluconeogenesis, and lipid

metabolism, in turn, leading to hepatotoxicity of AFB1 (307).

In ducklings exposed to 0–40 µg/kg/b.w. AFB1 for

2 weeks, the RNAseq data disclosed that at least 749

transcripts responded to chronic exposure to AFB1 (308).

Interestingly, these genes were critical components of phase

I/II metabolism (CYP1A5, CYP2H1, CYP2K1, CYP2F3, etc),

antioxidant enzymes (GST1/3/K1), fatty acid metabolism

(ACAA1, ACOX1, ACAT1, FADS1, FASN, HADH, etc), apoptotic

genes (CASP3, CBR1, CCBL1, PPIF, KRT18, etc), protein

kinases (PLK2), oxidative responsive genes (AKR1A1, AR, AO,

FMO3, GPX4, NQO1, TXN, TDO2, etc), cell cycles and cancer-

associated genes (PRELID1, PLK2, UGT1A8,MDM2) (308). This

study manifested that phase II detoxification enzymes such as

GST1, GSTK1, GST3 were up-regulated under chronic exposure

to AFB1 (308), though previous studies found that these genes

were down-regulated or not significantly influenced due to

the difference between animal models selected for omics-based

investigations (308, 309).

In Wistar male rats received 100–200 µg/kg intraperitoneal

AFB1 for 4 weeks, the high-throughput gene expression

analyses showed that exposure to AFB1 altered gene and

lncRNAs expression (310). According to this finding, the

identified differentially expressed lncRNAs were associated with

upregulation of genes involved in cancer, apoptosis, DNA repair,

and cell cycle arrest (310). Because several genes such as Bcl2,

MAPK8, and NFKB1 were up-regulated after exposure to AFB1,

therefore, it has suggested that apoptotic-associated responses

to AFB1 exposure played a critical role in hepatotoxicity of

this mycotoxin (310). Similarly, in another omics-assisted study

on chickens, the outcomes showed that exposure to AFB1

dysregulated genes involved in apoptosis and lipid metabolism

in liver (311). This finding highlighted that Bcl-6 gene was

down-regulated whereas PPARG was up-regulated, in turn,

might be leading to hepatic fat deposition and hepatocellular

apoptosis (311).

The whole transcriptome of BFH12 (bovine fetal hepatocyte

cell line) exposed to 0.9–3.6µM AFB1 for 48 h displayed that

AFB1 significantly dysregulated the expression of genes involved

in inflammatory responses, apoptosis, oxidative stress, cancer

and xenobiotics metabolism (312). Indeed, this investigation

disclosed that exposure to low-high concentrations of AFB1

markedly influenced the activation of TLR2, p38β MAPK, AP-1

and NF-κB signaling pathway and pro-inflammatory cytokines

(312). This outcome is important because a large quantity of

studies published on toxicity of AFB1 for the animal and human

bodies addressed oxidative stress and inflammatory responses as

health consequences of this carcinogenic mycotoxin.

Bao et al. (313) reported that in Caco-2 cell lines exposed

to 0.0005–4µg/ml AFM1 for 48 h, totally 165 genes were down-

regulated after exposure to AFM1. This finding demonstrated

that exposure to AFM1 is associated with dysregulation

of CDK1, AMPK, SOS1/Akt signaling pathways that are

involved in cell cycle arrest (313). The metabolomics and

transcriptomics analyses of mice liver and serum showed

that co-exposure to AFM1 + OTA (3.5 mg/kg/b.w. for 35

days) significantly affected the phase I metabolism enzymes
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(ALT, AST, glutamyltransferase) by increasing their levels (314).

Additionally, due to synergistic side effects of AFM1 + OTA,

the accumulation of lipid droplets and liver steatosis were

observed in co-treated groups (314). The metabolome profile

of groups co-exposed to AFM1 + OTA disclosed that in liver

and serum lysophosphatidylcholines levels were significantly

increased (314). In another transcriptomics study conducted

on wild and domesticated turkey exposed to 0.015–0.32 mg/kg

AFB1, a significant dysregulation in phase I and II metabolism,

inflammatory responses, and apoptotic genes was observed, in

turn, provided another evidence for side effects of AFs on

cellular and molecular targets (315).

As evidenced in these findings, chronic and acute exposure

to AFs lead to remarkable alterations in cellular and molecular

pathways. Based upon the given standpoints in the previous

sections, it is important to note that continuous exposure

to low-high doses of AFs certainly promotes the onset and

progression of nCDs in societies with higher risks to encounter

AFs in food/feed. These studies also addressed the role of

inflammation, apoptosis and oxidative stress in progress of AFs-

induced consequences, which in turn, can be considered as a

scenario to characterize the susceptible signaling pathways and

enzymes to develop future clinical management strategies.

On the other hand, the growing body of evidence postulates

that the public health impact of climate change is negative,

might leading to expedite the onset of nCDs (316). Climate

change alone is one of the most important drivers of AFs

production under future conditions (72). Other climate change

associated environmental risk factors such as improper storage

of crops, infestation of secondary pests/pathogens, humidity

and temperature can strengthen the production of AFs and

other carcinogenic mycotoxins (53, 62, 72). Therefore, more

contaminated foodstuffs will be entered local and international

food chains, in turn, probably leading to increased risk of

nCDs (305). The high-throughput outcomes of multi-omics-

based data disclosed that AFs mainly have impact on the

inflammatory responses and antioxidant defensive system. In

HCC, however, dysregulation of inflammatory responses and

antioxidant enzymes promoted the onset of hepatocarcinoma

cancer (317–319), though these factors function in corporation

with a complex network of protein-gene interactions. However,

for other nCDs such as DM and AD, the mechanism underlying

inflammatory responses, antioxidant enzymes, and cellular

signaling cascades is markedly a sophisticated process and

dysregulation of these pathways has a significant negative effect

on the progression of diseases. Therefore, elimination of AFs risk

factors in food/feed might, at least, provide a ground to decline

the onset of nCDs. Figure 10 represents a cross-link between

exposure to AFs and the onset of nCDs. An exciting point should

be highlighted that is nCDs such as cancer, AD, and DM shared

a commonality in the occurrence of oxidative/nitrosative stress

and inflammatory responses. As shown in Figure 10, the onset

of inflammation is the core component of these nCDs, in turn,

leading to cellular apoptosis, dysregulation of enzymatic activity

and ultimately the severity of nCDs pathogenesis.

Phytometabolites interventions in
AFs-induced health problems

According to FDA guidelines (320, 321), there has been

no medicine to prevent the poisoning of AFs, though

several protective interventional substances (e.g., NovaSil clay,

chlorophyllin, oltipraz, sulforaphane, and tea PPs) have been

addressed (322). Safe withdrawal of AFs, using modern

agricultural practices, improving food processing methods,

and preventing the consumption of contaminated foods

have been reported as scenarios to reduce AFs quantity in

food commodities (320–322). Recent findings suggested that

the supportive and symptomatic care is a reliable health

management strategy to reduce the poisonous effects of AFs

(323). Correspondingly, using specific carbohydrate-rich and

protein-restricted diets followed by administration of vitamins

(e.g., B and K) can be helpful in the suitable prevention of

AFs end effects (323). However, preventative methods should

be cost-effective, and available for all individuals. By considering

the link between climate change, onset of nCDs, and AFs health

complications, it can be said that phytochemicals and plant-

based products are contemporary solution in preventing the

poisonous effects of AFs.

It is now well-documented that plant secondary metabolites

are health promising compounds in the cornerstone of human

diseases prevention (324). Medicinal herbaceous metabolites

are ubiquitously found in fruits, vegetable, and even inedible

plant materials (324). Efforts to reduce the complications

of AFs demonstrated that plant-based products such as

extracts, teas, essential oils, pure metabolites can decrease

the toxicity of AFs by maintaining cellular normal function

(324, 325). These herbaceous materials not only display

health promoting properties in detoxification of AFs, but

also prevent the formation of AFs in producing molds

(326). Considering the link between exposure to chronic/acute

doses of AFs and progression of nCDs, and also paying

attention to this fact that there is no antidote to treat AFs

poisonous effects (323), screening natural products pools to

identify anti-AFs substances can alternatively help scientists

in developing practical medicines against these biological

carcinogens (20). Recently, the potential benefits of plant

extracts and naturally occurring phytochemicals in mitigating

mycotoxins consequences has been partially reviewed in the

literature (324). Accordingly, herbaceous products could show

rigorous antifungal activities to improve enzymatic function in

degrading AFs (324) and enhancing their metabolism.

Despite the effectiveness of phytochemicals in reducing the

severity of AFs side effects, there have been no comprehensive

clinical studies to use these herbaceous metabolites for
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FIGURE 10

The cross-links between exposure to AFs and the progression of nCDs. Contaminated feed caused damages to animal farms and produced

products will pass to the consumers (Steps 1–2). Food processing methods can e�ectively be used to eliminate nearly 30–60% of total AFs

based on the cooking method (Step 3). The rest of AFs residues in food will later a�ect critical organs to trigger the onset of nCDs (Steps 4–6).

Duration of AFs exposure plays a critical role in the pathogenesis of AFs side e�ects by a�ecting signaling pathways, triggering inflammation and

oxido-nitro stress.

detoxifying of AFs. However, among natural products PPs are

presently taken into consideration to detoxify AFs, and their

health benefits expedited scientific investigations in this respect

(191, 327–336). The popularity of PPs can be attributed to their

spectacular antioxidant and biological properties (337, 338).

According to our literature searches, hundreds of studies have

been conducted on anti-AFs properties of PPs to show how

these phytochemicals might ameliorate the toxicity of AFs in the

animal body (339, 340). Previous studies substantially confirmed

the health promoting impacts of PPs in alleviating MetSys (341),

neurodegenerative (342) and chronic diseases (343).

General overview of PPs chemistry

PPs are a diverse category of plant secondary metabolites,

displayed health-promoting properties, and are marketed as

dietary supplements (338, 344, 345). Originally, PPs are

defensive metabolites in plants secreted in response to abiotic

and biotic tensions (346). It is now well established that the

regular consumption of PPs and/or PPs-rich foods are linked to

a healthy lifestyle (347–349). To date, the chemical structure of

more than 8,000 PPs has been characterized, and the emerging

evidence suggests that global demands for PPs-rich foods (or

supplements) have increased over the past decades (344, 347).

PPs could scavenge free toxic radicals and display potential

antioxidant activity (350). Evidence-based data reported that

PPs showed no toxicity effects on the human body (338, 350).

