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Abstract

X-ray computed tomography (CT) iterative image reconstruction from sparse-view projection data has been an important
research topic for radiation reduction in clinic. In this paper, to relieve the requirement of misalignment reduction operation
of the prior image constrained compressed sensing (PICCS) approach introduced by Chen et al, we present an iterative
image reconstruction approach for sparse-view CT using a normal-dose image induced total variation (ndiTV) prior. The
associative objective function of the present approach is constructed under the penalized weighed least-square (PWLS)
criteria, which contains two terms, i.e., the weighted least-square (WLS) fidelity and the ndiTV prior, and is referred to as
‘‘PWLS-ndiTV’’. Specifically, the WLS fidelity term is built based on an accurate relationship between the variance and mean
of projection data in the presence of electronic background noise. The ndiTV prior term is designed to reduce the influence
of the misalignment between the desired- and prior- image by using a normal-dose image induced non-local means
(ndiNLM) filter. Subsequently, a modified steepest descent algorithm is adopted to minimize the associative objective
function. Experimental results on two different digital phantoms and an anthropomorphic torso phantom show that the
present PWLS-ndiTV approach for sparse-view CT image reconstruction can achieve noticeable gains over the existing
similar approaches in terms of noise reduction, resolution-noise tradeoff, and low-contrast object detection.
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Introduction

Radiation risk in x-ray computed tomography (CT) examina-

tions has caused significant concerns to patients due to the

negative effects of x-ray exposure [1,2]. To reduce the radiation

dose of CT scans, many investigations have been performed

including the hardware-based scanning protocols [3,4,5] and

software-based image reconstruction techniques [6,7,8]. It is

known that lowering the milliampere-seconds (mAs)

[9,10,11,12,13] or reducing the number of projections per rotation

around the body [14,15,16,17,18,19,20] is an important means for

reducing radiation dose. However, the associative image quality

would be unavoidably deteriorated due to the noisy or sparse-view

measurements if no adequate noise control is applied in image

reconstruction. In this study, we are focusing on CT image

reconstruction from the reduced number of projection per rotation

or sparse-view projection data.

In modern CT systems, several hundred or even over a

thousand of projection per rotation are acquired for image

reconstruction [21]. Theoretically, cutting half of the projections

would reduce radiation dose by a half. However, due to

insufficient sampling with sparse-view measurements, conventional

filtered back-projection (FBP) approach cannot yield high-

diagnostic image quality. To address this problem, Sidky et al

[22] formulated an innovative algorithm based on projection onto

convex sets (POCS), called TV-POCS, by adapting total variation

(TV) minimization of the desired-image with piecewise constant

assumption. As an updating TV-POCS algorithm, an adaptive-

steepest-descent based POCS (ASD-POCS) algorithm [16] was

proposed for minimizing TV with an improved performance

against cone-beam artifacts in sparse-view CT image reconstruc-

tion. Due to the assumption of isotropic edge property within TV

minimization, the related algorithms often suffer from over-

smoothing effects. Hence, the weighted-TV as an extension of the

original one were proposed recently to address the aforementioned

issue in sparse-view CT image reconstruction [20,23].

In clinic, repeated scans during a treatment course are often

required in specific applications including dynamic CT angiogra-

phy, perfusion CT, and CT-guided interventional procedures

[2,24]. In these conditions, the previous normal-dose scanned data

can be referred to as ‘‘normal-dose prior image’’ aiming to

facilitate subsequent CT image reconstructions with sparse-view

projection measurements [13,15,25,26,27]. For example, Chen et

al proposed a prior image constrained compressed sensing

(PICCS) approach for sparse-view CT image reconstruction by

incorporating a prior image [15]. The PICCS algorithm has been
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extensively tested on patient and animal data with sound results in

different applications [25,28]. However, the PICCS algorithm

assumes that the misalignment between the desired- and prior-

image cannot be significant. Meanwhile, this assumption cannot

usually be met in practice. A typical example is in time-resolved

CT or four-dimensional CBCT (4D-CBCT) imaging, the patient

position is frequently changed from one scan to another within the

time-series data acquirement [29]. Additionally, in perfusion CT,

vessels and perfused tissues would change their attenuation

properties after the intravascular contrast agent mixed with blood

[30]. In these cases, the performance of PICCS would be

inevitably influenced by the mismatched tissues between the

desired- and prior- image. To address this problem, a misalign-

ment reduction operation could be executed in the implementa-

tion of the original PICCS approach [31,32,33]. For example,

Nett et al proposed a modified PICCS approach with combining a

registration step to minimize the misalignment between the prior-

and desired- image [31]. Meanwhile, the performance of those

approaches would heavily depend on the accuracy of image

registration operations.

In this paper, based on the recent studies about sparse-view and

low-dose CT image reconstructions

[11,12,13,28,34,35,36,37,38,39], we propose a normal-dose image

induced total variation prior (ndiTV) under the penalized

weighted least-square (PWLS) criteria [10], which is referred to

‘‘PWLS-ndiTV’’ for simplicity, aiming to relieve the requirement

of misalignment reduction operation of the PICCS algorithm. The

novelty of the present PWLS-ndiTV approach is twofold. First, the

weighted least-square (WLS) fidelity term in the objective function

of PWLS-ndiTV considers an accurate relationship between the

variance and mean of projection data in the presence of electronic

background noise, which explores the accurate statistical proper-

ties of CT projection data. Second, the ndiTV prior term is

designed to reduce the influence of the misalignment between the

desired- and prior- image by using a normal-dose image induced

non-local means (ndiNLM) filter. Qualitative and quantitative

evaluations for CT image reconstruction from sparse-view

projection data were carried out on two digital phantoms and

an anthropomorphic torso phantom in terms of noise reduction,

resolution-noise tradeoff, and low-contrast object detection.

The remaining of the paper is organized as follows. Section

Methods describes the PWLS criteria for CT image reconstruc-

tion, and the ndiTV prior and the associated PWLS-ndiTV image

reconstruction algorithm are presented in detail. Moreover, the

experimental setup and evaluation metrics are also outlined in this

section. In Section Results, the evaluation results are reported,

followed by Sections Discussion and Conclusion, respectively.

