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Regulation of RhoA activity by the cellular prion protein

Hee-Jun Kim', Hong-Seok Choi'?, Jeong-Ho Park'? Mo-Jong Kim'®, Hyoung-gon Lee*, Robert Bob Petersen®®, Yong-Sun Kim'?,

Jae-Bong Park*’ and Eun-Kyoung Choi*'?

The cellular prion protein (PrP°) is a highly conserved glycosylphosphatidylinositol (GPl)-anchored membrane protein that is
involved in the signal transduction during the initial phase of neurite outgrowth. The Ras homolog gene family member A (RhoA) is
a small GTPase that is known to have an essential role in regulating the development, differentiation, survival, and death of
neurons in the central nervous system. Although recent studies have shown the dysregulation of RhoA in a variety
of neurodegenerative diseases, the role of RhoA in prion pathogenesis remains unclear. Here, we investigated the regulation of
RhoA-mediated signaling by PrP® using both in vitro and in vivo models and found that overexpression of PrPC significantly
induced RhoA inactivation and RhoA phosphorylation in hippocampal neuronal cells and in the brains of transgenic mice. Using
siRNA-mediated depletion of endogenous PrP° and overexpression of disease-associated mutants of PrPC, we confirmed that
PrPC induced RhoA inactivation, which accompanied RhoA phosphorylation but reduced the phosphorylation levels of LIM kinase
(LIMK), leading to cofilin activation. In addition, PrPC colocalized with RhoA, and the overexpression of PrP® significantly
increased neurite outgrowth in nerve growth factor-treated PC12 cells through RhoA inactivation. However, the disease-associated
mutants of PrPC decreased neurite outgrowth compared with wild-type PrPC. Moreover, inhibition of Rho-associated kinase
(ROCK) substantially facilitated neurite outgrowth in NGF-treated PC12 cells, similar to the effect induced by PrPC. Interestingly, we
found that the induction of RhoA inactivation occurred through the interaction of PrP€ with RhoA and that PrPC enhanced the
interaction between RhoA and p190RhoGAP (a GTPase-activating protein). These findings suggest that the interactions of PrP®
with RhoA and p190RhoGAP contribute to neurite outgrowth by controlling RhoA inactivation and RhoA-mediated signaling and
that disease-associated mutations of PrP® impair RhoA inactivation, which in turn leads to prion-related neurodegeneration.
Cell Death and Disease (2017) 8, €2668; doi:10.1038/cddis.2017.37; published online 16 March 2017

The activity of Rho GTPases (Rho, Rac, and Cdc42) is
controlled by regulatory proteins that cycle between an
inactive GDP-bound state and an active GTP-bound state.
Rho GTPases are activated by guanine nucleotide exchange
factors (GEFs), which catalyze the exchange of GDP for GTP.
In contrast, GTPase-activating proteins (GAPs), which stimu-
late Rho GTPase activity, and Rho guanine nucleotide
dissociation inhibitors (GDIs), which inhibit the exchange of
GDP for GTP in the cytoplasm by forming a Rho—RhoGDI
complex, induce inactivation state of these GTPases.'?
Furthermore, the Rho—RhoGDI complex needs to be dis-
sociated by GDI displacement factor (GDF) before Rho
GTPases are activated by GEFs.® Activated Rho GTPases
stimulate effector proteins, such as Rho-associated kinase
(ROCK), mbDia, and p21-activated kinase (PAK). Rho
GTPases have roles in a variety of cellular functions including
cytoskeletal rearrangement.* In particular, the Ras homolog
gene family member A (RhoA) and RhoA regulatory proteins
(including p190RhoGAP and RhoGDI) participate in neuronal
differentiation processes, such as neurite outgrowth, neuronal
migration, axonal growth, and dendritic spine formation and

maintenance.® In addition, several studies have shown that
RhoA inactivation is essential for neuronal morphogenesis.®”
Application of C3 toxin (a RhoA inhibitor) or Y27632 (a ROCK
inhibitor) and overexpression of dominant-negative mutant
RhoA enhanced neurite outgrowth from PC12 cells in
response to nerve growth factor (NGF), basic fibroblast growth
factor (bFGF), and cAMP.8°

The cellular prion protein (PrP€) is a cell-surface glycosylpho-
sphatidylinositol (GPI)-anchored glycoprotein attached to the
plasma membrane.'® PrPC has been associated with various
cellular functions, including the cell cycle, cell growth, cell
proliferation, cell-cell adhesion, cell migration, and the main-
tenance of cell shape.'"'2 PrPC is strongly expressed in the
central nervous system (CNS) and can act as a regulator of
neuronal development, differentiation, and neurite outgrowth,
which may depend on interactions with various regulatory
proteins, including heparan sulfate proteoglycans,'®'* stress-
inducible protein-1,'® Grb2 protein,'® caveolin,’” neural cell
adhesion molecules (NCAMs),'®"® and extracellular matrix
(ECM) proteins.?®2" In addition, PrPC exerts its functions by
interacting with several kinases, including Fyn, protein kinase C