These metabolites mainly function as potent anti-bacterial,

antiviral, anti-diabetic, anti-cancer agents, and are modulators

of molecular signaling pathways (351, 352). A plethora of

studies has been conducted on PPs to modify their structure in

developing reliable medicines for treatment of human diseases

(353). After ingestion of PPs-rich foods, these metabolites are

metabolized in liver, enter the blood circulation system and are

transported to different parts of the human body (345).
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The chemical backbone of PPs consists of at least one

aromatic ring and several OH groups. In this regard, PPs can be

classified into two main groups, including flavonoids and non-

flavonoid metabolites (346). Simple PPs mainly shared C1–C6

and C3–C6 backbones. These PPs have a low molecular weight

and are widely biosynthesized in flowering plants. Instead,

flavonoids share a C6–C3–C6 backbone, and two benzene rings

are existed in their structure (354). Flavonoids are among

the most abundant and well-studied PPs, displayed potential

antioxidant and health-promising effects. This class of PPs

divided into several subgroups with distinct biological and

chemical features (355).

Studies have shown that the biological activity of flavonoids

is associated with the substitution of functional chemical

moieties on their backbone (356). In nature, flavonoids

and other PPs mainly occur in the form of O-glycosylated

metabolites. These highly hydroxylated PPs are prone to other

chemical modifications such as methylation and acetylation

(347). The review of the literature showed that the majority of

studies on PPs targeted O-glycosylated PPs, while the biological

properties of C-glycosylated PPs have remained relatively

unclear (357, 358). Stilbenes, lignans, curcuminoids, coumarins,

and xanthones are other classes of non-flavonoid metabolites

with potential biological activities (345, 347, 359). Figure 11

summarizes relevant information on PPs.

Using modern biotechnology for ME
of PBPs

The advancement of biotechnological methods supports

researchers to integrate new genes, and other interested

molecular components into target organisms for improving

their qualitative and quantitative traits (360, 361). Genetically

modified organisms have a particular gene expression profile

in which genes might be silenced or over-expressed to obtain

the desired traits (362–365). In this regard, ME of PBPs

received much attention from academic and industrial sectors

due to health benefits of PPs (366). Today, sufficient pieces

of information about PBPs are available to introduce their

biosynthetic genes into new hosts for overproduction of these

highly valuable metabolites (360, 366).

The ME of PBPs can be performed in different ways,

including overexpression of PPs biosynthetic structural

genes and transcription factors, up and down-regulation of

genes/enzymes involved in the biosynthesis of certain PPs,

silencing of specific metabolic routes in phenylpropanoid

pathway, down-regulation of PPs biosynthesis structural

genes using interference miRNAs, and enhancing the

production of intermediary substrates of phenylpropanoid

enzymes (365–369).

In this regard, several lines of evidence suggest that the

metabolic engineering of PBPs could enhance crop resistance

against plant pathogens (369, 370). In an interesting study,

ME of PBPs in soybean hairy roots influenced root resistance

to fungal pathogens (370). Additionally, scientific outcomes

also reported that the presence of gallic acid and hydrolysable

tannins in the pellicle tissues of walnuts were accounting for

prevention of AFs biosynthesis (371). Biofortification lignin

biosynthesis in plants has been considered as a defensive

strategy in the retardation of pathogen entrance and growth

(372). For example, the overexpression of OsWRKY89 gene

in GM rice plants has shown to influence resistance to rice

blast by modulating the biosynthesis of PPs and increasing the

lignification process of GM lines (373).

The overexpression of PAL gene in GM tobacco plants could

enhance their resistance against Phytophthora parasitica and

Cercospora nicotinae fungal pathogens (372, 374). In this respect,

studies manifested that transformation of other key regulators of

phenylpropanoid pathway along with PAL gene might increase

phenolic content (in particular rutin and chlorogenic acid) of

GM plants compared to wild-type lines (375). These outcomes,

as documented in the literature, indicated that production of

PPs-rich GM plants not only improved plant resistance to

fungal pathogens, but also enhanced their antioxidant properties

(372). Correspondingly, engineering of flavonoids pathways

in flax plants has shown to increase the accumulation of

fatty acids in GM flax seeds and oil (376). This outcome

has shown that the overproduction of flavonoids resulted in

the prevention of lipid oxidation during seed development

and maturation and increased its antioxidant properties for

biomedical applications (376).Multi-level engineering of tomato

plants by targeting specific transcription factors (e.g., AtMYB12)

has been increased the fruit dry weight, carbonmetabolisms, and

improved the functionality of shikimic acid and phenylalanine

pathways (377). This outcome indicated that the accumulation

of phenylpropanoid bioactive metabolites not only improved

the quality of engineered tomato plants, but also provided a

ground for biofortification of healthy foods enriched in health

promoting secondary metabolites (377).

The overexpression of maize Lc gene in transgenic apples

spectacularly increased the production and accumulation of

anthocyanins and falvan-3-ols resulted in a higher resistance

to Erwinia amylovora bacterium and Venturia inaequalis

fungus (378). In another line of research, the cloning of

Solanum sogarandinum 7-O-glycomethyltransferase enzyme in

transgenic flax plants significantly increased the accumulation

and stability of flavonoid glycosides (anthocyanidins and

flavonols), leading to a higher resistance to the fungus Fusarium

and improved antioxidant and oil content of GM flax (379).

Further information regarding scientific investigations on ME

of plants PBPs can be obtained in the available literature reviews

(366, 367). Indeed, Microbial production of PPs using GM

bacterial strains have also resulted in significant over-production

of these health promising metabolites (360, 380) which can be

used to expand clinical and experimental studies on PPs.
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FIGURE 11

A quick glance at PPs. (1) general facts about PPs, (2–4) PPs classification systems and relevant gaps, (5) PPs ignored facts, (6) the core backbone

of well-known PPs. R1 and R2 represent the chemical moieties prone to bind these positions.

The available evidence suggests that such biotechnological

methods not only increased the quantity and availability of PPs

for industrial, food and medicinal purposes (360, 381, 382), but

also expedited the number of scientific investigations conducted

on PPs to find the most potent metabolites for large-scale

applications (361). The available literature suggests that there

have been no comprehensive studies in the literature to engineer

crops PBPs against APF. Therefore, developing highly PPs-

rich GM plants among susceptible crops to AFs using modern

biotechnological and breeding procedures might be considered

as alternative mycotoxin management strategy to decrease the

global spread of AFs. Although presently GM crops are not

universally popular due to the rumors revolved around (383,

384), nevertheless, GMOs are part of hundreds of suggestions

to eliminate AFs in food/feed. Additionally, the ME of PPs

biosynthetic pathways might increase the long-term resistance

of recombinant plants to invasive fungal pathogens and decrease

the application of chemical fungicides, though this benefit will

require further large-scale investigations to confirm its efficacy

against crop fungal pathogen damages.

PPs as modulators of critical
signaling pathways

As anticancer agents, PPs could modulate signaling

pathways involved in cancer by up and down-regulation of

gene expression and suppression of the release of inflammatory

factors (385, 386). Experimental assays also unraveled that

PPs could inhibit cancerous tumor growth by triggering

apoptosis and blocking signaling pathways involved in tumor

cell angiogenesis (387). The antioxidant content of PPs also

support these metabolites in decreasing ROS/RNS levels in

cancerous cells (388). Indeed, PPs affect the cancerous cells

gene expression profile, leading to suppressing cancerous cell

development and metastasis (389, 390). The growing body of

evidence suggests that PPs have impacts on DNA methylation

and epigenetic modifications associated with progress of cancer

(390). PPs also inhibited the activity of DNAmethyltransferases,

leading to significant changes in the methylation pattern of

specific genes involved in various types of cancers (391). PPs
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could also modify the expression of microRNAs involved in the

regulation of cancer metastasis pathways (392).

Proteins such as G protein-coupled receptors, PI3K,

AKT, MMPS, EGFR, VEGF, ERK, STAT3, p53, FOX, JNK,

caspases, JAK, PKC, FGF, Nrf2, ALK, ROS1, mTOR, and

MAPK are pivotal derivers in the pathogenesis of human

cancers (386, 392). In a dose-dependent fashion, PPs could

modulate the activity of these proteins, leading to inhibition

of primary phases of tumor development (386, 393). Blocking

and/or modulating the secretion of cancer-induced pro-

inflammatory mediators is another health-promising effect

of PPs (394). Inhibition of cancerous cell proliferation

(395), inducing apoptosis (387), and suppressing cell cycle

events are promising strategies in the cornerstone of cancer

therapies. PPs have been shown to regulate these critical

processes in cancerous cells through a range of molecular

mechanisms (396). Anticancer activity of PPs in clinical

trials and animal studies has also substantially studied (397–

400).

As evidenced in the literature, as anti-inflammatory

phytochemicals certain PPs (e.g., flavonoids, stilbenes,

curcuminoids) could ameliorate the consequences of

neuroinflammation (248). These phytochemicals principally

interacted with pivotal neuro-inflammatory signaling waterfalls,

improved brain enzymatic activity, decreased nitrosative

stress and RNS formation, improved brain antioxidant

defense, regulated of pro-inflammatory-related gene

expression, restored the activity of astrocytes and microglial

cells, modulated brain transcription factors expression,

alleviated COXs expression, enhanced expression of anti-

inflammatory genes, and protected brain neuronal cells

(248, 401, 402).

As anti-diabetic phytochemicals, PPs showed a broad-

spectrum of biological activities to alleviate the complications of

DM (403, 404). In this regard, several studies generally attributed

the anti-diabetic potential of PPs to their capability to reduce

blood glucose level, improve insulin sensitivity and secretion,

alleviate oxidative/nitrosative stress, inhibit carbohydrate

digestive enzymes, alleviate β-cells apoptosis, ameliorated

lipogenesis, alleviate glucogenolysis and gluconeogenesis, up-

and down-regulate of DM-associated genes, and modulate

signaling pathways (NF-κB, ERK, PPAR, AMPK, cytokines,

protein tyrosine phosphatases, glucose transporter receptors,

hepatic enzymes, tyrosine kinases, insulin receptors) (403–406).

Biochemical andmetabolic factors, including concentrations

of PPs, duration of PPs administration, PPs metabolism and

post-metabolism modifications, interaction with intestine

metabolites/enzymes, interaction with gut microbiota,

gastrointestinal uptake, and their bioavailability the body

tissues affect the molecular effects of PPs. The following sections

summarized the recent trends on the application of PPs in

prevention of AFs consequences.

PPs mechanism of actions for
improving AFs complications

As documented in the literature, PPs exhibited anti-

fungal activity against various types fungal pathogens (407).

Respectively, Ahmed and colleagues comprehensively reviewed

the inhibitory profile of PPs in preventing AFs production

(407). This study, however, focused on PPs mechanism

of actions to inhibit AFs formation, and highlighted the

associated food safety issues (407). Indeed, another review

by Fan et al. summarized recent updates on the application

of phytochemicals in detoxifying AFB1-induced hepatotoxicity

(21). This study also included PPs as possible candidates

to ameliorate AFB1 side effects, however, the study mainly

discussed anti-AFB1 mechanisms of different phytochemicals

(21). There have not been similar comprehensive review studies

on anti-AFs activity of PPs in the literature until the time

we prepared this review. Therefore, to increase our current

knowledge of anti-AFB1 properties of PPs, in this section

we provided an in-depth insight into PPs/PPs-rich extracts

mechanism of actions in alleviating health hazardous effects of

AFs, in particular AFB1, by summarizing recent trends obtained

from animal-based and in vitro studies.