Methods

PWLS criteria for CT image reconstruction
Mathematically, the PWLS criterion for CT image reconstruc-

tion can be rewritten as follows [10,13,40]:

m�~ arg min
m§0

(y{Hm)0S{1(y{Hm)zbR(m)
� �

ð1Þ

where y represents the obtained sinogram data (the projections

after system calibration and logarithm transformation), i.e.,

y~(y1,y2, � � � ,yM )0, m is the vector of attenuation coefficients to

Figure 1. Four modified Shepp-Logan phantoms used in the studies. (A) is the standard modified phantom; (B) is the second modified
phantom wherein motion is designed compared to (A); (C) is the third modified phantom wherein an object is removed compared to (A); and (D) is
the fourth modified phantom with a low-contrast lesion added compared to (A). All the images are displayed in a same window [0.0122, 0.0398].
doi:10.1371/journal.pone.0079709.g001

Figure 2. Digital NCAT phantom images at four different frames. The images (A)-(D) correspond to the frame 1, 7, 10 and 15, respectively. All
images are displayed in a same window [0.01, 0.022].
doi:10.1371/journal.pone.0079709.g002
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be estimated, i.e., m~(m1,m2, � � � ,mN )0, where ‘‘0’’ denotes the

matrix transpose. The operator H represents the system matrix

with the size of M|N . The element of H denotes the length of

intersection of projection ray i with pixel j where the associated

elements can be pre-calculated by using a fast ray-tracing

technique [41]. S is a diagonal matrix with the ith element of

s2
i which is the variance of sinogram data y at bin i. R(m) denotes

a prior term. b is a hyper-parameter for controlling the strength of

prior term as a penalty. The goal for CT image reconstruction is to

estimate the attenuation coefficients m from the measurement y

with H.

Based on our previous works [11,42], in this study, the variance

of s2
i is determined by the following mean-variance relationship:

s2
i ~

1

I0

exp �ppið Þ 1z
1

I0

exp �ppið Þ s2
e{1:25

� �� �
ð2Þ

where I0 denotes the incident x-ray intensity, �ppi is the mean of the

sinogram data at bin i and s2
e is the background electronic noise

variance.

Overview of the present ndiTV prior
Inspired by the PICCS algorithm introduced by Chen et al [15],

in this paper, we propose a ndiTV prior by incorporating the

ndiNLM filter proposed by Ma et al [38], which is expressed as

follows:

RndiTV(m)~aTV(m{mndiNLM)z(1{a)TV(m) ð3Þ

where a [ ½0,1� is a scalar factor and TV(:) denotes the total

variation operator and is defined as follows:

TV(m)~
X

s,t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(ms,t{ms{1,t)

2z(ms,t{ms,t{1)2zd

q
ð4Þ

where s and t are the indices of the location of the attenuation

coefficients of the desired-image. d is a small constant used for

keeping differentiable with respect to image intensity. The term

mndiNLM in equation (3) represents the ndiNLM filter and can be

written as follows:

mndiNLM(i)~
X
j[N i

w(i,j)mnd(j) ð5Þ

where N i denotes the search-window and mnd denotes the normal-

dose prior image. The weight w i,jð Þ quantifies the similarity

between pixel i in the image domain m and pixel j in the prior

image domain mnd, respectively, and can be expressed as follows:

w i,jð Þ~ C

Z(i)
exp

{ m nið Þ{C:mnd nj

� �		 		2

2

h2

( )
ð6Þ

Zi~
X
j[N i

exp
{ m nið Þ{C:mnd nj

� �		 		2

2

h2

( )
ð7Þ

where ni and nj denote two local similarity neighborhoods (named

patch-windows) centered at pixels i and j, respectively. The terms

m(ni) and mnd(nj) denote the vectors of neighborhood pixel values

restricted in the patch-windows ni and nj , respectively. The

notation :k k2 denotes a Euclidean distance between two similarity

Figure 3. An anthropomorphic torso phantom used in the studies. (A) is the physical phantom illustration; (B) is the image reconstructed by
a FBP apporach with ramp filter from the full 1160-views projection data; (C) is a deformed image from the image (B), which is used as the prior image
for sparse-view CT image reconstruction with the PWLS-PICCS and PWLS-ndiTV approaches; (D) is the image reconstructed by the FBP apporach with
ramp filter from the 58-views projection data; and (E) is the registered image between (C) and (D) which is used for sparse-view CT image
reconstruction with the PWLS-RPICCS approach.
doi:10.1371/journal.pone.0079709.g003
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patch-windows. The parameter h is a factor controlling the decay

of the exponential function.

In equation (6), C is a local compensation factor used

accounting for local intensity change between the desired- and

prior- images, i.e.,

C m nið Þ,mnd nj

� �� �
~

E m nið Þð Þ
E mnd nj

� �� � ,E(m nið Þ{mnd nj

� �
)§t

1 ,otherwise

8<
: ð8Þ

where E(:) denotes the expected value or mean of the intensity in

the patch-window ni, and the threshold factor t is determined by

estimating the standard deviation of homogeneous area near the

patch-window neighborhood of the current image estimation.