"llsong Institute of Life Science, Hallym University, Anyang, Republic of Korea; 2Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of
Korea; *Department of Biomedical Gerontology, Graduate School of Hallym University, Chuncheon, Republic of Korea; “Department of Biology, The University of Texas at
San Antonio, San Antonio, TX, USA; *Department of Patholog , Case Western Reserve University, Cleveland, OH, USA; ®Departments of Neuroscience and Neurology,
Case Western Reserve University, Cleveland, OH, USA and ‘Department of Biochemistry, College of Medicine, Hallym University, Chuncheon, Republic of Korea
*Corresponding author: E-K Choi, llsong Institute of Life Science, Hallym University, 15 Gwanpyeong-ro, 170 Beon-gil, Anyang, Gyeonggi-do 14066, Republic of Korea.
Tel: +82 31 380 1893; Fax: +82 31 388 3427; E-mail: ekchoi@hallym.ac.kr

or J-B Park, Department of Biochemistry, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do 24252, Republic of Korea.
Tel: +82 33 248 2542; Fax: +82 33 244 8425; E-mail: jbpark@hallym.ac.kr

Received 07.10.16; revised 18.12.16; accepted 10.1.17; Edited by M Agostini


http://dx.doi.org/10.1038/cddis.2017.37
mailto:ekchoi@hallym.ac.kr
mailto:jbpark@hallym.ac.kr
http://dx.doi.org/10.1038/cddis.2017.37
http://www.nature.com/cddis

PrPC facilitates RhoA inactivation
H-J Kim et al

(PKC), protein kinase A (PKA), phosphatidylinositol-3-kinase
(PI3K)/Akt, and extracellular regulated kinases (ERK1/2).2223
Loss of PrPC function has been implicated in neuronal
polarization and neurite outgrowth through the modulation of
integrin—ECM interactions and the RhoA-ROCK-LIM kinase
(LIMK)-cofilin signaling pathway.?* Recently, ROCK over-
activation and ROCK-3-phosphoinositide-dependent kinase
1 (PDK1) complex formation were shown to contribute to the
regulation of neuronal polarity and the generation of patho-
genic prions.2> However, the functional interaction between
PrP and RhoA-related signaling molecules remains unknown.
In this study, we investigated the relationships of PrP®
expression with RhoA activity and neurite outgrowth. We
demonstrated that PrP€ induced neurite outgrowth by inactivat-
ing RhoA and that PrP®-mediated RhoA inactivation may be
achieved by the interaction of PrP with RhoA and/or p190Rho-
GARP, resulting in the phosphorylation of RhoA at Ser188.

Results

PrP€ regulates RhoA activation and RhoA-mediated
signaling. To determine whether the PrPC affects RhoA
activity, a pull-down assay was performed with the glu-
tathione-S-transferase (GST)-Rhotekin-Rho-binding domain
(RBD) in the ZW13-2 (wild-type, WT) and Zpl3-4 (PrP
knockout) mouse hippocampal neuronal cell lines (Supple-
mentary Figure 1), as previously established.?® We found that
the level of RhoA-GTP in PrP knockout Zpl cells was
significantly higher than in control ZW cells (Figure 1a). We
confirmed this result by re-introducing mouse PrP (mPrP) into
Zpl cells, which exhibited lower RhoA-GTP levels than Zpl
cells that expressed the empty vector alone (Figure 1b).
These results suggest that PrPC negatively regulates RhoA
activity in hippocampal neuronal cells.

To further investigate the signaling pathway of RhoA
regulated by PrPC expression, we determined whether PrP®
modulates the RhoA-ROCK-LIMK-cofilin pathway. As shown
in Figure 2, PrP knockout and siRNA-mediated knockdown of
endogenous mPrP (si-mPrPC) cells exhibited less phosphory-
lated RhoA at Ser188 (p-RhoA), which negatively regulates
RhoA activity by enhancing its interaction with RhoGDI and
translocates RhoA from the membrane to the cytosol®” with
increases in phospho-LIMK1/2 (p-LIMK1/2) and phospho-
cofilin (p-cofilin) (Figures 2a and b). Supporting these results,
the re-introduction of mPrP reversed the changes in the levels
of p-RhoA, p-LIMK1/2, and p-cofilin compared with Zpl cells
expressing the empty vector alone, yielding a result similar to
that observed for the ZW cells (Figure 2c).