Due to multiscale biological activity of PPs, scientific

investigations promoted these naturally occurring metabolites

in preventing AFs complications (324, 408). Studies suggested

that PPs can directly or indirectly affect the metabolism of AFs,

leading to significant reduction of AFs toxicity (409–414). These

interesting results purported that PPs substantially interfered

with the formation of AFs-HSA complex (191), reduced the

construction of AFs-DNA adducts (415), regulated AFs-induced

inflammation (416), and also improved detoxification of AFs in

liver (417). Bearing this fabulous quote “All things are poison,

and nothing is without poison; the dosage alone makes it so a

thing is not a poison,” credited to Paracelsus (418) in mind, it

can be said that only particular doses of PPs might suppress

the onset of AFs-induced metabolic and chronic disorders.

Therefore, understanding the biological properties of PPs after

their metabolism and tissue intake in the body can supposedly

help to identify the exact behavior of these metabolites in AFs

therapy scenarios. In this regard, there are hundreds of studies

confirmed that PPs could alleviate the end effects of AFs-induced

complications, as detailed in the following paragraphs.

In rats fed with 72 µg/kg/b.w. AFB1 and 100 mg/kg/b.w.

PPs-rich leaf extract of artichoke (Cynara scolymus L) (PLEA)

for 42 days, the outcome manifested that the PLEA promoted

partial neuroprotective properties. Accordingly, PLEA down-

regulated total plasma lipids/LDL/VLDL, and simultaneously

increased HDL levels (419). Although supplementation of PLEA

alone had no effects on TNF-α, TIMP3 and IDO concentrations

in the brain of rats, however, the results displayed that when

rats supplemented with PLEA + AFB1 the total concentrations
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of these biomarkers relatively decreased but still was not

meaningful compared to control group (419). Co-treatment of

rats with PLEA+AFB1 was also ameliorated the oxidative stress

in the brain of rats, and improved antioxidant enzymes. It seems

that the joint administration of PLEA + AFB1 could alleviate

oxidative stress in the brain and improve the histological effects

of AFB1 on the brain (419).

Similarly, quercetin (30 mg/kg) showed significant

neuroprotective effects in Balb/c mice co-administrated with

AFB1 (0.75 mg/kg/b.w.) (328). Quercetin reduced TNF-α

and IL-1β levels, increased GSH, CAT, and SOD levels, and

prevented memory impairment in mice exposed to chronic

levels of AFB1 (328). In rats co-supplemented with 80

µg/kg/b.w. AFB1 and 300 m/kg/b.w. PPs-rich ethanolic extract

of Chelidonium majus (PEEC), the outcome showed that PEEC

alleviated the neurochemical biomarkers (420). In AFB1-treated

group, rats showed a significant increase in TNF-α, IL-1β

and CD4, AChE, dopamine, and caspase 3 levels whereas

co-treatment of PEEC (not PEEC alone) significantly alleviated

the increased levels of studied neurochemical markers in rats’

cortex and hippocampus areas, and improved the activity of

antioxidant enzymes (GSH, SOD, CAT, GPx) (420).

As evidenced in the literature, gallic acid (GAc) abated the

health consequences of exposure to AFs. In a study conducted

by Owumi et al. (421), the evidence suggested that gallic acid

exhibited potential anti-inflammatory and antioxidant activity

in rats co-treated with 75 µg/kg AFB1 and 20–40 mg/kg

GAc for 28 days. GAc exhibited its antioxidant activity by

increasing GSH, SOD, CAT, GPx levels (421). This compound

improved antioxidant balance in testes, hypothalamus, and

epididymis of rats. The outcome also unraveled that GAc

decreased lipid peroxidation, and oxidative/nitrosative stress

(421). Correspondingly, GAc alleviated apoptosis mediators

in rats by reducing IL-1β, TNF-α, nitric oxide levels, and

suppressing myeloperoxidase (421). This observation proven

that GAc could ameliorate AFB1-induced oxido-inflammatory

responses in reproduction system (421). In Swiss male albino

rats co-supplemented with 750–1,000 µg/kg/b.w./day AFB1 and

2 mg/0.2ml olive oil/day, the outcomes showed that curcumin

could ameliorate the AFB1-toxic effects in reproduction system

of rats by improving caput and cauda epididymis weight and

enzymatic activity (422). In a similar study, co-treatment of

curcumin and AFB1 displayed that curcumin alleviated AFB1-

induced toxic effects in rats’ reproduction system by improving

semen parameters such as sperm quality and quantity, mobility,

viability and other sperm relevant features (423). In another

study, the whole transcriptome analysis of BFH12 cell lines co-

treated with curcumin and AFB1, the finding purported that

curcumin abated the inflammatory responses and improved

antioxidant enzymes in AFB1-treated cells (424).

In a dose-dependent manner, phenolic metabolites such as

ellagic acid improved the activity of endogenous antioxidant

enzymes, prevented DNA damage and exhibited antimutagenic

properties in animal models exposed to AFB1 (324). Caffeic acid

in the concentration of 40 mg/kg exhibited protective effects

in reproduction system of male rats exposed to 50 µg/kg/b.w.

AFB1 through modulation of antioxidant enzymes, apoptosis,

and inflammatory factors (425). Apigeninidin-rich extracts of

Sorghum bicolor L. Moench (ASBEs) including ASBE-05/06/07

modulated inflammation and apoptosis mechanisms in kidney

and liver of rats exposed to 50µg/kg doses of AFB1 (426). ASBE-

06 with IC50 = 6.5µg/ml suppressed lung cancer cell lines.

Correspondingly, ASBEs were also modulated the expression

of STAT3 and caspase 3 proteins and displayed protective role

against oxidative and nitrosative stress (426). In an interesting

study, total flavonoids extract of Rhizoma Drynariae in the

concentration of 125 mg/kg inhibited AFB1-induced apoptosis

and regulated the expression of PI3K, AKT, Bax and Bcl2 in

broilers chickens (427). In rats fed with 400 mg/kg/b.w. AFB1,

oxidized tea phenolic compounds in the concentration of 100

µg/kg directly bound to AFB1, lowered its plasma level, and

increased AFB1 fecal excretion (27).

Quercetin in the concentration of 50 and 100 mg/kg/b.w.

displayed protective hepatocellular effects in liver of rats

received 1.4 mg/kg/b.w. AFs-containing diet (428). This finding

is in agreement with previous outcomes that examined the

efficacy of different doses of quercetin (15–45 mg/kg/b.w.) in

prevention hepatic damage of AFs in mice (327). Quercetin

also showed protective role against DNA damage when HepG2

cells treated with 5µg/ml quercetin and 1µM AFB1 for 2 h,

leading to a significant decrease in DNA damage from nearly

60–32% (21, 333). In an interesting investigation, chicks exposed

to 5 mg/kg AFB1 displayed an alteration in the activity of AST,

ALT, nitric oxide synthase, COX-2, caspase1/3/11, antioxidant

enzymes, and pro-inflammatory factors such as TNF-α, IL-1β/6

(429). Morin, a flavonol derivative, in a dose-dependent manner

(20–80 mg/kg) ameliorated inflammatory responses, restored

AFB1-induced liver and kidney damages by modulation of gene

expression and prevention of hepatocyte disruption in AFB1 fed

chicks (429).

Kolaviron, a bioflavonoid extracted from Garcinia kola

in mice administrated with 100 and 200 mg/kg of this

compound and 2 mg/kg AFB1 for 4 weeks significantly

reduced the AFB1-induced genotoxicity and oxidative stress

(430). This bioflavonoid not only abated the total level of

AFB1-DNA adducts, but also decreased the AFB1-induced

GGT, AST, and ALT activity by 72, 62 and 56% (430).

In adult rats treated with either 10 mg/kg/b.w. quercetin

nanoparticles (QNPs) or quercetin and 80 µg/kg/b.w. AFB1,

the outcomes have shown that QNPs showed significant anti-

aflatoxigenic properties compared to pure quercetin (330). In

this regard, QNPs (52.70 nm size) significantly reduced ROS

formation, AST/ALT and alkaline phosphatase levels, improved

cell viability, glutathione level, and mitochondrial function, and

decreased lipid peroxidation (330). This outcomes suggested

that Nano-formulation of PPs such as quercetin strengthened
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their hepatoprotective properties to alleviate the compilations

of AFs (330). In rats administrated with subcutaneous 25

mg/kg/b.w. ternatin, a tetramethoxyflavone extracted form

Egletes viscosa, and 1 mg/kg/b.w. for 72 h, the finding

suggested that this bioflavonoid significantly reduced AFB1-

induced AST/ALT levels, modulated MDA level, and displayed

chemoprotective effects against liver injury (431). Ternatin

markedly inhibited lipid peroxidation, bile-duct proliferation

and hepatic necrosis as vitamin E did (431). In another study,

the outcomes showed that ternatin decreased plasma liver GSH

quantity, alleviated liver oxidative stress and glycemic state, but

had no effects on liver regeneration (432).

As discussed formerly, AFs displayed a potent binding

affinity to human HSA (191) as well as BSA (193). PPs such as

resveratrol could compete with AFs to bind to critical active sites

of HSA by which showed an influential effect to decrease the

bioavailability of AFB1 and displace the stability of AFB1-HSA

complex (177). Studies demonstrated that flavonoids generally

displayed amoderate binding potency toHSA, however, flavones

and flavonols disclosed a higher tendency to interact with HSA

(433). Chemical modification (e.g., sulfation and glycosylation)

of flavonoids backbone might also be effective in lowering or

increasing their binding affinity to HSA (433). In a dose-time

dependent manner, green tea PPs (GTPs) modulated the AFB1

metabolism (by inhibiting of phase I and inducing of phase

II metabolism), and decreased the formation of AFB1-HSA

adducts (408). Additionally, GTPs in the concentration of 500

and 1,000mg significantly increased the excretion of AFB1–

mercapturic acid, the metabolized by-product of AFB1-8,9-

epoxide, into urine which indicated a significant modification

in the activity of GSTs (408). The outcome of this clinical

trial was also displayed that there was no significant change in

urine AFM1 levels, however, this finding strongly supports the

protective roles of GTPs in regulating AFB1 metabolism and

detoxification (408).