In summary, the objective function of the present PWLS-ndiTV

approach can be written as follows:

m�~ arg min
m§0

(y{Hm)0S{1(y{Hm)zbRndiTV(m)
� �

: ð9Þ

Implementation of the PWLS-ndiTV approach
Due to the nonlinear form of the ndiNLM filter with respect to

image intensity, general optimization algorithm is difficult to

effectively minimize the objective function in equation (9). To

Figure 4. Shepp-Logan phantom reconstructions by different methods. (A) is the image reconstructed by the FBP approach with ramp filter
from the full noise-free projection data, which is used as the prior image; (B) is the image reconstructed by the FBP approach with ramp filter from the
25-views projection data; (C) is the image reconstructed by the PWLS-PICCS approach (a~0:5,b~2:4|10{2) from the 25-views projection data; and
(D) is the image reconstructed by The PWLS-ndiTV approach (a~0:5,b~1:8|10{2,h~1:12|10{3) from the 25-views projection data. All the images
are displayed in a same window [0.0122, 0.0398].
doi:10.1371/journal.pone.0079709.g004

Figure 5. The profiles located at the pixel positions x from 200 to 310 and y = 410. The ‘‘dot-dashed line’’ denotes the profile from the FBP
approach; the ‘‘dot-dot-dashed line’’ denotes the profile from the PWLS-PICCS approach; the ‘‘solid line’’ denotes the profile from the PWLS-ndiTV
approach; the ‘‘dotted line’’ denotes the profile from the ground truth; and the ‘‘dashed line’’ denotes the profile from the normal-dose prior image.
doi:10.1371/journal.pone.0079709.g005

Iterative Image Reconstruction for Sparse-View CT
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solve this problem, in this paper, similar to our previous works

[13,43], an alternating minimization scheme was used to optimize

(9) wherein the weights w i,jð Þ in equation (5) can be automatically

updated according to the similarity between the patch-windows in

the current estimation mn (n is the iterative index) and the normal-

dose prior image mnd during each iteration. In summary, the

present PWLS-ndiTV approach for CT image reconstruction has

three main steps as follows:

1) Prior estimation. Given a current estimation mn, mn
ndiNLM

is calculated by performing the ndiNLM filter on the current

estimation mn using the prior image mnd.

2) Steepest descent optimization. For minimizing the

objective function of the PWLS-ndiTV, a steepest descent

optimization algorithm is used to yield new image estimation,

i.e., mnz1, which is described as follows:

mnz1~mn{gn HT S{1(Hmn{y)
� �� �

{b
+RndiTV mnð Þ
+RndiTV mnð Þk k ð10Þ

where gn represents the gradient step-size. +RndiTV mð Þ represents

the gradient of RndiTV mð Þ and +RndiTV mnð Þk k is the relative

normalization factor.

3) Cycle Update. Update mnz1 using the aforementioned step

in each cycle until stop criteria is satisfied.

In the implementation, the scalar factor gn was calculated

adaptively by using the following estimator [44]:

gn~
GT G

HGð ÞT S{1(HG)
� �withG ¼D HT S{1(Hmn{y)

� �
ð11Þ

+RndiTV mnð Þ in (10) is calculated as follows:

+RndiTV mnð Þ~a
L
Lm

TV(mn{mn
ndiNLM)z(1{a)

L
Lm

TV(mn) ð12Þ

where
L
Lm

TV(mn{mn
ndiNLM) and

L
Lm

TV(mn) in equation (12) can

be calculated using the following gradient operator with a small

positive scalar d:

L
Lms,t

TV(m)~
2ms,t{ms{1,t{ms,t{1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ms,t{ms{1,t

� �2
z ms,t{ms,t{1

� �2
zd

q

{
msz1,t{ms,tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

msz1,t{ms,t

� �2
z msz1,t{msz1,t{1

� �2
zd

q

{
ms,tz1{ms,tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ms,tz1{ms,t

� �2
z ms,tz1{ms{1,tz1

� �2
zd

q : ð13Þ

In addition, the preliminary image reconstructed by the FBP

method with ramp filter was used as the initial estimation for all

iterative algorithms. The threshold factor t in equation (8) was

selected by using the current image estimation of each update. The

total number of iteration n was set as 100 for yielding stable image

estimation.

Data acquisitions
To validate and evaluate the performance of the PWLS-ndiTV

for CT image reconstruction from sparse-view CT measurement,

a modified Shepp-Logan phantom digital NURBS-based cardiac-

torso (NCAT) phantom [45] and an anthropomorphic torso

phantom were used for experimental data simulations.

Modified Shepp-Logan phantom. Fig. 1 shows four mod-

ified 2D Shepp-Logan phantoms. Fig. 1A shows the standard

modified phantom. Fig. 1B shows the second modified phantom

wherein a motion object as indicated by the arrow is included

compared to Fig. 1A. Fig. 1C shows the third modified phantom

wherein an object is removed compared to Fig. 1A as indicated by

the arrow and Fig. 1D shows the fourth modified phantom used

Table 1. Image quality metrics on two ROIs as indicated by
the squares in Fig. 1B.

Methods Matched regions (ROI1) Mismatched regions (ROI2)

PSNR MPSE MPAE PSNR MPSE MPAE

FBP 17.54 5.21 3.48 16.78 6.77 4.54

PWLS-PICCS 29.14 0.36 0.24 23.57 0.67 0.75

PWLS-ndiTV 28.64 0.39 0.26 26.54 0.48 0.56

doi:10.1371/journal.pone.0079709.t001

Figure 6. Shepp-Logan phantom reconstructions by different methods from the 25-views projection data. (A) and (B) are the images
reconstructed of the case one by the PWLS-PICCS (a~0:5,b~2:4|10{2) and PWLS-ndiTV (a~0:5,b~1:8|10{2,h~1:12|10{3) approaches from
the 25-views projection data, respectively; (C) and (D) are the images reconstructed of the case two by the PWLS-PICCS (a~0:5,b~2:4|10{2) and
PWLS-ndiTV (a~0:5,b~1:8|10{2,h~1:12|10{3) approaches from the 25-views projection data, respectively. All the images are displayed in a
same window [0.0122, 0.0398].
doi:10.1371/journal.pone.0079709.g006
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for the receiver operating characteristic (ROC) study, which

contains a low-contrast small lesion as indicated by the arrow

compared to Fig. 1A. The density of lesion with a radius of

3.0 mm is 1.5% above the background density. Each phantom is

composed by 512 | 512 square pixels with each pixel size of

1.25 mm | 1.25 mm.