To confirm these results, we examined the effect of PrPC
expression on RhoA activity and on the phosphorylation levels
of RhoA downstream proteins in the brains of three different
types of mice: WT (C57BL/6J) mice, Tga20 mice that
overexpress PrP¢ (Tga20), and Zirich | Prnp-deficient
(Zarich 1) mice that lack PrPC. As expected, we observed an
increase in RhoA-GTP level (Figure 3a) accompanied by a
decrease in p-RhoA and increases in both p-LIMK1/2 and
p-cofilin (Figure 3b) in the brains of the Zurich | mice compared
with the brains of the WT and Tga20 mice. These findings
suggest that the expression of PrP€ inactivates RhoA activity
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Figure 1 PrPC regulates RhoA activation. (a and b) Detection of RhoA-GTP by
GST-Rhotekin-RBD pull-down assay in cells expressing PrP® (ZW) and PrP knockout
(Zpl) with or without expressing mPrP. The level of RhoA-GTP was determined by
western blot with anti-RhoA antibody following a pull-down assay. The data are
expressed as the mean + S.E. of three independent experiments (*P<0.05, n=3)

and subsequently affects its downstream regulatory proteins
including LIMK and cofilin.

PrPC controls F-actin formation through the RhoA/ROCK
pathway. Previous studies have reported that RhoA activa-
tion has a role in the regulation of cytoskeleton reorganization
through the formation of actin stress fibers and focal
adhesions.?82° Thus, we investigated the effect of PrPC on
the formation of actin stress fibers in ZW and Zpl cells. Stress
fibers were observed to form filamentous actin (F-actin),
which was detected with fluorescein isothiocyanate (FITC)-
conjugated phalloidin. As shown in Figure 4a, F-actin
formation was more strongly detected in Zpl cells than in
ZW cells, and silencing PrP€ in ZW cells markedly enhanced
F-actin formation (Figure 4b). To confirm this finding, we
determined the changes in G-actin and F-actin levels in ZW,
Zpl, and Zpl cells expressing mPrP using G-actin/F-actin
sedimentation assay. Consistent with the results of F-actin
formation, PrP knockout (Zpl cells) resulted in significantly
increased F-actin sedimentation in the pellet fraction,
whereas G-actin levels were not changed in the supernatant
fraction (Figure 4c). To further elucidate whether F-actin
formation regulated by PrP® is due to RhoA-mediated
signaling, cells were treated with Y27632, an inhibitor of
ROCK. Interestingly, Y27632 treatment decreased F-actin
formation in ZW cells (Supplementary Figure 2a). In addition,
we analyzed PrPC on F-actin-mediated cell adhesion using
WST-1 reagent, which is a quantitative method for evaluating
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Figure 2 PrP° modulates the RhoA-ROCK-LIMK-cofilin pathway. (a-c) Phosphorylation of RhoA, LIMK1/2, and cofilin in ZW and Zpl cells (), in ZW cells transfected with
scrambled RNA (SCR) or mPrP-targeted siRNA (Si-PrP) (b) and in Zpl cells with or without expressing mPrP (c) was analyzed in triplicate by western blot. The intensities of the
bands in each panel were measured and quantified for each group, and the values are expressed as the mean + S.E. of three independent experiments (*P< 0.05, **P<0.01,

**P<0.001, n=13)

attached cells. In a cell adhesion assay, F-actin-mediated cell
adhesion was significantly decreased in Zpl cells than ZW or
Zpl cells expressing mPrP (Supplementary Figure 3). These
findings indicate that PrP€ is involved in F-actin formation and
cell adhesion through the RhoA/ROCK signaling pathway.

PrPC interacts with both RhoA and p190RhoGAP. To
identify the molecular mechanism by which PrPC induces
RhoA inactivation, we sought to determine whether PrP€ and

RhoA directly interact in ZW and Zpl cells. As PrP€
possesses a partial sequence homology with RhoA and
RhoA effector proteins, including rhotekin, ROCK1, protein
kinase N (PKN), and rhophilin (Supplementary Figure 5), we
confirmed the interaction of PrP® with RhoA using a
co-immunoprecipitation assay in ZW cells (Figures 5a
and b). To further verify whether the interaction between
PrPC and RhoA occurs in the cytosol or membrane fractions
in ZW cells, co-immunoprecipitation of RhoA and PrP® was
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Figure 3 PrP s involved in RhoA inactivation in the brains of three different types of mice. (a) Detection of RhoA-GTP levels in the brains of C57BL/6J (BL6, WT), Tga20
(Tga, PrP overexpression) and Zirich | (Zu, PrP-deficient) mice (n= 3 per each group). (b) Phosphorylation of RhoA, LIMK, and cofilin was assessed in the whole-brain lysates of
C57BL/6J, Tga20, and Zirich | mice. The data are expressed as the mean + S.E. of three independent experiments (*P<0.05, **P<0.01, **P<0.001, n=3)

conducted on both fractions. As shown in Figure 5c, the
interaction between PrPC and RhoA in the membrane fraction
was slightly increased compared with the cytosol fraction,
although the level of RhoA in the cytosol fraction was higher
than the level in the membrane fraction (Figure 5b).
Furthermore, purified human recombinant PrPC protein
directly bound to purified recombinant GST-RhoA protein in
a concentration-dependent manner (Figure 5d). We also
found that PrP€ was colocalized with RhoA in the cytoplasm
and the plasma membrane of ZW cells (Figure 5e, arrow-
heads), suggesting that PrPC directly interacts with RhoA in
both the cytoplasm and the membrane.