Notably, AFB1 induced hepatocellular pyroptosis (434), and

caused critical impairment of liver KCs (435). In mice treated

with 1 mg/kg/b.w. AFB1 for 4 weeks, the outcomes showed

that AFB1 activated NLRP3 inflammasome and inflammatory

infiltration, up-regulated COX-2, enhanced the secretion of IL-

1β, and activated KCs, leading to inflammatory-induced liver

injury (434). The flavonoid silibinin displayed hepatoprotective

activity via selective modulation of certain pathways in activated

KCs isolated form rat liver (436). Accordingly, silibinin inhibited

nitrosative and oxidative stress in a dose-dependent fashion

(IC50= 80 µM/L). While it has not inhibited prostaglandin E2,

silibinin was effective in inhibiting of leukotriene B4 (IC50 =

15 µM/L) and 5-lipooxygenase pathway (436). Curcumin was

also found to be functional in preventing hepatic pyroptosis

and oxidative stress (416). In this respect, in mice given oral

curcumin (100–200 mg/kg) and AFB1 (0.75 mg/kg) for 30

days, the outcome showed that this metabolite mitigated AFB1-

induced inflammatory liver injury by inhibiting of NLRP3

inflammasome activation, enhancing phase II AFs detoxifying

metabolism, up-regulating of Nrf2 signaling pathway, and

preventing the release of pro-inflammatory IL-1β/18 (416).

An increasing volume of evidence suggests that flavonoid

subclasses mainly attenuated toxin-induced liver injury

by regulating MAPK/NF-κB, CYPs, TLRs, c-JNK/ERK,

cytokines/chemokines, Nrf2/CYP2E1, Bcl2/AKT/caspases

signaling cascades, preventing oxidative stress, and enhancing

antioxidant enzymes (437). AFs has shown to induce the

expression of CYPs genes (438). Studies also proven that

PPs prone to interaction with CYPs isoforms, which in turn

can decrease the biotransformation of AFs after ingestion

(439). Generally, mechanism of AFs-induced liver injury is

a sophisticated process. The accumulating body of evidence

suggests that the liver toxicity of AFs is mainly associated with

oxidative/nitrosative stress, cellular apoptosis, mitochondrial

dysfunction, lipid/protein peroxidation, construction of AFs-

DNA adducts, DNA damage, induction of genomic mutation,

inhibition of tumor suppressor proteins, up-regulation of gene

expression, induction of inflammatory signaling pathways

(21, 440).

In this regard, robinetin and other polyhxdroxy flavonols

inhibited microsome-assisted formation of AFB1-DNA adducts

(334). Mutually, in Wistar male albino rats exposed to 2

mg/kg/b.w. AFB1 for 6 weeks, administration of 25 mg/kg/b.w.

silymarin (or silibinin) could decrease lipid peroxidation and

improve the activity of antioxidant enzymes of liver (up to

44–100%) and kidney (up to 82–100%) (441). It could also

protect liver from the altered levels of DNA, RNA, glycogen

and cholesterol by 70–100%, and hepatic GSH up to 25–37%,

respectively (441). Grape seed proanthocyanidins (GSPAs) also

showed protective role against AFB1-induced DNA damage.

In male Swiss albino rats received 0.5–1 mg/kg AFB1 for 2

days and 100–200 mg/kg/day GSPAs, the outcome suggested

GSPAs modulated the expression of Ogg1, Parp1, and p53 genes

involved in DNA repair (442).

PPs-rich cocoa extract has also been tested to investigate

its anti-AFs properties (443). The outcomes suggested that it

was not effective against AFB1 but it significantly reduced

the ROS formation and increased cell viability in cells treated

with AFB1 alone or mixture of AFB1 + OTA (443). On

the contrary, flavonoids-rich fractions prepared from Rhus

verniciflua Stokes (FRVs) displayed both in vitro and in

vivo chemoprotective against AFB1-induced liver injury. FRVs

remarkably decreased ROS formation and MDA level and

improved cell viability in HepG2 cells (444). Correspondingly,

oral administration of FRVs suppressed AFB1-increased serum

level of ALT, lactate dehydrogenase and alkaline phosphatase.

FRVs improved glutathione balance and superoxide dismutase

activity in AFB1-adminstarted mice liver (444). Indeed, FRVs

increased IgA and IgG titers in mice serum. Form this outcome,

it can be concluded that FRVs increased the formation of

AFB1-GSH complex and restored antioxidant defense (444).
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In male Wistar rats treated with 100 and 250 mg/kg ginger

PPs-rich extract (GPE) and 200 µg/kg AFB1 on the basis of

daily, the results showed that GPE could significantly reduce

liver damage, AFB1-induced toxicity, and showed remarkable

hepatoprotective properties (445). Additionally, it was observed

that GPE could improve the activity of endogenous antioxidant

enzymes, up-regulate Nrf2/HO-1 pathway, and reduce lipid

peroxidation (445). In piglets fed with 8% PPs-rich grape seed

extract (PGSE) and 320 µg/kg AFB1 for 30 days, the outcome

showed that lower concentration of PGSE has a low to moderate

impact on oxidative stress and inflammation in piglet spleen,

suggesting that greater concentration of PGSE is required for

better alleviation of AFB1 toxicity (446). The flavone aglycone

diosmetin displayed anti-OTA activity in MDCK kidney cells by

regulation of cellular ATP levels (447).

By-products of palm oil industry such as PPs-rich palm

kernel cake (PPKC) also alleviated AFB1-induced cell damage

and showed hepatoprotective effects in chicken hepatocytes

(448). It is believed that the molecular mechanisms underlying

anti-AFB1 properties of PPKC are associated with prevention

of lipid peroxidation, modulation of pro-inflammatory and

apoptosis genes, and improving the activity of antioxidant

enzymes (448). A study has displayed that in rats administrated

with 250 mg/kg Korean red ginseng (Panax ginseng) extract

(KRGE) and 150 µg/kg AFB1, KRGE could alleviate the adverse

effects of AFB1-induced inflammation and hepatotoxic effects

(449). Accordingly, KRGE improved serum biomarkers and

antioxidant enzymes and prevented apoptosis in hepatocytes

and liver inflammation (449). The recent studies have shown

that P. ginseng comprised various types of PPs in which

ferulic acid, rutin, chlorogenic acid, gentisic acid, p-/m-coumaric

acid, catechin, and kaempferol were the foremost domineering

phenolic metabolites in different tissues of this plant (450, 451).

Grapefruit juice extract in the concentration of 100 mg/kg

has displayed protective effects against AFB1-induced liver DNA

damage in F344 rats treated with 5 mg/kg AFB1 by gavage

(452). Correspondingly, the administrated extract remarkably

reduced hepatic CYP3A content but had no effects on CYP1A

and CYP2C quantities (452). Studies confirmed that flavonoids

(in particular naringin a flavanone-7-O-glycoside), vitamin C

and other organic acids are major metabolic components of

this extract (453), accounting for its antioxidant and biological

properties (454). In rats treated with different concentration

of olive cake PPs-rich extracts (OCPEs) (0.2–0.5ml), its

nanoparticle-based formulation and 22µg/kg AFB1 for 4 weeks,

OCPEs and its nano-formulation improved the neurotoxicity

of AFB1 in rats brain (455). In male Wistar rats given 20

g/kg basal diet bee pollen (BP) and 3 mg/kg basal diet AFs

for 30 days, the BP could ameliorate the toxicity of AFs by

increasing the proliferation of lymphocytes (456). Although this

observed benefit of BP was attributed to minerals, vitamins,

and amino acids, however, PPs are also accounting for 1.6%

total BP metabolites (456), which in turn might affect the

anti-AFs properties of BP. The evidence also suggests that

honeybee propolis, a resinous mixture of phytochemicals such

as flavonoids and non-flavonoid metabolites, vitamins B/C/E,

amino acids and other aromatic metabolites (457) could

alleviate the toxicity of AFB1 by improving the activity of

cytochrome P450 in honeybees (458). In male rats received

50 mg/kg/b.w. Iraqi propolis and 0.025 mg/kg/b.w. AFB1, the

propolis has found to be effective in the restoring AFB1-induced

gastrointestinal damages (459).

In mice orally administrated with different concentration

of AFB1 and 2% aqueous black tea extract (ABTE) (instead

of drinking water) for 30 days, the outcomes showed that

ABTE ameliorated the AFB1-induced lipid peroxidation in

mice liver by increasing the activity of enzymatic and non-

enzymatic antioxidant contents (460). The observed benefit is

accounted for the fact that ABTE is a PPs-rich fraction which

exhibited significant antioxidant activities (460). Similarly, in

mice co-administrated with low/high doses of ABTE and AFB1,

supplementation of AFB1 resulted in significant reduction of

DNA, RNA, glycogen and protein contents, and increased

phospholipase activity and cholesterol content (461). In this

regard, the ABTE co-administration displayed a protective role

in mice liver against AFB1-induced biochemical changes (461).

The co-supplementation of 2% ABTE, 200 µg/kg/b.w.

curcumin in rats given 750 µg/kg/b.w. for 90 days, the outcomes

confirmed that the co-administration of ABTE-curcumin

displayed synergistic effects in alleviating AFB1-induced liver

damages in rats (462). Correspondingly, ABTE-curcumin could

improve liver architecture, activity of antioxidant enzymes,

lipid profile (in particular lowering cholesterol content) and

liver biomarkers (462). In rabbits treated with 5 g/kg/b.w.

coumarin and 0.25 mg/kg/b.w. AFB1, coumarin improved body

weight and carcass gains, and reduced the toxicity of AFB1-

induced complications (463). As detailed, PPs could exhibit

their anti-AFs activity in a concentration-dependent manner,

thus optimization of PPs concentration for treatment of AFs

therapies is the most pivotal step in experimental assays

regarding this field. These outcomes together confirmed that

these plant metabolites are promising substances to reduce

the health consequences of AFs. Table 1 provides detailed

information on the mechanism of action of anti-AFs properties

of studied PPs.

As detailed in Table 1, PPs ameliorate AFs toxicity in

different ways. Accordingly, the anti-AFs activity of PPs mainly

contributed to preventing oxidative stress and inflammatory

responses, inhibiting mutations in DNA, regulating signaling

cascades, modulating phase I and II metabolism enzymes,

improving cellular antioxidant balance, and interfering

interaction of AFs and HSA. These data showed that flavonoids,

in particular oxidized tea PPs, were the most studied PPs in

the prevention of AFs toxicity. Indeed, the anti-AFs activities

of resveratrol and curcumin were also highly investigated.

Interestingly, different classes of PPs exhibited a wide range of
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TABLE 1 The possible anti-AFs mechanism of action of PPs.

Class Compound AFs Mechanism of action References

Flavonols Quercetin AFB1 • Improving antioxidant defense (191, 327–336)

• Inhibiting lipid peroxidation

• Improving the enzymatic activity of SOD, GSH, and CAT.

• Protecting brain cells from AFs-related oxidative damage and decreasing

hepatocellular damage

• Decreasing the expression of Bax and caspase 3 genes

• Regulation of cellular apoptosis.