Digital NCAT phantom. Fig. 2 shows four frames of the

dynamic NCAT phantom used in our study. Due to respiratory

motion and cardiac motion, each frame is different. Fig. 2A shows

the first frame of sequential CT images, which is used for

simulating the normal-dose prior image for image reconstruction

of other frames as shown in Fig. 2B-D. Significant motion

deformation can be observed between other three frames and the

first one. Each phantom is composed by 512 | 512 square pixels

with each pixel size of 0.6 mm | 0.6 mm.

Figure 7. The rRMSE measures within two ROIs. ROI1 is the matched region and ROI2 is the mismatched region.
doi:10.1371/journal.pone.0079709.g007

Figure 8. Noise-resolution curves of the PWLS-PICCS and PWLS-ndiTV approaches.
doi:10.1371/journal.pone.0079709.g008
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Data acquisition by simulation. Without loss of generality,

we chose a geometry that was representative for a mono-energetic

fan-beam CT scanner setup with a circular orbit to acquire 1,160

views over 2p. The number of channels per view was 672. The

distance from the rotation center to the x-ray source is 570 mm

and the distance from the X-ray source to the detector is

1,040 mm. Each projection datum along an x-ray through the

sectional image is computed based on the known densities and

intersection areas of the ray with the geometric shapes of the

objects in the sectional image. For the noisy projection data,

similar to the study [13,46], after calculating the noise-free line

integral y as a direct projection operation, the noisy measurement

bi at each bin i was generated according to the following statistical

model of pre-logarithm projection data

bi~Poisson(I0 exp ({yi))zNormal(0,s2
e) ð14Þ

where I0 denotes the incident x-ray intensity and s2
e is the

background electronic noise variance. In this study, for two

phantoms, the x-ray exposure level I0 was all set to 9.0|105 and

s2
e was all set to 10 for normal-dose scan simulation. The noisy

measurement yi was calculated by performing the logarithm

transform on bi. For the Shepp-Logan phantom and NCAT

phantom experiments, the sparse-view projections were generated

by under-sampling the 1,160 views of normal-dose simulation to

only 25 views evenly over 2p.

Anthropomorphic torso phantom. An anthropomorphic

torso phantom (Radiology Support Devices, Inc., Long Beach,

CA) as shown in Fig. 3A was used for experimental data

acquisition. The phantom was scanned by a clinical CT scanner

(Siemens SOMATOM Sensation 16 CT) in a cine mode at a fixed

bed position with a protocol of 100 mAs and 120 kVp. The

associated imaging parameters of the CT scanner were as follows:

(1) each rotation included 1,160 projection views evenly spaced on

a circular orbit; (2) each view contained 672 data elements each

from one of the 672 detector bins; (3) the distance from the

detector arrays to the X-ray source was 1,040 mm; (4) the distance

from the rotation center to the X-ray source was 570 mm; and (5)

the space of each detector bin was 1.407 mm. In this study, the

sparse-view projections were generated by under-sampling the

1,160 views to only 58 views evenly over 2p. Fig. 3B shows a CT

image reconstructed by a FBP method with ramp filter from the

full 1160-views projection data as a gold-standard reference.

Fig. 3C shows an elastic deformed CT image from Fig. 3B, which

is used as the prior image for sparse-view CT image reconstruction

with the PWLS-PICCS and the PWLS-ndiTV approaches. Fig. 3D

shows a CT image reconstructed by the FBP method with ramp

filter from the 58-views projection data. Fig. 3E shows the

registered image between the original prior image (i.e., Fig. 3C)

and the FBP image (i.e., Fig. 3D) by using the B-spline based image

registration technique [47], which is used as the prior image for

sparse-view CT image reconstruction with the PWLS-RPICCS

approach.

Performance evaluation
Evaluation by noise reduction. The following three metrics

were utilized to evaluate the noise reduction: (1) peak signal-to-

noise ratio (PSNR); (2) mean per cent squared error (MPSE); and

(3) mean per cent absolute error (MPAE):

PSNR~10 log10

MAX2(mxtrue)PQ
m~1

m(m){mxtrue(m)ð Þ2=(Q{1)

0
BBB@

1
CCCA ð15Þ

Figure 9. ROC curves of the PWLS-PICCS and PWLS-ndiTV approaches.
doi:10.1371/journal.pone.0079709.g009
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MPSE~
100

�mmxtrue(m)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Q{1

XQ

m~1

m(m){mxtrue(m)½ �2
vuut ð16Þ

MPAE~
100

Q

XQ

m~1

m(m)

mxtrue(m)
{1










 ð17Þ

where m denotes the to-be-reconstructed image, mxtrue denotes the

ground truth image, MAX(mxtrue) represents the associated

maximum intensity value, and �mmxtrue(m) denotes the associated

average pixel value in the interest of region (ROI) wherein m

indexes the pixels in the ROI. Q is the number of pixels in the

ROI.

Evaluation by reconstruction accuracy. The rRMSE

(relative root mean square error) measurements of the reconstruc-

tions were carried out to quantify the accuracy of the reconstruc-

tion. The rRMSE is defined as:

rRMSE~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPQ
m~1

(m(m){mxtrue(m))2

PQ
m~1

(mxtrue(m))2

vuuuuuut ð18Þ

where m denotes the to-be-reconstructed image, mxtrue denotes the

ground truth image. Q is the number of pixels in the ROI.

Resolution-noise tradeoffs. The image resolution is ana-

lyzed by the edge spread function (ESF). Using the strategy

described in [48] and under the assumption that the broadening

Figure 10. Dynamic NCAT phantom reconstructions by different approaches from the 25-views projection data. (A)–(C) are the images
of frame 7, 10 and 15 reconstructed by the FBP approach with ramp filter; (D)–(F) are the images of frame 7, 10 and 15 reconstructed by the PWLS-
PICCS approach (a~0:5,b~1:8|10{2); and (G)–(K) are the images of frame 7, 10 and 15 reconstructed by the PWLS-ndiTV approach
(a~0:5,b~2:3|10{2,h~1:01|10{3). All the images are displayed in a same window [0.01, 0.022].
doi:10.1371/journal.pone.0079709.g010

Iterative Image Reconstruction for Sparse-View CT

PLOS ONE | www.plosone.org 8 November 2013 | Volume 8 | Issue 11 | e79709



Iterative Image Reconstruction for Sparse-View CT

PLOS ONE | www.plosone.org 9 November 2013 | Volume 8 | Issue 11 | e79709



kernel is a Gaussian function with standard deviation db, an error

function (erf) is used to represent the ESF function parameterized

by db. The parameter db is calculated by fitting the vertical profiles

to an erf function, and then the associated full-width at half-

maximum (FWHM) of the Gaussian broadening kernel is denoted

as 2.35db which is used to represent the to-be-reconstructed image

resolution. The noise-resolution tradeoff curves were generated

from the simulated projection data using the modified phantom.