As RhoA functions as a molecular switch between active
GTP-bound and inactive GDP-bound states, we next investi-
gated whether the GDP- or GTP-bound states of RhoA affect
its interaction with PrPC. ZW cell lysates were preloaded with
either GDP or GTPyS, and then co-immunoprecipitation of
RhoA with PrP was performed. We found that PrP°
preferentially interacts with active GTPyS-bound RhoA com-
pared with GDP-bound RhoA in ZW cells (Figure 6a). In
addition, the interaction of purified human recombinant PrP®
with RhoA was also increased in the presence of GTPyS in
ZPL cells (Figure 6b). These results showed that PrP® induced
RhoA inactivation through a direct interaction with RhoA in the
cytosol and membrane fractions of PrPC-expressing cells and
that GTP-bound RhoA may more favorably interact with PrPC.

The p190RhoGAP is known to be a major regulator of
RhoA activity,%>3" it contributes to actin rearrangement and
neurite outgrowth through binding to GTP-bound RhoA and
subsequently enhancing the hydrolysis of GTP.3? Thus, we
examined whether PrPC regulates RhoA inactivation by
facilitating the interaction between RhoA and p190RhoGAP.

Cell Death and Disease

As expected, reducing PrPC expression by si-PrPC decreased
its interactions with both RhoA and p190RhoGAP (Figure 6c).
These findings indicate that PrPC interacts with RhoA, as well
as p190RhoGAP, and that PrP® mediates the interaction
between RhoA and p190RhoGAP.

The disease-associated PrP® mutants impair neurite
outgrowth. Point mutations and polymorphisms of PrP°
are associated with genetic prion diseases,®® and several
studies have shown an association between the pathogeni-
city of prion diseases and neuronal differentiation.3*3°
Therefore, we investigated whether the disease-associated
mutations of PrPC affect NGF-induced neurite outgrowth in
PC12 cells stably expressing WT or disease-associated
mutants of PrP® (P102L and MAS8). Interestingly, the PC12
cells expressing WT PrP® exhibited enhanced neurite
outgrowth and neurite length in response to NGF, whereas
the cells expressing disease-associated PrPC mutants
impaired neurite outgrowth and reduced neurite length
(Figures 7a and b). In addition, the inhibition of ROCK by
Y27632 treatment significantly enhanced neurite outgrowth
and neurite length (Figures 7c and d). Using mutants of
RhoA (S188D, mimicking the phosphorylated form; S188A,
mimicking the dephosphorylated form), we found that
RhoA phosphorylation (Ser188) induced neurite outgrowth
in NGF-differentiated PC12 cells expressing PrP¢
(Supplementary Figure 4). These data indicate that PrP®
may facilitate neurite outgrowth and affect the cellular signal
transduction related to RhoA inactivation and that the
phosphorylation of RhoA at Ser188 can also enhance
PrPC-mediated neurite outgrowth.
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The disease-associated mutations of PrP® affect RhoA
signaling through reduced interaction with RhoA and
p190RhoGAP. To investigate the effect of disease-
associated mutations of PrP® on RhoA activity, PC12 cells
were transiently transfected with an empty vector, WT PrP°,
or disease-associated mutants of PrPC, and then treated with
NGF. Interestingly, we observed that RhoA-GTP levels were
increased in PC12 cells expressing disease-associated
mutants of PrPC compared with the cells expressing WT
PrPC, although these changes were lower in the presence of
NGF (Figure 8a). Interestingly, decrease in p-RhoA and
increases in both p-LIMK1/2 and p-cofilin were detected in
the cells expressing disease-associated mutants of PrP°
compared with the cells expressing WT PrPC (Figure 8b).
These results, which are correlated with those in PrP
knockout or knockdown cells, indicate that PrP® regulates
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neurite outgrowth through inactivation of RhoA and the Rho/
ROCK signaling pathway. Next, we examined whether these
disease-associated mutations of PrP® affect the interactions
between not only PrP® and RhoA but also RhoA and
p190RhoGAP. We found that the colocalization of PrP with
RhoA was significantly decreased in the cells expressing
disease-associated mutants of PrP® compared with cells
expressing PrP® WT based on immunofluorescence staining
(Figure 8c). Consistently, the co-immunoprecipitation of RhoA
with the disease-associated mutants of PrPC was significantly
decreased (Figure 8d). Moreover, the overexpression of
disease-associated PrPC mutants markedly decreased its
interaction with RhoA and p190RhoGAP (Figures 8e and f).
Notably, the disease-associated mutations of PrP® reduced
p190RhoGAP tyrosine phosphorylation, which led to a
decrease in p190RhoGAP activity (Figure 8g). Taken
together, these findings suggest that the disease-
associated mutations of PrP® impaired RhoA signaling and
the interaction with RhoA and p190RhoGAP.