• Inhibiting cytochrome P450 reductase

• Protecting liver cells from oxidative stress damage caused by AFB1

• Decreasing the binding affinity of AFB1 to HSA

• Activating the Nrf2-ARE signaling pathway

• Increasing hepatoprotective effect after combination with nanoparticles

• Decreasing DNA damage

• Inhibiting AFB1 binding to cellular DNA

• Preventing the biosynthesis of AFB1 by-product derivatives

• Decreasing the elevated activity of PKC

• Inhibiting the formation of AFB1-DNA adducts

AFM1 • Inhibiting the bio-transformation of AFB1 (464)

• Decreasing the synthesis of AFM1 by regulation of related signaling pathways.

• Regulating the activity of GSH/GST enzymatic function

• Inhibiting the pro-oxidant activity of AFB1

Rutin AFB1 • Preventing DNA damage by regulation of DNA-associated enzymes (465, 466)

• Displaying antimutagenic activity

Azaleatin AFs Not reported –

Fisetin AFB1 • Modulating antioxidant enzymes (332, 335, 410, 413, 467–469)

• Modulating the expression of inflammatory factors

• Decreasing aflatoxin-related oxidative stress

• Regulating the expression of TNFα and IL1α proinflammatory cytokines

• Modulating the enzymatic activity of GST

• Inhibiting hepatocarcinogenesis by regulating inflammatory-based signaling pathways

• Inhibiting cytochrome c P450 reductase

• Preventing metabolic activation of AFB1 by-products

• Inhibiting the formation of AFB1-DNA complexes

• Modulating the enzymatic activity of protein kinases such as GSK3β, PDK, PKB, PI3K

• Suppressing Akt protein signaling pathway

• Displaying dose-dependent antimutagenic effects against mutagenicity of AFB1

Galangin AFB1 • Inhibiting cytochrome c P450 reductase (332, 470, 471)

• Preventing AFB1 conversion to toxic metabolites

• Protecting DNA from damage

• Preventing metabolic transformation of AFs

• Improving the activity of detoxifying enzymes

• Reducing the hepatotoxicity of AFs

Gossypetin AFs Not reported –

Kaempferol AFB1 • Inhibiting the chemical transformation of AFB1 (409–414)

• Displaying antimutagenic effects against toxic derivatives of AFB1

• Preventing lipid peroxidation

• Attenuating liver cell apoptosis

(Continued)

Frontiers inNutrition 31 frontiersin.org

https://doi.org/10.3389/fnut.2022.981984
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Rasouli et al. 10.3389/fnut.2022.981984

TABLE 1 (Continued)

Class Compound AFs Mechanism of action References

• Scavenging free toxic radicals in metabolic pathways of AFs metabolism

• Improving body antioxidative system

• Inhibiting AFB1 bioactivation in liver

• Regulating cytochrome P450 activity

• Suppressing the formation of AFB1-DNA adducts

Myricetin AFB1 • Regulating cytochrome P450 activity (332)

Morin AFB1 • Improving kidney injuries (332, 429, 472)

• Regulating ALT and AST activity

• Improving hepatocyte disruption

• Attenuating inflammatory signaling pathways

• Improving renal cells necrosis

• Decreasing the level of MDA

• Regulating the activity of SOD, GSH, and CAT enzymes

• Decreasing the expression of TNFα, IL-6, IL-1β, iNOS, COX-2, caspase-1/3/11

• Inhibiting AFB1-induced heterophil extracellular traps release

• Regulating oxidative and inflammatory responses

• Improving complications of aflatoxicosis

• Preventing biotransformation of AFB1 metabolic derivatives

• Improving detoxification of AFs

Rhamnetin Preventing biotransformation of AFB1 metabolic derivatives (471)

Natsudaidain AFs Not reported –

Kaempferide AFs Not reported –

Isorhamentin AFB1 • Protecting cells against oxidative stress (327, 473)

• Inhibiting AFB1 genotoxicity effects

• Suppressing lipid peroxidation

Rhamnazin AFs Not reported –

Astragalin AFs Not reported –

Robinin AFs Not reported –

Spiraeoside AFs Not reported –

Flavanones Hesperetin AFB1 • Displaying antimutagenic effects against AFB1 metabolic derivatives (410)

• Regulating cytochrome c P450 activity

Hesperidin AFB1 • Inhibiting neural crest cells from apoptosis induced by AFB1 (474)

Naringenin AFB1 • Inhibiting bioactivation of AFB1 (413, 475)

• Regulating the activity of cytochrome P450 isoforms

Naringin AFB1 • Inhibiting the induction of liver carcinoma (476)

Poncirin AFB1 • Attenuating cellular apoptosis (411)

• Displaying hepatoprotective effects

• Inhibiting lipid peroxidation

• Improving the activity of antioxidant enzymes

• Protecting effects against oxidative stress

Pinostrobin AFs Not reported –

Sterubin AFs Not reported –

Sakuranetin AFs Not reported –

Isoflavones Genistein AFB1 • Mode of action similar to poncirin+ antimutagenic effects (411, 477)

Glycitein AFs Not reported –

Daidzein AFs Not reported –

(Continued)

Frontiers inNutrition 32 frontiersin.org

https://doi.org/10.3389/fnut.2022.981984
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Rasouli et al. 10.3389/fnut.2022.981984

TABLE 1 (Continued)

Class Compound AFs Mechanism of action References

Flavones Apigenin AFB1 • Displaying antimutagenic effects by regulating SOS enzyme activity (411, 478–480)

• Inhibiting metabolic activation of AFs

• Suppressing oxidative stress and apoptosis

• Showing hepatoprotective effects in combination with other PPs

• Preventing ROS formation and DNA damage

Luteolin AFB1 • Displaying antimutagenic effects in combination with other PPs (478, 480–482)

• Attenuating oxidative stress and apoptosis

• Showing protective properties for liver cells

• Activating the Nrf2 signaling pathway

• Scavenging free toxic radicals

• Decreasing the expression of Bax, caspase-3/9, Cytc genes

• Increasing the expression of the Bcl-2 gene

• Up-regulating HO-1, NQO1, GCLC, SOD1

• Improving liver injuries

• Preventing ROS formation and DNA damage

Tangeretin AFB1 • Displaying differential inhibitory effects on cytochrome c P450 activity (332, 483, 484)

• Minor regulating of mixed-function oxidase system

• Inhibiting unscheduled DNA synthesis

• Showing synergetic inhibitory effects in combination with other PPs.

6-

Hydroxyflavone

AFs Not reported –

Jaceosidin AFB1 • Displaying antimutagenic effects (479)

• Inhibiting metabolic activation of AFB1 metabolites

Eupatilin AFB1 • Displaying a similar mode of action like Jaceosidin (479)

Chrysoeriol • Displaying similar modes of action like Jaceosidin and eupatilin (479)

Flavan-3-ols Catechin AFB1 • Displaying antimutagenic effects against carcinogens in a dose-dependent manner (485–489)

• Inhibiting CYP enzymatic activity

• Regulation of NADPH-CYP reductase activity.

• Forming chemical complexes with AFB1

• Preventing the formation of AFB1-DNA complexes

• Improving liver injuries and oxidative stress complications

Epicatechin AFB1 • Showing a similar mode of action to catechin. (27, 443, 485, 488, 490)

• Regulating of CYP enzymatic activity.

• Displaying indirect protective effects against AFs-related oxidative stress.

• Preventing mycotoxin-based DNA fragmentations.

• Scavenging free toxic radicals

• Protecting kidney cells from cell death

• Displaying hepatoprotective effects

• Inhibiting gastrointestinal absorption of AFB1

• Improving liver injuries caused by AFB1

Epigallocatechin AFB1 • Displaying a similar mode of action like tea PPs (27, 485, 488)

• Improving oxidative stress and liver injuries

Epicatechin

gallate

AFB1 • Displaying a similar mode of action like tea PPs (21, 27, 485, 488)

• Alleviating oxidative stress and inflammation

Epigallocatechin AFB1 • Attenuating oxidative stress (21, 27, 488, 491)

gallate • Displaying antimutagenic effects in combination with other PPs

(Continued)
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TABLE 1 (Continued)

Class Compound AFs Mechanism of action References

• Inhibiting the biosynthesis of AFB1

Epiafzelechin AFs Not reported –

Fisetinidol AFs Not reported –

Guibourtinidol AFs Not reported –

Mesquitol AFs Not reported –

Robinetinidol AFs Not reported –

Anthocyanins Cyanidin AFB1 • Inhibiting the biotransformation of AFB1 in a dose-dependent manner (194, 471, 492–494)

• Showing no inhibitory effects against the formation of AFB1-8,9-epoxide

• Improving oxidative stress induced by AFs

• Inhibiting the DNA and protein synthesis by AFs

• Reducing DNA fragmentation induced by AFs

• Inhibiting caspase-3 activation

• Scavenging ROS produced by AFs metabolism

• Showing hepatoprotective effects

• Interfering with the interaction of AFB1 and HAS

• Increasing cell viability HepG2 cells treated with AFB1

• Improving the activity of antioxidant enzymes GST, GPx and GR

• Inhibiting DNA damage and oxidative stress induced by AFB1

• Showing antimutagenic potency against AFB1-induced liver damage in a

dose-dependent manner

• Improving antioxidant balance of cells in combination with glycosidic derivatives

Delphinidin AFB1 • Inhibiting the biosynthesis of AFB1 in A. flavous (495–497)

• Showing indirect antimutagenic effects against mutagen metabolizing enzymes

• Showing synergistic mode of action in combination with other anthocyanins

• Suppressing the genotoxicity of AFs

• Showing protective effects against colon carcinoma induced by AFs

• Modulating phase II metabolism enzymes

Europinidin AFs Not reported –

Pelargonidin AFB1 • Inhibiting biosynthesis of AFB1 in A. flavous (495, 497, 498)

• Displaying hepatoprotective effects

• Activating phase II metabolism enzymes

• Modulating Keap1/Nrf2 signaling pathway

Malvidin AFB1 • Inhibiting biosynthesis of AFB1 in A. flavous (495, 498, 499)

• Displaying weak inhibitory effects on mycotoxins complications

Peonidin AFs • Inhibiting the biosynthesis of AFB1 (495, 499–501)

• Strengthening plant defense system against AFB1

• Displaying weak inhibitory effects on mycotoxins complications

• Partial inhibition of IL-8 secretion

• Displaying anticancer activity but not related to induction of cancer by AFs/mycotoxins

Rosinidin AFs Not reported –

Miscellaneous Curcumin AFB1 • Improving oxidative liver damage (417, 471, 502)

• Inhibiting lipid peroxidation

• Regulating serum marker enzymes

• Modulating the expression of inflammatory factors

• Displaying hepatoprotective effects

• Decreasing the complications of AFs-related inflammation

• Regulating Nrf2/HO-1 signaling pathway

(Continued)
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TABLE 1 (Continued)