In addition, the noise level of the to-be-reconstructed image was

characterized by the standard deviation of a uniform region of size

20|20 in the background region. By varying the penalty

parameter b settings, we obtained the associative noise-resolution

tradeoff curves from the reconstructed images.

Receiver operating characteristic study. The ability of

lesion detection is a general principle for evaluating a medical

imaging system. Extensive experimental results have demonstrated

that a ROC curve can provide a comprehensive and useful

description by exploring the combinations of sensitivity and

specificity in a diagnostic test. In practice, after generating a

variety of pairs of true positive fraction (TPF) and false positive

fraction (FPF), the ROC curve can be drawn or fitted from the

obtained TPF and FPF values [49]. Then, the total area under

each curve is calculated. The associated index is often named as

‘‘AUC’’ and larger AUC usually reflects better lesion detection. To

eliminate the intra human observer variation, a channelized

Hotelling observer (CHO) can be employed to generate the ROC

curves [50] and the series of ratings from the output can be

subsequently analyzed by using the ROCKIT package with bi-

normal model (http://metz-roc.uchicago.edu/). In this paper,

ROC studies are performed from the computer-generated data by

adding a low-contrast small lesion in a modified Shepp-Logan

phantom as indicated by an arrow in Fig. 1D. To evaluate the

ability of lesion detection, a total of 100 normal-dose projection

data with full views were generated according to equation (14)

using the modified Shepp-Logan phantom with and without the

low-contrast region. The associated images were reconstructed by

different approaches from the same sparse-view (i.e., 25-views)

projection data by under-sampling 1,160 views, respectively.

Comparison approach and parameter settings
To validate and evaluate the performance of the present PWLS-

ndiTV approach, the PICCS approach described in [15] was also

carried out under the PWLS criteria for comparison, which is

referred to as ‘‘PWLS-PICCS’’. In addition, the PWLS-PICCS

approach combining a registration step were also carried out for

comparison, which is referred to as ‘‘PWLS-RPICCS’’. By

incorporating the noise model described in equation (2), the

objective function of the PWLS-PICCS can be written as follows:

m�~ arg min
m§0

(y{Hm)0S{1(y{Hm)zbRpiccs(m)
� �

ð19Þ

where S is a diagonal matrix with the ith element of s2
i which is

estimated in equation (2). b is a hyper-parameter. Rpiccs(m) denotes

a PICCS prior term and is defined as follows:

Rpiccs(m)~aTV(m{mnd)z(1{a)TV(m) ð20Þ

where the term TV(:) denotes the total variation operator which is

defined in equation (4) and mnd denotes the prior image. a [ ½0,1� is
the relative weight of two terms. Comparing with the PWLS-

PICCS approach, the PWLS-RPICCS approach uses the B-spline

based image registration technique [47] as a preprocessing step to

minimize the misalignment between the prior- and desired-

images.

The related parameters in the implementation were set as

follows: (1) for the PWLS-ndiTV approach, the size of ‘‘patch-

window’’ (n) was 5 | 5, the size of ‘‘search-window’’ (N i) was 23

| 23, the parameter h was set manually with noise reduction

measure; (2) for the PWLS-ndiTV, PWLS-PICCS and PWLS-

RPICCS approaches, the hyper-parameter b was selected

manually with noise reduction measure, and the relative weight

a was 0.5 in almost experiments except in subsection for discussing

the influence of a on the reconstruction accuracy.

All the algorithms were implemented in Matlab 7.14 (The Math

Works, Inc.) programming environment. The codes were run on a

typical desktop computer with Intel Pentium G620 Processor,

2.60 GHz and 2 GB of RAM memory.

Results

Modified Shepp-Logan phantom studies
Visual inspection. Fig. 4A shows the image reconstructed by

the FBP approach with ramp filter from the simulated full normal-

dose projection data, which is used as the prior image. A

noticeable difference between the normal-dose prior image (i.e.,

Fig. 4A) and the desired-image (i.e., Fig. 1B) can be observed.

Fig. 4B shows the image reconstructed by the FBP approach with

ramp filter from the 25-views projection data. Serious streak

artifacts can be observed due to the sparse-view projection data

measurements. Fig. 4C and D show the images reconstructed by

the PWLS-PICCS (a~0:5,b~2:4|10{2) and the PWLS-ndiTV

(a = 0.5, b = 1.8|10{2, h = 1.12|10{3) approaches, respectively.

To further demonstrate the performance of the PWLS-PICCS and

PWLS-ndiTV approaches, a ROI was zoomed and displayed in

the bottom right corner of each figure. It can be clearly seen that

the PWLS-ndiTV achieves remarkable gains than the PWLS-

PICCS in terms of maintaining the structure information of ROI.

In other words, the PWLS-ndiTV can reduce the influence of the

misalignment from the prior image as comparison with the PWLS-

PICCS. Furthermore, Fig. 5 displays the profiles from different

Figure 11. Profiles from different results at different frames in Fig. 10. (A) is the profiles from frame 7 located at the pixel positions x from
153 to 340 and y = 247; (B) is the profiles from frame 10 located at the pixel positions x from 153 to 340 and y~250; and (C) is the profiles from frame
15 located at the pixel positions x from 153 to 340 and y = 257. The ‘‘dot-dashed line’’ denotes the profile from the FBP approach; the ‘‘solid line’’
denotes the profile from the PWLS-PICCS or PWLS-ndiTV approaches; the ‘‘dotted line’’ denotes the profile from the ground truth; and the ‘‘dashed
line’’ denotes the profile from the normal-dose prior image.
doi:10.1371/journal.pone.0079709.g011

Table 2. PSNR measures on two ROIs as indicated by the
squares in Fig. 2B–D.