Discussion

The physiological activity of PrP€ in many important aspects of
cell biology, including neuritogenesis and cell signaling, has
been well established.?*2°3¢ Recent studies have demon-
strated that PrP€ contributes to neuritogenesis through
modulating the 81 integrin-coupled RhoA-ROCK-LIMK-cofilin
signaling axis®* and that prion-induced ROCK overactivation
is involved in neuronal polarity and prion pathogenesis.25
However, it is still unclear whether PrPC can directly regulate
RhoA activity, and its related effector proteins have not yet
been elucidated.

In this study, we discovered a novel mechanism by which
PrPC controls RhoA activity and the RhoA-mediated signaling
pathway (Figure 8h). Both knockdown and silencing of PrP°
induce activation of RhoA, which is best known for its function
in reorganizing the actin cytoskeleton into stress fibers and
focal adhesions,® in concert with altered activities of down-
stream effector proteins (i.e., LIMK and cofilin). In addition,
PrPC expression is also involved in the regulation of focal
adhesion dynamics and actin polymerization.3”*® We also
found that the depletion of PrPC or the expression of disease-
associated PrP® mutants impaired actin cytoskeleton
dynamics and inhibited neurite outgrowth, possibly via
increased phosphorylation of cofilin (an inactive form), leading
to microfilaments that support stabilization. Unphosphorylated
cofilin (an active form) is known to sever F-actin, resulting in
depolymerization of F-actin.°

The altered balance of cofilin activity is critical for the
regulation of actin cytoskeleton dynamics and has been
associated with neurodegeneration.®®*° NADPH oxidase
(NOX) is activated through a PrPC-dependent pathway in
response to proinflammatory cytokines,*' and the overexpres-
sion of PrPC alone also induced NOX-mediated ROS
generation leading to the activation of cofilin and its oxidation
(Cys39 and Cys147) followed by cofilin-actin rod formation.*?
We found that overexpression of PrPC significantly reduced
the amount of p-cofilin, leading to cofilin activation without
changes in the total level of cofilin through the RhoA-ROCK-
LIMK-cofilin pathway, and led to increased neurite outgrowth

Cell Death and Disease
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in NGF-treated PC12 cells. In addition, this regulation
depends on the membrane environment and the interactions
among membrane components (i.e., NOX isoforms, (1
integrin, laminin, and fyn), resulting in PrPC-dependent
neuronal differentiation or synaptic dysfunction.

PrPC has been implicated in neurite outgrowth as an
interacting partner with NCAM and laminin. 81943 |n addition,
several interacting partners have been reported to directly
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bind to PrP€, which enhances brain development, neuronal
differentiation, and neuronal cell death in various cell lines
and animal models.">2' Moreover, these interactions can
regulate various signaling pathways, such as PI3K/AKT,?>44
ERK1/2,222% and RhoA/Rac1/Cdc42.'? Interestingly, the
PIBK/Akt and ERK1/2 pathways regulate transcriptional
profiles that promote neurite extension.*® Activation of
Rac1 and Cdc42 in conjunction with inhibition of RhoA
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(3F4) and anti-RhoA antibodies. (¢) The co-immunoprecipitation of RhoA or
p190RhoGAP using ZW cells transiently transfected with either SCR or Si-PrP was
detected by western blot using anti-p190RhoGAP and anti-RhoA antibodies,
respectively. The data are expressed as the mean+S.E. of three independent
experiments (*P<0.05, n=3)

activity increases neurite extension via posttranslational
mechanisms — both pathways functionally connect with
ROCK.*® We also demonstrated increased neurite extension
and neurite length as a result of ROCK inhibition by Y27632,
suggesting that PrP® exerts its influence on neuronal
differentiation by modulating RhoA-mediated signaling effec-
tors (i.e., ROCK and p190RhoGAP).

Specifically, we demonstrated the biological consequences
of PrP®-mediated RhoA inactivation that results from the
interaction of PrP® with RhoA and p190RhoGAP, and over-
expressing PrPC results in increased tyrosine phosphorylation
of p190RhoGAP, which elevates p190RhoGAP activity.
Indeed, p190RhoGAP was reported to be activated through
tyrosine phosphorylation by Src.*” In contrast, these results
were not observed for the disease-associated mutants of
PrPC. These findings suggest that PrPC may have a role in
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both the phosphorylation of p190RhoGAP and RhoA-
p190RhoGAP complex formation.