Class Compound AFs Mechanism of action References

• Influencing the autophagy of hepatocytes

• Regulating the activity of GSH, SOD, CAT and GSH-Px enzymes

• Inhibiting the biotransformation of AFB1

• Inhibiting the formation of AFB1-8,9-epoxide

Coumarins AFB1 • Inhibiting the biotransformation of AFB1 in a dose-dependent manner (471)

Resveratrol AFB1/2 • Increasing N6-methyladenosine mRNA methylation (177, 464, 503–511)

• Displaying hepatoprotective effects by scavenging ROS molecules produced by

AFB1 metabolism

• Inhibiting AFB1-induced apoptosis

• Regulating Nrf2/Keap1 signaling pathway

• Inhibiting lipid peroxidation and regulating CYP genes (e.g., CYP1A1,

CYP1A2) expression

• Regulating ALT, AST, MDA, and GSH levels

• Displaying hepatoprotective effects against liver injuries induced by AFs

• Displaying antigenotoxic effects by preventing DNA damage and degradation

• Competing with AFB1 to interact with DNA scaffold

• Preventing chromone aberration

• Decreasing the oxidative stress induced by AFB2

• Decreasing blood urea nitrogen

• Improving phase II metabolisms enzymatic activity and modulating antioxidant

enzymes, SIRT1 and NF-κB/NLRP3 signaling pathways

• Inhibiting biosynthesis of AFB1 in A. flavous

• Competing with AFB1 to bind to HSA subdomains

• Inhibiting reproductive toxicity of mycotoxins

Olive PPs AFs • Inhibiting biosynthesis of AFB1 in A. flavous (512)

heterogenous biological properties against toxicity of AFs. Our

review clearly disclosed that PPs targeted the core pathways

(inflammation-based responses) in the pathogenesis of AFs.

This interaction is important because not only in the onset of

cancer, but also inflammation (in particular NIF) play a critical

role in in the progression of neurodegenerative disorders and

MetSys (248, 250, 256). Therefore, as modulator secondary

metabolites, PPs have the potential tomaintain the normal status

of cell by regulating the onset of inflammation-assisted signaling

pathways and preventing the development of nCDs (338).

PPs-rich extracts for inhibiting AFs
production

PPs also prevent the formation of AFs in target fungi

(A. flavus and A. parasiticus strains) by modulating fungal

transcription factors activity (513, 514). For example, water-

soluble and methanol extract of peanut tannins were also

inhibited A. parasiticus growth and impaired the formation

of AFs in a dose-dependent manner (515). Studies have also

shown that the type of PPs extraction methods might affect

antifungal activity of these metabolites. In this regard, solid-

phase extraction of PPs-rich citrus peel extract displayed up to

40% antifungal properties against A. flavus compared to crude

extracts (516). Correspondingly, 300–400 mg/ml mandarin PPs-

rich extract is enough to completely inhibit A. flavus growth

depending on extraction method and applied solvents (516).

PPs-rich methanolic extract of Zanthoxylum bungeanum

(a traditional Chinese food additive) with the IC50 2–4µg/ml

significantly repressed the AFB1 biosynthetic pathway (517).

The omics-based analysis of this extract unraveled that it could

show the anti-aflatoxigenic properties by down-regulating of the

global regulators of AFB1 biosynthesis such as velvet complex

proteins, Medusa and brlA genes, and GPCR/oxylipin-based

signaling cascade (517). Intriguingly, PPs-rich olive processing

wastes (POPWs) also showed differential anti-aflatoxigenic

properties in a dose-dependent manner to inhibit the growth

of APF (518). Of all POPWs, olive pomace extract displayed

a higher anti-aflatoxigenic properties in comparison to olive

leave and pomace olive oil extracts, respectively (518). 5
′
-

hydroxy-auraptene, a coumarin derivative isolated from Lotus

lalambensis, in the concentration of 40µg/ml prevented the

AFB1 production and exhibited potential antifungal activity
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against A. flavus by down-regulation of genes involved in

different phases of AFB1 biosynthetic pathway and inhibition

of conidial germination of this fungus by 60% (519). The

outcomes also suggested that 5
′
-hydroxy-auraptene disrupted

the structure of mycelia sugar units and up-regulated stress

mediated transcription factors (atfA and atfB) up to 2 and 2.5

folds (519).

Buckwheat hull PPs-rich extracts (BHPEs) displayed a dose-

dependent inhibitory profile against A. flavus growth and

AFB1 biosynthesis (520). According to this outcome the higher

concentration of BHPE was accounting for longer inhibition

of AFB1 formation (520). In another study, the pau ferro

(Libidibia ferrea), a Brazilian medicinal plant, ethanolic fruit

extract has found to be effective in the inhibition ofA. parasiticus

growth (521). PPs-rich Cistus incanus L. methanolic extract

in the concentration of 0.2 g/ml significantly decreased the

formation of AFB1 production from 72.5 to 90.1% and inhibited

A. parasiticus growth (522). The essential oil of C. ladanifer,

another species of Cistus genus, has also found to be effective

in the prevention of A. flavus growth by suppressing AFB1

production, and inhibiting the fungus ergosterol biosynthetic

pathway with MIC value of 0.6 µl/ml, respectively (523).

An increasing trend of evidence purported that glycosidic

and aglycone derivatives of flavonoids and non-flavonoids

in a dose-dependent manner suppressed the production of

AFB1 and other mycotoxins by targeting the critical routes in

biosynthetic pathways of toxicogenic fungi (407). For instance,

compound of interest, quercetin also disrupted AFs-producing

fungal proliferation in addition to blocking the formation of AFs

(28). Similarly, Green tea PPs in the concentration of 70 mg/ml

suppressed the formation of AFs without side effects on the

mycelial growth of APF (524). Phenolics also showed potential

inhibitory profile against the production of other mycotoxins.

In an interesting study, Boonmee and colleagues reported that

simple hydroxycinnamic acid derivative, ferulic acid inhibited

the production of OTA in A. westerdijkiae and P. verrucosum by

35 and 75% (525). Synthetic derivatives of flavonoids such as 5,6-

dihydroxy-flavone and 5,6-dihydroxy-7-methoxy-flavone, in the

concentration of 25 and 50µg/ml, have significantly decreased

the production of OTA in A. carbonarius after 8-day incubation

(526). Similar to these outcomes, Romero et al. reported that

caffeic acid, rutin and quercetin in the concentration of 250

mg/L remarkably decreased the production of OTA in A.

carbonarius (527). Indeed, higher concentrations of these PPs

(500 mg/L) completely inhibited the growth of OTA-producing

fugus (527). The aqueous seed extract of Trachyspermum ammi

also showed beneficial effects in degrading AFB1 mycotoxin.

The phytochemical analyses revealed that T. ammi has different

types of metabolites such as PPs, alkaloids, tannins, and other

well-known natural substances (528).

Olive mill wastewater (OMWW) pure PPs such as caffeic

acid, hydroxytyrosol, tyrosol and verbascoside also showed

a decrease of nearly 99% in AFB1 production but had not

influenced A. flavus growth (512). Accordingly, OMWW extract

in the concentration of 15% was also decreased the formation

of AFB1 ranged from 88 to 100%, respectively (512). In a

dose-dependent manner, flavonoids-rich spent coffee grounds

extract (PSCGE) has also found to be effective in degrading

AFs (B1/2-G1/2) and OTA in vitro (529). The PSCGE was

remarkably decreased the growth of toxicogenic fungi such as

A. flavus and A. ochraceus as well as Fusarium species (529).

These outcomes demonstrated that food wastes/residues have

considerable level of health promotingmetabolites; alternatively,

can be used as potent inhibitors of APF and the production

of AFB1 and other mycotoxins (529). Therefore, it should be

noted that these waste by-products are trustworthy candidates

to develop and formulate modified extracts with added values as

anti-fungal agents.

Compared to PPs-rich extracts, alkaloids-rich extracts

(ALEs) showed potential inhibitory properties in detoxifying of

AFB1. In this respect, vasaka (Adhatoda vasica Nees) leaf ALEs

displayed functionality to degrade AFB1 up to ≥98% after 24 h

incubation at 37◦C (530). The amide alkaloid piperlongumine

isolated from Piper longum L. in the concentration of 0.2%w/v

inhibited the biosynthesis of AFB1 in A. flavus up to 96% (531).

Another piperidine alkaloid, piperoctadecalidine isolated from

P. longum displayed 100% inhibitory profile against biosynthesis

of AFB1 in the concentration of 0.7%, respectively (531). Other

relevant studies also reported that ALEs are promising anti-

fungal agents to prevent the formation of AFB1 and APF

growth (532). It seems that the anti-aflatoxigenic property of

alkaloids is dose-dependent, and the chemical variation of

alkaloids might determine their inhibitory profile. In this regard,

it can be said that both alkaloids/PPs-rich extracts and pure

metabolites are influential compounds in the prevention of AFs;

however, their chemistry and concentration are two determinant

factors in defining their inhibitory/biological profile. In modern

food industries, however, these metabolites are promising

candidates to develop antifungal agents. These results together

permit to harness phytochemicals for dealing with health

hazardous mycotoxins.

PPs-AFs related patents

Chemical fungicides (ChFs) are presently recruited for large-

scale inhibition of AFs production and APF growth (533).

However, as detailed in the literature, long-term application of

ChFs may lead to ChFs-resistant APF (533) and the onset of

health threatening symptoms (534). In this regard, there are only

few registered patents publicly available to use PPs as candidate

inhibitors of AFs biosynthesis. These innovations developed

specific products or GM plants to prevent the spread of AFs-

contaminated foods/crops. In an interesting patent, engineered

transgenic plants with elevated levels polyphenol oxidase/gallic

acid content showed resistance to A. flavus and AFs production
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(535). In another patent issued by Xiang et al., tea PPs in the

concentrations of 0.2–1% were effective in the reduction of AFs

biosynthesis by 21–81% (536). Dacheng et al. developed an anti-

mycotoxigenic feed additive for cattle in which tea PPs (1–5 parts

of whole patent formulation) have been used as main ingredients

of this product (537). In another patent, a preparation method

for constructing catechin nanoparticles has been suggested that

could decrease the bioavailability of AFB1 and prevent hepatic

injury (538). Despite the scarcity of patents on PPs for inhibition

of AFs production, however, in the light of discussed materials

herein further formulation of PPs can be crafted to develop

potent anti-AFs products.