Methods Matched regions (ROI1) Mismatched regions (ROI2)

Frame 7 Frame 10 Frame 15 Frame 7 Frame 10 Frame 15

FBP 11.93 11.45 12.13 10.48 10.73 11.01

PWLS-PICCS 25.64 25.45 25.52 21.56 21.14 20.95

PWLS-ndiTV 25.21 24.78 24.93 23.88 23.54 23.78

doi:10.1371/journal.pone.0079709.t002
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approaches. It can be observed that the profile from the PWLS-

ndiTV matches well with that from the ground truth. The results

indicate that the gains from the PWLS-ndiTV are more noticeable

compared with those from the PWLS-PICCS.

Noise reduction measure. Table 1 lists the PSNR, MPSE,

and MPAE measures of the images (as shown in Fig. 4)

reconstructed by the FBP, PWLS-PICCS and PWLS-ndiTV

approaches from the 25-views projection data. Two ROIs, as

indicated by two squares in Fig. 1B, represent the matched and

mismatched regions between the desired- and prior- image,

respectively. In the matched region (ROI1), the results from both

the PWLS-PICCS and PWLS-ndiTV approaches exhibited

similar results with more than 50% gains over that from the

FBP approach in terms of the PSNR, MPSE, and MPAE

measures. Meanwhile, in the mismatched region (ROI2), the

PWLS-ndiTV outperformed the PWLS-PICCS with more than

20% gains in terms of the MPSE and MPAE measures and with

more than 10% gains in terms of the PSNR measure.

Influence of misalignments on the reconstruction

accuracy. To demonstrate the influence of misalignments

between the desired- and prior- image on the reconstruction

accuracy from the PWLS-PICCS and PWLS-ndiTV approaches,

we simulated two extreme cases by modifying the Shepp-Logan

phantom as shown in Fig. 1A and C. For the case one, Fig. 1A was

used to simulate the prior image for reconstructing the desired-

image of Fig. 1C. Meanwhile, for the case two, Fig. 1C was used to

Figure 12. Comparison studies with the PWLS-RPICCS approach. (A) is the registered image between frame 10 and 1, which is used as the
prior image for the PWLS-RPICCS approach; (B) is the frame 10 reconstructed by the PWLS-PICCS approach (a~0:5,b~1:8|10{2) using Fig. 2A as the
prior image from the 25-views projection data; (C) is the frame 10 reconstructed by the PWLS-RPICCS approach (a~0:5,b~1:8|10{2) using Fig. 12A
as the prior image from the 25-views projection data; and (D) is the frame 10 reconstructed by the PWLS-ndiTV approach
(a~0:5,b~2:3|10{2,h~1:01|10{3) using Fig. 2A as the prior image from the 25-views projection data. All the images are displayed in a same
window [0.01, 0.022].
doi:10.1371/journal.pone.0079709.g012

Figure 13. The profiles located at the pixel positions x from 160 to 220 and y = 250. The ‘‘dotted line’’ denotes the profile from the ground
truth; the ‘‘dashed line’’ denotes the profile from the PWLS-PICCS approach; the ‘‘dot-dashed line’’ denotes the profile from the PWLS-RPICCS
approach; and the ‘‘solid line’’ denotes the profile from the PWLS-ndiTV approach.
doi:10.1371/journal.pone.0079709.g013
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simulate the prior image for reconstructing the desired-image of

Fig. 1A. Fig. 6 shows the corresponding results reconstructed by

the PWLS-PICCS and PWLS-ndiTV approaches from the 25-

views projection data. The results of case one are shown in Fig. 6A

and B, and the results of case two in Fig. 6C and D. We can see

that the reconstruction accuracy is significantly influenced by the

misalignments between the desired- and prior- image in terms of

visual inspection appealing compared with two ideal phantoms.

However, the PWLS-ndiTV can yield remarkable gains over the

PWLS-PICCS in terms of the edge-preserving ability around the

mismatched regions.

Influence of the parameter a on the reconstruction
accuracy. For the PWLS-ndiTV and PWLS-PICCS approach-

es, the influence of the parameter a on the reconstruction accuracy

should be considered carefully because the performance of two

approaches heavily depends on the a setting. In this study, two

approaches were validated quantitatively from the same 25-view

projection data with a range of a (i.e., a = 0, 0.3, 0.5, 0.8, 1) at

different b setting. Fig. 7 shows the rRMSE measurements of two

ROIs as indicated by squares in Fig. 1B. It can be observed that in

the matched region (ROI1), the rRMSEs from two approaches are

decreased as a increasing and the PWLS-PICCS outperforms

PWLS-ndiTV slightly. The results demonstrate that the PWLS-

PICCS can yield slight gains over the PWLS-ndiTV in the

matched region reconstruction. However, in the mismatched

region (ROI2), the PWLS-ndiTV can achieve significant gains

over the PWLS-PICCS with remarkable deviation suppression. In

practice, there exists a tradeoff between the reconstruction

accuracy of matched and mismatched regions [50]. In our present

experiments, we found a = 0.5 was proper.

Noise-resolution tradeoff. Fig. 8 shows the noise-resolution

curves of the PWLS-PICCS and PWLS-ndiTV approaches. Two

different vertical profiles as indicated by two lines in the images

located at the left bottom of Fig. 8A and B were selected to

represent the matched and mismatched regions between the

desired- and prior- image, respectively. Additionally, two uniform

regions near the corresponding profiles as indicated by squares in

the background were selected for calculating the standard

deviation of the reconstructed image. It can be seen that for the

matched ROI in Fig. 8A, the PWLS-ndiTV and PWLS-PICCS

approaches achieved similar changing tendency of the noise-

resolution curves. Meanwhile, the PWLS-ndiTV yielded notice-

able gains over the PWLS-PICCS for the mismatched ROI in

Fig. 8B in terms of the noise-resolution tradeoff curve. In this

study, the parameter a was fixed at 0.5 for the PWLS-ndiTV and

PWLS-PICCS approaches, the hyper-parameter b for the PWLS-

PICCS approach was set from 3:0|10{3 to 3:0|10{2 and the

hyper-parameter b for the PWLS-ndiTV approach was set from

5:0|10{3 to 5:0|10{2.