p190RhoGAP is activated by the binding of 81 integrins and
then translocates into a detergent-insoluble fraction upon
adhesion to fibronectin and colocalizes with F-actin in
lamellipodial protrusions.®%84® Fyrthermore, integrin cluster-
ing triggers RhoA inactivation through c-Src-dependent
activation of p190RhoGAP*” and p190RhoGAP-mediated
RhoA inactivation effectively induces neurite outgrowth in
PC12 cells.®® In addition, PKA phosphorylates RhoA at
Ser188, resulting in its release from membranes through
increased interactions with RhoGDI.%'®2 Furthermore, the
interactions between RhoA and RhoGDI were reported to
negatively regulate the cycling of RhoA activity at the leading
edge in migrating cells.>® We showed that overexpression of
the RhoA S188D mutant but not the S188A mutant promoted
neurite outgrowth in the NGF-treated PC12 cells expressing
PrPC. These data indicate that PrP® induced RhoA inactiva-
tion also through RhoA phosphorylation at Ser188. Further-
more, we demonstrated that PrP® is colocalized with RhoA
and that it enhanced the interaction between RhoA and
p190RhoGAP in response to NGF. However, the interacting
domains of PrP® and RhoA remain to be elucidated. In
general, active RhoA induced actin—-myosin interactions,
resulting in cell contraction, although inactive RhoA were
reported to prevent actin—-myosin interaction, which may
induce cell expansion and neurite outgrowth.*

In prion diseases, genetic mutations of PrPC¢ induce
spongiform encephalopathy and spontaneous neurodegen-
eration, and the disease-associated mutations of PrP® lead to
severe ataxia, apoptosis, and extensive central and peripheral
myelin degeneration.>®® As shown in this study, overexpres-
sion of the disease-associated mutants of PrP® (P102L and
MA8) impaired neurite outgrowth because of the failure to
inactivate RhoA and reduced the co-immunoprecipitation of
RhoA and p190RhoGAP. Interestingly, scrapie infection
increases RhoA activation by decreasing the interaction
between RhoA and p190RhoGAP (manuscriptin preparation).
Based on these findings, the disease-associated mutations of
PrPC and scrapie infection partially suppress neuronal
differentiation via the failure to inactivate RhoA.

Taken together, our results showed that PrPC€ contributes to
RhoA inactivation, leading to neuritogenesis and that disease-
associated mutants of PrP€ failed to inactivate RhoA, which in
turn leads to prion-related neurodegeneration. These findings
are important for understanding the mechanisms of
PrPC-mediated neuronal differentiation and survival.

Materials and Methods

Materials. Bovine serum albumin (BSA), Y27632, and the anti-f-actin antibody
were purchased from Sigma-Aldrich (St. Louis, MO, USA). Anti-RhoA, anti-Raci,
anti-Cdc42, anti-RhoGDI, and anti-cofilin antibodies were obtained from Santa Cruz
Biotechnology (Santa Cruz, CA, USA). NGF and the anti-p190RhoGAP antibody
were purchased from Millipore (Lake Placid, NY, USA). Anti-p-RhoA (S188), anti-p-
LIMK1/2, anti-LIMK1, and anti-LIMK2 antibodies were purchased from Abcam
(Cambridge, MA, USA). The anti-p-cofilin antibody was obtained from Cell Signaling
Technology (Danvers, MA, USA).

Cell culture, transfection, and generation of stable cell lines.
Mouse hippocampal neuronal cell lines, including ZW13-2 (WT PrP) and ZpI3-4
(PrP knockout) cells, were previously established.?® ZW and Zpl cells were
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response to NGF. (c) Colocalization of PrP with RhoA in the NGF-treated PC12 cells expressing either vector, WT, P102L, or MA8 was determined using confocal microscopy
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western blot using anti-PrP (3F4) and anti-RhoA antibodies. (e-g) PC12 cells transiently transfected WT or disease-associated mutants of PrP® were lysed and
immunoprecipitated with anti-RhoA (e) and p190RhoGAP antibodies (f). (g) The p190RhoGAP phosphorylation (p-Tyr) was detected using p-Tyr antibody after p190RhoGAP
immunoprecipitation. All above data are expressed as the mean + S.E. of three independent experiments (*P< 0.05, **P<0.01, n=3). (h) PrP°—RhoA interaction stimulates
RhoA inactivation and neurite outgrowth. In PrPC-expressing cells and mice, PrPC increased the phosphorylation of RhoA and p190RhoGAP, enhancing the interaction between
RhoA and p190RhoGAP. This complex led to the inactivation of RhoA and its downstream effectors. Subsequently, RhoA inactivation decreased actin polymerization and
enhanced neurite outgrowth. In contrast, depleting PrPC or expressing disease-associated mutants of PrPC prevented RhoA inactivation and neurite outgrowth by interfering with

the interaction

maintained in Dulbecco’s modified Eagle’s medium (DMEM) (Hyclone, Logan, UT,
USA) supplemented with 10% heat-inactivated fetal bovine serum (FBS; Hyclone),
100 units/ml penicillin and 100 pg/ml streptomycin (Thermo Fisher Scientific,
Rockford, IL, USA) at 37 °C under 5% CO.. Transient transfections were carried out
using the Lipofectamine 2000 reagent (Thermo Fisher Scientific) according to the
manufacturer’s directions. For siRNA transfection, ZW cells were transfected with
siRNA targeting human PrP (150 pmol/ml) for 72 h to silence PrP expression. PC12
cells stably expressing the pcDNA3.1/Zeo(+) vector or vector encoding human PrPs
(WT; P102L, the most common GSS-causing mutation; MAS8, octapeptide repeat
deletions) were generated using the Lipofectamine 2000 reagent, followed by
selection and maintenance in the presence of 250 ug/ml Zeocin (Thermo Fisher
Scientific). PC12 cells were grown in RPMI 1640 medium (Hyclone) supplemented
with 10% heat-inactivated horse serum (HS, Hyclone), 5% FBS, 100 units/ml
penicillin and 100 pg/ml streptomycin at 37 °C under 5% COs,.