Current status and future
perspectives

Increasing knowledge on the antioxidant content of natural

products and vitamins leads to developing “antioxidant therapy”

to relieve human diseases (539), though there have been

doubts in this field (540, 541). Studies have shown that the

combination of PPs and vitamins enhances their antioxidant

activity (539). It is now proven that cancer, MetSys and

neurodegenerative diseases are associated with a higher level

of oxidative/nitrosative stress and ROS/RNS production (30,

542–544). In this regard, natural antioxidants are primary

defensive agents in preventing early phases of cancer, AD and

DM progression (30, 388, 545). Accordingly, PPs received a

huge volume of attention due to their antioxidant properties

and becoming the relevant metabolites in antioxidant therapy

programs (546). Presently a considerable number of PPs in

the form of antioxidant supplements, cosmetic and food

additive products, sanitary agents, antibacterial products, and

pain relievers are available in global markets for non-clinical

applications (338).

Regarding PPs applications in alleviating AFs-induced

health challenges, there are several key points should be

highlighted before consideration of these metabolites for large-

scale studies. First, despite considerable studies conducted

on PPs, the optimum doses of phenolic compounds for

amelioration of AFs side effects have not yet determined.

This case causes a significant variability in observed biological

effects assigned to PPs. For example, studies have shown that

the anticancer activity of PPs is dose-dependent, in which

PPs shared different IC50 and Ki values for inhibition of

target enzymes (547). On the other hand, the intake of high

concentration of PPs might show adverse effects on kidney and

thyroid hormones level, as reported in animal models (548, 549)

and argued in the literature (540).

Second, standardization of PPs mode of action toward

cellular receptors requires sufficient data generated from clinical

trials and large-scale studies (546). For instance, the anticancer

activity of PPs depends on their chemical structure, doses and

subtypes of cancers (399). Third, as detailed in Table 1, anti-

AFs properties of PPs are not generally focused on specific

pathways, though the majority of studies confirmed that

these metabolites function through suppressing of AFs-induced

oxidative stress. This demonstrated that PPs might show off-

target effects to interact with several different receptors in the

body. Fourth, the pro-oxidant activity of PPs is another concern

(547, 550) might delay the recruitment of these metabolites

against AFs. On the other hand, some phenolic compounds

such as daidzein and genistein exhibited controversial effects

on the pathogenesis of hormone-associated cancers (399). Such

incongruous results have still not been reported for other

phenolic categories, and it is now believed that PPs displayed

their health-promising effects by interacting with various

receptors and signaling pathways (551). In this respect, the

emerging scientific investigations reported that supplementation

of antioxidants (vitamin E and N-acetylcysteine) in mice

increased the progression of lung cancer by inducing P53-

assisted oxidative stress (198). This finding suggests that

excessive supplementation of antioxidants might increase the

progression of nCDs, therefore, to avoid further complications,

and for cautionary reasons, the consumption of antioxidants

should be followed by considering optimum doses under strictly

controlled condition. Therefore, recruiting PPs or PPs-rich

extracts in anti-AFs therapies requires a deep insight into their

bioavailability, on-target mode of action, pharmacokinetics,

drug interventions, and chemical stability in the human body

(188, 547).

Another worthy point that should be addressed that is

PPs-rich waste products (e.g., OMWW) disclosed potential

inhibitory activity against AFB1 formation (512). Such products

have a certain group of PPs, called non-extractable PPs

(NEPPs) (552, 553), in turn, their biological activities have

not extensively been investigated due to limitations in

extraction methods or insolubility and polymeric essence

of these metabolites (554). Studies have shown that the

optimization of PPs extraction methods using innovative

technologies reduced required time and energy to elucidate

PPs, and improved the quantity of achievable phenolics

metabolites (555). These innovations help researcher to access

the whole PPs profile of herbaceous materials to determine

their biological activities. In this regard, we previously reviewed

the valorization methods of OMWW PPs extraction to

highlight the biological benefits of these phenolics that widely

released into the nearby environment (556). Similar studies

also suggested that such NEPPs from waste products have a

remarkable antioxidant content, resultantly may exhibit health

promoting effects in the cornerstone of the human diseases

prevention (557).

On the other hand, the current knowledge of PPs is

mainly associated with extractable O-glycosidic derivatives. The
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FIGURE 12

The findings of this study at a quick glance. AFs in production/storage sites caused damage to target products and passed to consumers, leading

to the progression of nCDs (Steps 1–5). Certain classes of PPs alleviated the side e�ects of AFs by modulating several critical signaling pathways

involved in the pathogenesis of AFs. Indeed, these compounds could inhibit the formation of AFs by regulating expression of critical genes

involved in biosynthetic pathways of AFs (Steps 6–8). Climate change markedly a�ects the occurrence of AFs, therefore, developing PPs-rich

GM plants might be considered as a strategic policy to decrease the quantity of these mycotoxins. GMCs, genetically modified crops; PKD,

Parkinson’s disease; EP, epilepsy; IBD, inflammatory bowel disease; CD, cardiovascular diseases; KD, kidney diseases; LD, liver diseases; HP,

hemophilia; SD, seizure disorder; CF, cystic fibrosis.

evidence purported that C-glycosidic PPs such as schaftoside

derivatives exhibited potential biological activity to enhance

crop resistance against pests (558). Therefore, such metabolites

can also be used to inhibit the growth of APF or prevent the

production of AFs.

Additionally, the current findings on anti-AFs activity of

PPs obtained from animal models (rodents and chicken) and

experimental assays, in turn, requiring further validations.

Future studies on how PPs might interact with nCDs-

associated molecular receptors and signaling pathways

(in particular inflammation) and their exact mode of

action in relieving AFs end effects should be conducted to

confirm their efficacy and safety for medical management

of mycotoxins. Figure 12 summarized the current findings

of this study.

Concluding remarks

Our literature review clearly manifested that shifts in world

climate can influence the distribution/quantity of AFs and

prevalence of nCDs. Additionally, the triangle of GCC/exposure

to AFs/progression of nCDs has significant complications for

human health, in turn, can increase the economic costs to

countries health care system. It is important to conduct more

large-scale and long-term investigations in susceptible countries

to GCC (in particular low andmiddle-income regions) to predict

future threats for designing effective preventative policies and

health risk assessments. Various types of food/feed items have

been identified with exceeded level of AFs contaminants,

resultantly this phenomenon might bring countries more deaths

during the upcoming years owing to the onset of nCDs
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complications. The co-occurrence of other GCC-associated risk

factors may expedite the progression of nCDs, though this claim

requires further approvement to know how synergistic effects

of environmental health hazardous risks will threaten human

health and lifestyle.

Countries implemented rigorous regulatory measurements

to monitor and diagnosis of AFs in contaminated foods/feeds.

However, the literature indicates that the current regulatory

settings should immediately be revisited due to the advent of AFs

and other emerging mycotoxins in various food commodities

(559, 560). AFs decreased the quality and marketability of

food/feed products, therefore causing damages to countries food

safety and economy (561). In this regard, increasing public

awareness, in particular among farmers and local food/feed

producers, plays a critical role in elimination of AFs and

preparing countries local society to deal with complications of

GCC and health threatening environmental risk factors.

Owing to the role of AFs in triggering immunosuppression

(37), interfering with protein metabolism and micronutrient

deficiency (276), and reducing antibody production

(562), specific diagnostic/predictive biomarkers should be

characterized in early detection of AFs-induced health

challenges to a better management of clinical symptoms. On the

contrary, PPs promoted initiate immune responses by activating

certain signaling pathways (563). This indicates that dietetic

intervention using PPs is an effective way to modulate immune

responses to alleviate the toxicity of AFs, though current PPs

gaps for clinical applications should be addressed in detail. In

neurodegenerative diseases, the accumulation of aggregated

proteins leads to the progression of these disorders (30, 564).

PPs have also shown regulatory effects in the modulation of

protein metabolism and activation of protein degrading systems

to prevent the accumulation of misfolded proteins (564).

Having such biological properties enabled PPs to combat AFs

health problems.

As discussed, no antidote has been introduced to alleviate

the toxicity of AFs and current management scenarios of AFs

complications are based on the removal of these mycotoxins

in foods. Indeed, the frequency of international studies on

AFs has spectacularly surged up in the past years in which

the USA, China, India occupied the top ranks of studies in

this field. Bibliometric analysis of the literature displayed that

the majority of studies conducted on AFs were focused on

carcinogenic, properties and detection methods of these toxins,

though association of exposure to AFs and the onset of DM and

ADhas been remarkably taken into consideration. This indicates

that long-term exposure to AFs evoked multidimensional health

challenges in addition to their potential in inducing HCC.

The literature reviewed herein suggested that the quest for

characterization of natural inhibitors of AFs is becoming a global

trend in food safety field. According to our literature review,

phenolics and PPs-rich extracts are promising AFs detoxifying

products. Green and black tea, turmeric, anthocyanins and

flavonols were the most studied phenolics metabolites to

detoxify AFs complications in animal and in vitro studies.

Despite the lack of enough clinical data on the effectiveness

of PPs in preventing AFs consequences, the available data

displayed that PPs showed a heterogenous biological activities

in preventing the side effects of AFs by targeting several

different molecular receptors. PPs reviewed in this paper can

be used for decontamination of AFs (and possibly other

emerging mycotoxins) either in the human/animal body or

production/storage sites after considering safety cautions.

As discussed, due to the negative effects of nCDs

and GCC on world economy, future studies should seek

to develop strategies that may improve the bioavailability,

mode of action, and pharmacokinetics properties of PPs in

the cornerstone of AFs-induced nCDs treatment. Coupling

antioxidant-assisted interventions with conventional physio-

chemical removal procedures of AFs in food/feed items and

developing GM PPs-rich crops are highly recommended to

decrease the quantity of AFs to lowest concentrations and

improve lifestyle and longevity of affected individuals. It is also

treasured to address this point that regular consumption of PPs

or PPs-rich functional foods might help in early preventing

of AFs-induced nCDs, though this finding requires further

clinical assessments.
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11. Mousavi Khaneghah A, Eş I, Raeisi S, Fakhri Y. Aflatoxins in cereals: state of
the art. J Food Saf. (2018) 38:e12532. doi: 10.1111/jfs.12532

12. Lee SD, Yu IS, Jung K, Kim YS. Incidence and level of aflatoxins
contamination in medicinal plants in Korea. Mycobiology. (2014) 42:339–
45. doi: 10.5941/MYCO.2014.42.4.339

13. Mahato DK, Lee KE, Kamle M, Devi S, Dewangan KN, Kumar P, et al.
Aflatoxins in food and feed: an overview on prevalence, detection and control
strategies. Front Microbiol. (2019) 10:2266. doi: 10.3389/fmicb.2019.02266

14. Mungamuri SK, Mavuduru VA. Role of epigenetic alterations in
aflatoxin-induced hepatocellular carcinoma. Liver Cancer Int. (2020) 1:41–
50. doi: 10.1002/lci2.20