ROC curve. Fig. 9 shows the ROC curves from the PWLS-

PICCS and PWLS-ndiTV approaches. The area under the ROC

curve from the PWLS-ndiTV is 0.9704 whereas the area under the

ROC curve from the PWLS-PICCS is 0.8798. The results indicate

that the PWLS-ndiTV slightly outperformed PWLS-PICCS in

terms of detectability of abnormality in low-contrast diagnosis. In

this study, a~0:5,b~2:4|10{2 were set for the PWLS-PICCS

approach and a = 0.5, b = 1.8|10{2, h = 1.12|10{3 were set for

the PWLS-ndiTV approach.

Dynamic NCAT phantom studies
Visual inspection. Fig. 10A-C show the images of frames 7,

10 and 15 reconstructed by the FBP approach with ramp filter

from the 25-views projection data, respectively. Serious artifacts

can also be observed similar to the results from the study of Shepp-

Logan phantoms. Fig. 10D-F show the images of frames 7, 10 and

Table 3. Image quality metrics on two ROIs as indicated by
the squares in Fig. 2C.

Methods Matched regions (ROI1) Mismatched regions (ROI2)

PSNR MPSE MPAE PSNR MPSE MPAE

PWLS-PICCS 25.49 0.34 0.28 21.14 0.51 0.69

PWLS-RPICCS 25.45 0.35 0.26 22.67 0.46 0.65

PWLS-ndiTV 24.52 0.40 0.31 23.54 0.43 0.59

doi:10.1371/journal.pone.0079709.t003

Figure 14. Anthropomorphic torso phantom reconstructions by different approaches from the 58-views projection data. (A) is the
image reconstructed by the FBP approach with ramp filter; (B) is the images reconstructed by the PWLS-PICCS approach (a~0:5,b~7:0|10{2) using
Fig. 3C as the prior image; (C) is the images reconstructed by the PWLS-RPICCS approach (a~0:5,b~7:0|10{2) using Fig. 3E as the prior image; and
(D) is the image reconstructed by the PWLS-ndiTV approach (a~0:5,b~9:0|10{2,h~2:1|10{3) using Fig. 3C as the prior image. All the images are
displayed in the same window [0, 0.024].
doi:10.1371/journal.pone.0079709.g014
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15 reconstructed by the PWLS-PICCS approach (a = 0.5,

b = 1.8|10{2) from the 25-views projection data, respectively.

Consequently, Fig. 10G-K show results reconstructed by the

PWLS-ndiTV approach (a = 0.5, b = 2.3|10{2, h = 1.01|10{3)

from the 25-views projection data. The zoomed ROIs as indicated

by the squares are included in Fig. 10. It can be seen that the edges

of vessels and cardiac from the PWLS-PICCS existed a noticeable

deviation from the desired ones as comparison with that from the

PWLS-ndiTV. This phenomenon is more obvious in the regions

as indicated by arrows in Fig. 10 where the misalignments exist.

Fig. 11 displays the profiles from different results at different

frames. It can be observed that the profiles from the PWLS-ndiTV

match better with that from the PWLS-PICCS. In other words,

the PWLS-ndiTV can yield more gains over the PWLS-PICCS in

terms of the edge details preserving.

Noise reduction measure. Table 2 lists the PSNR measures

of the images as shown in Fig. 10 reconstructed by the FBP,

PWLS-PICCS, and PWLS-ndiTV approaches from the 25-views

projection data. Two ROIs, as indicated by two squares in Fig. 2B–

D, represent the matched and mismatched regions, respectively. It

can be seen that, for the three frames, the results from both the

PWLS-PICCS and PWLS-ndiTV approaches exhibited similar

results of more than 50% gains over that from the FBP approach

in the matched region (ROI1). And in the mismatched region

(ROI2), the PWLS-ndiTV approach outperformed the PWLS-

PICCS approach with more than 10% gains.

Comparison studies with the PWLS-RPICCS

approach. In this section, the comparison studies between the

PWLS-ndiTV and PWLS-RPICCS approaches were performed

on the NCAT phantom. The frame 10 (i.e., Fig. 10B) was used as

the objective image and the frame 1 (i.e., Fig. 2A) was used as the

prior image. The misalignment between the frames 10 and 1 was

reduced by the B-spline based image registration technique [47].

Fig. 12A shows the registered image between frame 10 and 1,

which is used as the prior image for the PWLS-RPICCS

approach. Fig. 12B shows the frame 10 reconstructed by the

PWLS-PICCS approach using Fig. 2A as the prior image from the

25-views projection data. Fig. 12C shows the frame 10

reconstructed by the PWLS-RPICCS approach using Fig. 12A

as the prior image from the 25-views projection data. Fig. 12D

shows the frame 10 reconstructed by the PWLS-ndiTV approach

using Fig. 2A as the prior image from the 25-views projection data.

Furthermore, the profiles shown in Fig. 13 illustrate that the

present PWLS-ndiTV achieves more noticeable gains than both

the PWLS-PICCS and PWLS-RPICCS in preserving the edge

details as indicted by the arrows. To quantitatively evaluate above

three approaches, Table 3 lists the image quality metrics of two

ROIs, where the ROI1 and ROI2 represent the matched and

mismatched regions as shown in Fig. 2C, derived from the sparse-

view CT image reconstruction by three different methods. For the

matched region (ROI1), the gains from the PWLS-PICCS and

PWLS-RPICCS are similar and slight over that from the present

PWLS-ndiTV in terms of three image quality metrics. Meanwhile,

for the mismatched region (ROI2), the present PWLS-ndiTV can

achieve noticeable gains than the other two approaches in terms of

three image quality metrics. The results have demonstrated that

for the PWLS-RPICCS approach, the gains from the registration

technique in the mismatched regions are limited in improving

image reconstruction performance as compared with the present

PWLS-ndiTV approach.