Animals. The Prnp-transgenic (Tga20) and Prnp-deficient mice (Zirich 1) were
kindly provided by Dr. C Weissmann (Department of Infectology, Scripps Florida,
Jupiter, FL, USA) and Dr. A Aguzzi (Institute of Neuropathology, University Hospital
of Zlrich, Zirich, Switzerland), respectively. The WT control male C57BL/6J mice
were purchased from Young Bio (Seongnam, Republic of Korea). The Tga20, Ziirich
| and WT control C57BL/6J mice were housed in a clean facility under natural
light-dark cycle conditions (12-h/12-h light/dark cycle) and examined at 8-10 weeks
of age. All experiments were performed in accordance with Korean laws and with
the approval of the Hallym Medical Center Institutional Animal Care and Use
Committee (HMC2015-0-0411-3).

Induction of neurite outgrowth in PC12 cells. To assess neurite
outgrowth, the PC12 cells were plated at a density of 5x 10° cells per well on
35 mm culture dishes coated with poly-p-lysine solution (Sigma-Aldrich). After 12 h,
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the PC12 cells were incubated with 50 ng/ml NGF2.5S (Millipore) for the indicated
times in DMEM medium containing with 1% heat-inactivated HS, 0.5% heat-
inactivated FBS, and 100 units/ml penicillin and 100 pxg/ml streptomycin. The
quantity of neurite bearing cells was determined by counting at least 100 single
cells/3 arbitrary positions per dish. A cell was identified to as positive for neurite
outgrowth if it had at least a twofold increased cell body diameter. Cells were
visualized using a phase-contrast microscope (200x, Nikon TS100, Nikon,
Tokyo, Japan).

Western blot analysis. Cells were collected and washed once with ice-cold
phosphate-buffered saline (PBS) and lysed with modified RIPA buffer (50 mM Tris-
HCI (pH 7.4), 150 mM NaCl, 1% Nonidet P-40, 0.25% sodium deoxycholate, 10 mM
NaF, 1 mM NasVO,, 1 mM EDTA, and 1 mM EGTA) supplemented with a protease
inhibitor cocktail tablet (Roche, Indianapolis, IN, USA). The cell lysates were
centrifuged at 13000x g for 10 min, and the protein concentrations in the
supernatants were analyzed using a BCA protein assay kit (Thermo Fisher
Scientific). Equal amounts of proteins were separated using SDS-PAGE, transferred
to PVDF membranes, and probed with the appropriate antibodies. Immunoreactive
bands were visualized on digital images captured with an ImageQuant LAS4000
imager (GE Healthcare Life Sciences, Piscataway, NJ, USA) using EzwestLumi plus
western blot detection reagent (ATTO Corporation, Tokyo, Japan), and the band
intensities were quantified using ImageJ (NIH) program (Bethesda, MD, USA).
Statistical analyses were performed using GraphPad Prism4 (San Diego, CA, USA).

Immunocytochemistry. PC12 cells were treated with 50 ng/ml NGF2.5S in
DMEM media (supplemented with 1% heat-inactivated HS, 0.5% heat-inactivated
FBS, and antibiotics) for the indicated times at 37 °C under 5% CO,. The cells
were washed with PBS and fixed with a 4% paraformaldehyde solution for 20 min at
room temperature (RT). The cells were permeablized with 0.2% Triton X-100 for
10 min, and then the samples were blocked with 5% normal goat serum and 1%
BSA in PBS for 15 min at RT. For fluorescence labeling, the cells were incubated
with rabbit polyclonal anti-RhoA (1:100; Santa Cruz Biotechnology) and goat
polyclonal anti-PrP (1:200; Santa Cruz Biotechnology) antibodies overnight at 4 °C.
The cells were washed and incubated with fluorescein isothiocyanate-conjugated or
rhodamine-conjugated anti-mouse or rabbit IgG (1:500) for 1h, at RT. The
immunolabeled cells were examined using a LSM 700 laser confocal microscope
(Zeiss, Oberkochen, Germany).