15. Freire F, da Rocha MEB. Impact of mycotoxins on human health. In:
Mérillon J-M, Ramawat KG, editors. Fungal Metabolites. India:Springer (2017). p.
239–61. doi: 10.1007/978-3-319-25001-4_21

16. Vieira T, Cunha S, Casal S. Mycotoxins in coffee. In: Preedy VR, editor.
Coffee in Health and Disease Prevention. London: Elsevier, Academic Press (2015).
p. 225–33. doi: 10.1016/B978-0-12-409517-5.00025-5

17. Buszewska-Forajta M. Mycotoxins, invisible danger of feedstuff with
toxic effect on animals. Toxicon. (2020) 182:34–53. doi: 10.1016/j.toxicon.2020.
04.101

18. Negash D. A review of aflatoxin: occurrence, prevention,
and gaps in both food and feed safety. J Appl Microb Res. (2018)
1:35–43. doi: 10.31031/NTNF.2018.01.000511

19. Sowley ENK. Aflatoxins: a silent threat in developing countries. Afr J
Biotechnol. (2016) 15:1864–70. doi: 10.5897/AJB2016.15305

20. Tian F, Chun HS. Natural products for preventing and controlling
aflatoxin contamination of food. In: Abdulra’Uf L, editor. Aflatoxin-
Control, Analysis, Detection Health Risks. Croatia: InTechOpen (2017). p.
13–44. doi: 10.5772/intechopen.68413

21. Fan T, Xie Y, Ma W. Research progress on the protection and detoxification
of phytochemicals against aflatoxin B1-Induced liver toxicity. Toxicon. (2021)
195:58–68. doi: 10.1016/j.toxicon.2021.03.007

22. Boccellino M, D’Angelo S. Anti-obesity effects of polyphenol
intake: current status and future possibilities. Int J Mol Sci. (2020)
21:5642. doi: 10.3390/ijms21165642

23. Luca SV, Macovei I, Bujor A, Miron A, Skalicka-Wozniak K, Aprotosoaie AC,
et al. Bioactivity of dietary polyphenols: the role of metabolites. Crit Rev Food Sci
Nutr. (2020) 60:626–59. doi: 10.1080/10408398.2018.1546669

24. Mutha RE, Tatiya AU, Surana SJ. Flavonoids as natural phenolic compounds
and their role in therapeutics: an overview. Future J Pharm Sci. (2021) 7:1–
13. doi: 10.1186/s43094-020-00161-8

25. Zeb A. Concept, mechanism, and applications of phenolic antioxidants in
foods. J Food Biochem. (2020) 44:e13394. doi: 10.1111/jfbc.13394

26. Marino M, Del Bo’ C, Martini D, Porrini M, Riso P. A review of registered
clinical trials on dietary (poly) phenols: past efforts and possible future directions.
Foods. (2020) 9:1606. doi: 10.3390/foods9111606

27. Lu H, Liu F, Zhu Q, Zhang M, Li T, Chen J, et al. Aflatoxin B1
can be complexed with oxidised tea polyphenols and the absorption of the
complexed aflatoxin B1 is inhibited in rats. J Sci Food Agric. (2017) 97:1910–
5. doi: 10.1002/jsfa.7994

28. Zhou W, Hu L-B, Zhao Y, Wang MYZ. Inhibition of fungal aflatoxin B1
biosynthesis by diverse botanically-derived polyphenols. Trop J Pharm Res. (2015)
14:605–9. doi: 10.4314/tjpr.v14i4.7

29. Zhang Y-J, Gan R-Y, Li S, Zhou Y-N, Xu D-P, Li H-B, et al. Antioxidant
phytochemicals for the prevention and treatment of chronic diseases. Molecules.
(2015) 20:21138–56. doi: 10.3390/molecules201219753

30. Bukhari SNA. Dietary polyphenols as therapeutic intervention
for Alzheimer’s disease: a mechanistic insight. Antioxidants. (2022)
11:554. doi: 10.3390/antiox11030554

31. Mehrabi M, Karami F, Siah M, Esmaeili S, Khodarahmi R. Is curcumin an
active suicidal antioxidant only in the aqueous environments? J Iran Chem Soc.
(2022) 19:3441–50. doi: 10.1007/s13738-022-02538-3

32. Van Eck N, Waltman L. Software survey: VOSviewer, a
computer program for bibliometric mapping. Scientometrics. (2010)
84:523–38. doi: 10.1007/s11192-009-0146-3

33. Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky
A, et al. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene
ontology and pathway annotation networks. Bioinformatics. (2009) 25:1091–
3. doi: 10.1093/bioinformatics/btp101

34. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of
docking with a new scoring function, efficient optimization, and multithreading. J
Comput Chem. (2010) 31:455–61. doi: 10.1002/jcc.21334

35. Tomasello G, Armenia I, Molla G. The Protein Imager: a full-featured
online molecular viewer interface with server-side HQ-rendering capabilities.
Bioinformatics. (2020) 36:2909–11. doi: 10.1093/bioinformatics/btaa009

36. Romagnoli B, Menna V, Gruppioni N, Bergamini C. Aflatoxins in spices,
aromatic herbs, herb-teas and medicinal plants marketed in Italy. Food Control.
(2007) 18:697–701. doi: 10.1016/j.foodcont.2006.02.020

37. Pickova D, Ostry V, Toman J, Malir F. Aflatoxins: history, significant
milestones, recent data on their toxicity and ways to mitigation. Toxins. (2021)
13:399. doi: 10.3390/toxins13060399

38. Khlangwiset P, Shephard GS, Wu F. Aflatoxins and growth impairment: a
review. Crit Rev Toxicol. (2011) 41:740–55. doi: 10.3109/10408444.2011.575766

Frontiers inNutrition 40 frontiersin.org

https://doi.org/10.3389/fnut.2022.981984
https://www.frontiersin.org/articles/10.3389/fnut.2022.981984/full#supplementary-material
https://doi.org/10.1093/aepp/ppq016
https://doi.org/10.1016/j.gfs.2014.08.004
https://doi.org/10.1038/s41587-019-0152-9
https://doi.org/10.1073/pnas.0701976104
https://doi.org/10.1017/S0029665112002832
https://doi.org/10.1126/science.1239402
https://doi.org/10.3390/toxins13060385
https://doi.org/10.1080/10408398.2018.1548429
https://doi.org/10.1016/j.ijfoodmicro.2012.03.001
https://doi.org/10.3920/WMJ2014.1847
https://doi.org/10.1111/jfs.12532
https://doi.org/10.5941/MYCO.2014.42.4.339
https://doi.org/10.3389/fmicb.2019.02266
https://doi.org/10.1002/lci2.20
https://doi.org/10.1007/978-3-319-25001-4_21
https://doi.org/10.1016/B978-0-12-409517-5.00025-5
https://doi.org/10.1016/j.toxicon.2020.04.101
https://doi.org/10.31031/NTNF.2018.01.000511
https://doi.org/10.5897/AJB2016.15305
https://doi.org/10.5772/intechopen.68413
https://doi.org/10.1016/j.toxicon.2021.03.007
https://doi.org/10.3390/ijms21165642
https://doi.org/10.1080/10408398.2018.1546669
https://doi.org/10.1186/s43094-020-00161-8
https://doi.org/10.1111/jfbc.13394
https://doi.org/10.3390/foods9111606
https://doi.org/10.1002/jsfa.7994
https://doi.org/10.4314/tjpr.v14i4.7
https://doi.org/10.3390/molecules201219753
https://doi.org/10.3390/antiox11030554
https://doi.org/10.1007/s13738-022-02538-3
https://doi.org/10.1007/s11192-009-0146-3
https://doi.org/10.1093/bioinformatics/btp101
https://doi.org/10.1002/jcc.21334
https://doi.org/10.1093/bioinformatics/btaa009
https://doi.org/10.1016/j.foodcont.2006.02.020
https://doi.org/10.3390/toxins13060399
https://doi.org/10.3109/10408444.2011.575766
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Rasouli et al. 10.3389/fnut.2022.981984

39. Marchese S, Polo A, Ariano A, Velotto S, Costantini S, Severino L. Aflatoxin
B1 and M1: Biological properties and their involvement in cancer development.
Toxins. (2018) 10:214. doi: 10.3390/toxins10060214

40. Hakeem KR, Oliveira CA, Ismail A. Aflatoxins in Food: A Recent Perspective.
Switzerland: Springer Nature (2022).

41. Prandini A, Tansini G, Sigolo S, Filippi L, Laporta M, Piva G. On the
occurrence of aflatoxin M1 in milk and dairy products. Food Chem Toxicol. (2009)
47:984–91. doi: 10.1016/j.fct.2007.10.005

42. Kumar P, Mahato DK, Kamle M, Mohanta TK, Kang SG. Aflatoxins: a global
concern for food safety, human health and their management. Front Microbiol.
(2017) 7:2170. doi: 10.3389/fmicb.2016.02170

43. Ostry V, Malir F, Toman J, Grosse Y. Mycotoxins as human
carcinogens-the IARC Monographs classification. Mycotoxin Res. (2017)
33:65–73. doi: 10.1007/s12550-016-0265-7

44. Medina Á, González-Jartín JM, Sainz MJ. Impact of global warming on
mycotoxins. Curr Opin Food Sci. (2017) 18:76–81. doi: 10.1016/j.cofs.2017.11.009

45. Gruber-Dorninger C, Novak B, Nagl V, Berthiller F. Emerging mycotoxins:
beyond traditionally determined food contaminants. J Agric Food Chem. (2017)
65:7052–70. doi: 10.1021/acs.jafc.6b03413

46. Battilani P, Toscano P, der Fels-Klerx V, Moretti A, Camardo Leggieri M,
Brera C, et al. Aflatoxin B1 contamination in maize in Europe increases due to
climate change. Sci Rep. (2016) 6:1–7. doi: 10.1038/srep24328

47. Maja MM, Ayano SF. The impact of population growth on natural resources
and farmers’ capacity to adapt to climate change in low-income countries. Earth
Syst Environ. (2021) 5:271–83. doi: 10.1007/s41748-021-00209-6

48. Lyon C, Saupe EE, Smith CJ, Hill DJ, Beckerman AP, Stringer LC, et al.
Climate change research and action must look beyond 2100. Glob Change Biol.
(2022) 28:349–61. doi: 10.1111/gcb.15871

49. Romanello M, McGushin A, Di Napoli C, Drummond P, Hughes N,
Jamart L, et al. The 2021 report of the Lancet Countdown on health and
climate change: code red for a healthy future. Lancet. (2021) 398:1619–
62. doi: 10.1016/S0140-6736(21)01787-6

50. Shahzad A, Ullah S, Dar AA, Sardar MF, Mehmood T, Tufail MA,
et al. Nexus on climate change: agriculture and possible solution to cope
future climate change stresses. Environ Sci Pollut Res. (2021) 28:14211–
32. doi: 10.1007/s11356-021-12649-8
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