Anthropomorphic torso phantom studies
Fig. 14 shows the results reconstructed by different approaches

from the 58-views projection data. Fig. 14A shows the image

reconstructed by the FBP approach with ramp filter. Serious streak

artifacts can be observed. Fig. 14B shows the images reconstructed

by the PWLS-PICCS approach using Fig. 3C as the prior image.

Fig. 14C shows the images reconstructed by the PWLS-RPICCS

approach using Fig. 3E as the prior image. Fig. 14D shows the

image reconstructed by the PWLS-ndiTV approach using Fig 3C

as the prior image. To further evaluate the performance of

different approaches, four regions of interest indicated by the

squares were zoomed and displayed in Fig. 14. It can be seen that

the PWLS-PICCS approach yielded the result with noticeable

blurred effects in the mismatch regions between the reconstructed

and prior images. However, the PWLS-ndiTV and the PWLS-

RPICCS approaches can achieve similar gains in term of the edges

information preservation.

Discussion

Statistical iterative reconstruction (SIR) for x-ray CT has been

extensively explored for radiation dose reduction in CT field

[10,27,42,51,52,53]. Usually, the objective function of SIR with

unconditional constrains has two terms: one is ‘‘data-fidelity

term’’, which is developed by incorporating the statistical

measurement model, and another is ‘‘prior term’’ or ‘‘penalty

term’’, which is commonly designed by considering the properties

of the desired-image itself. For sparse-view CT image reconstruc-

tion, the data enforcement step and the minimization step are

often implemented in an alternating manner using the POCS or

SART algorithm [15,16]. The major drawback of the POCS or

SART algorithm is that the statistical properties of CT measure-

ment cannot be well considered in the implementation. To express

this problem, Tang et al [17] has proved that the PWLS approach

with a TV-based prior term outperforms the conventional PWLS

approach with quadratic prior term from the sparse-view

measurements in terms of streak artifacts suppression. Lauzier

and Chen [54,55] also demonstrated that the PICCS strategy with

accurate projection data noise modelling can yield better

performance on restoring spatial resolution in time-resolved

contrast enhanced CT image reconstruction and obtaining more

uniform noise spatial distribution in low-dose image reconstruc-

tion.

High-quality CT measurements for a patient acquired in

previous scans can be utilized as prior knowledge to facilitate the

subsequent image reconstruction, for instance, in the cases of low-

dose scan and sparse-view measurements

[13,15,26,27,28,31,33,35,38]. However, due to the inverse effect

of the mismatched regions between the desired- and prior- image,

using prior image without any misalignment reduction would lead

to blur or even loss of the original structures in mismatched regions

[33]. In this paper, we propose an improved version of PICCS

strategy by incorporating the ndiNLM filter based on the patch-

based search mechanism for dealing with the inverse effect of

mismatched area. Experimental results have demonstrated that

the PWLS-ndiTV approach can preserve the detailed structure of

the desired-image in the mismatched regions.

For the developed PWLS-ndiTV algorithm, we would like to

make the following discussions. First, the PWLS-ndiTV algorithm

is a version of the widely used one-step-late (OSL) iteration

algorithm, and it is similar to our previous work [13,43], the

binary optimal reconstruction strategy was used for solving the

objective function. Just like many existing OSL algorithms, the

present algorithm also lacks strict global convergence proof. But, it

is worth to note that extensive experiments suggest that the present

algorithm is still effective for searching at least a local minimum in

practice. Second, due to the introduction of ndiNLM filter, several
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scalar parameters should be carefully tuned in the present PWLS-

ndiTV algorithm. For example, to reduce the computational load,

the search-window should be limited to an appropriate non-local

neighborhood system, and to avoid over-smooth of image, the

controlling parameter h can be not so large. In our present study,

by extensive experiments with visual inspection and quantitative

measurements, we found that a 23|23 search-window and a 5|5

patch-window are adequate for effective noise and artifacts

suppression while retaining computational efficiency.

Third, the drawback of the present PWLS-ndiTV approach is

its computational burden due to the ndiNLM filter compared with

the PWLS-PICCS approach. For example, in the case of 2D

Shepp-Logan image reconstruction from the 25-views projection,

the PWLS-ndiTV approach with a 23|23 search-window and a

5|5 patch-window takes about 0.5 min to finish one iteration to

reconstruct the image of size 512|512 using a PC with 2.60 GHz

CPU. Meanwhile, the PWLS-RPICCS approach takes about

15 min to perform the registration operation before performing

image reconstruction. The results show that the PWLS-ndiTV

takes acceptable computational cost as comparison with the

PWLS-RPICCS for sparse-view CT image iterative reconstruc-

tion. Additionally, several techniques proposed by Coupe et al [56]

can be used for optimizing the ndiNLM algorithm including

block-wise implementation and parallel computation, and the

graphic processing unit (GPU) implementation would also be a

sound solution for solving this problem. Last, the experiments were

performed on the 2D digital phantoms and anthropomorphic

torso phantom. Practically, the 3D/4D phantoms and in vivo data

need to be studied, which would be an interesting topic for future

research.

Conclusions

In this paper, we present a PWLS-ndiTV approach for sparse-

view CT image reconstruction in the case of a known normal-dose

image. The aim of the present approach is to relieve the

requirement of misalignment reduction of the PICCS approach

introduced by Chen et al. The experimental results show that the

present PWLS-ndiTV approach can achieve significant gains over

the existing similar methods in terms of different measure metrics.

Furthermore, this study demonstrates that the present PWLS-

ndiTV approach has useful potential for radiation dose reduction

by reducing the projection data in the case of repeated CT scan

performed in clinic.
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