Immunoprecipitation. The cells were harvested and washed once with ice-
cold PBS, and then lysed in modified RIPA buffer. The cell lysates were centrifuged
for 10 min at 13 000 x g and the supernatants were incubated with anti-RhoA, anti-
p190RhoGAP, and anti-PrP (3F10)%” antibodies for 2 h at 4 °C. After antibody
binding, protein A-conjugated Sepharose 4B beads (Thermo Fisher Scientific) were
added for 2 h at 4 °C. The beads were then washed three times with lysis buffer,
and the bound proteins were eluted with 2 x Laemmli sample buffer by boiling. The
samples were electrophoresed and analyzed by western blot with anti-RhoA,
anti-p190RhoGAP, and anti-PrP (3F4 or 3F10)*"*® antibodies.

GST-Rhotekin-RBD pull-down assay for activating RhoA. The cells
were harvested and washed with PBS, and then lysed in binding/washing/lysis
buffer (25 mM Tris-HCI, pH 7.4, 150 mM NaCl, 5 mM MgCl,, 1% NP-40, 1 mM DTT,
5% glycerol, 10 mM NaF, 1 mM NazVO,4, 1 mM EDTA, and 1 mM EGTA) with a
protease inhibitor cocktail tablet. The lysates were centrifuged at 13 000x g for
10 min at 4 °C. The supernatant was incubated with GST-Rhotekin-RBD to detect
RhoA-GTP. The beads were washed three times with binding/washing/lysis buffer.
The bound proteins were eluted with 2 x Laemmli sample buffer by boiling. The
samples were electrophoresed and analyzed by western blot with the anti-RhoA
antibody.

In vitro loading of GDP and GTPyS onto GTP-binding proteins.
Cell lysates (500 pg/ml protein in 500 ul) were incubated with 10 mM EDTA (pH
8.0). Next, 0.1 mM GTPyS or 1 mM GDP was added to the cell lysates, and the
lysates were incubated at 30 °C for 15 min under constant agitation. The reaction
was terminated by thoroughly mixing the sample with MgCl, at a final concentration
of 60 mM on ice.

In vitro GST-tagged protein—protein interactions. The purified
recombinant GST and GST-RhoA proteins (10 pg/ml protein in 500 ul) were
preincubated with glutathione (GSH)-sepharose 4B beads for 2h at 4°C in a
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binding buffer (50 mM Tris-HCI, pH 7.5, 1x PBS, and 10% glycerol,) with a protease
inhibitor cocktail tablet. To determine protein—protein interaction, GST and GST-
RhoA beads were incubated with 1-4 ug of purified human recombinant PrP
(Hu-PrP) for 2 h at 4 °C. After washing the beads, the bound proteins were eluted
with 2 x Laemmli sample buffer by boiling. The samples were electrophoresed and
analyzed by western blot with the anti-PrP antibody.

Subcellular fractionation. Confluent cells were harvested, washed with
ice-cold PBS, and lysed by passing through a 23-gauge syringe needle for 10
cycles in cold hypotonic buffer (10 mM Tris-HCI (pH 7.4), 1 mM DTT, 5 mM MgCl,,
10 mM KCI, 10 mM NaF, and 1 mM NagVO,) with a protease inhibitor cocktail tablet.
The lysates were centrifuged at 500 x g for 10 min. The pellets that contained nuclei
and nuclei-associated structures were solubilized with HEPES buffer (pH 7.2)
containing 400 mM NaCl, 1 mM EDTA, 1 mM DTT, and the protease inhibitor
cocktail and were agitated on ice for 30 min. The postnuclear supernatants were
centrifuged at 100 000 x g for 1 h at 4 °C to separate the membrane pellet and the
cytosolic fraction. The membrane pellets were washed with ice-cold PBS and
suspended in RIPA buffer by rocking for 1 h at 4 °C, followed by centrifugation at
13 000 x g for 10 min at 4 °C. The supernatant, containing the solubilized
membrane proteins, was considered the membrane fraction.

F-actin sedimentation assay. Cells were harvested and washed with PBS,
and then lysed in 0.1% Triton X-100 and F-actin stabilization PHEM buffer (60 mM
PIPES, 25 mM HEPES, 10 mM EGTA, 2 mM MgCl,, pH 6.9) with a protease
inhibitor cocktail. The cell lysates were carefully mixed and directly transferred into a
TLA 100 centrifuge tube (Beckman Instruments, Palo Alto, CA, USA). The lysates
were centrifuged at 100 000x g for 1h at 4°C in a table top ultracentrifuge
(Beckman Instruments), which yielded a clear supernatant. At these high centrifugal
forces, all F-actin in the system is expected to pellet, leaving G-actin in the
supernatant. The F-actin pellet was washed twice in ice-cold PHEM buffer and
suspended in SDS buffer. Protein concentration of the fractions was quantified using
a BCA protein assay kit. Equal amounts of proteins were electrophoresed, and
transferred to PVDF membrane for probing with anti-p-actin antibody. The
densitometric quantification of the western blot determined the comparable levels of
G- and F-actin using Image J software.

Statistical analysis. The data are presented as the mean + S.E. of at least
three independent experiments. Student’s t-tests were used to compare groups
using the GraphPad Prism4 program.
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