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3D reconstruction of laser 
projective point with projection 
invariant generated from five 
points on 2D target
Guan Xu1, Jing Yuan1, Xiaotao Li2 & Jian Su1

Vision measurement on the basis of structured light plays a significant role in the optical inspection 
research. The 2D target fixed with a line laser projector is designed to realize the transformations 
among the world coordinate system, the camera coordinate system and the image coordinate system. 
The laser projective point and five non-collinear points that are randomly selected from the target are 
adopted to construct a projection invariant. The closed form solutions of the 3D laser points are solved 
by the homogeneous linear equations generated from the projection invariants. The optimization 
function is created by the parameterized re-projection errors of the laser points and the target points 
in the image coordinate system. Furthermore, the nonlinear optimization solutions of the world 
coordinates of the projection points, the camera parameters and the lens distortion coefficients are 
contributed by minimizing the optimization function. The accuracy of the 3D reconstruction is evaluated 
by comparing the displacements of the reconstructed laser points with the actual displacements. The 
effects of the image quantity, the lens distortion and the noises are investigated in the experiments, 
which demonstrate that the reconstruction approach is effective to contribute the accurate test in the 
measurement system.

In recent years, 3D reconstruction based on camera has attracted wide attention of researchers and has been 
applied in various research fields. E.g. Mian1 extracts features from the different angular face images that are 
acquired by using the computer screen as a kind of coded illumination and reconstructs the 3D profile models 
by using a new efficient algorithm. Kim2 presents a linear layered method including the affine recovery and the 
metric recovery. The camera calibration and 3D reconstruction are performed by utilizing the scene geometry.

Vision measurement on the basis of structured light is a very significant way of reconstructing 3D object 
surfaces due to non-contact test, simple operation, high efficiency and good accuracy3–6. Nguyen7 presents a 
real-time measurement method of the object shape with the advantages of high speed and accuracy. A multi-
thread parallel algorithm is adopted to deal with the acquired images by a camera and a programmable projec-
tor. A process is provided by Qin8 to detect the terrestrial change at street level by combining point clouds and 
terrestrial pictures. It inspects the consistency of point clouds and stereo images by rectifying and re-projecting 
stereo portions of the terrestrial pictures. A method using structured light for the 3D shape reconstruction is 
proposed by Dipanda9 for automatically obtaining information of the objects. The correspondence procedure in 
real-time is realized by the cell algorithm. Xu10 describes the solution method of the planar structured light in the 
vision-based inspection by employing the Plücker matrices that shows a precise calibration of the planar struc-
tured light under the impact factors of the image quantity and the noise. Saeed11 introduces a method of extract-
ing the weld pool surface information from the images. The calibrated charge-coupled sensor is used to capture 
the mirrored laser beam to constitute the images. The depth of the weld pool surface can be calculated by utilizing 
the information of the charge-coupled device sensor and the location of the laser. Chen12 proposes a method to 
reconstruct the surface of a wheel with the data from the vision sensor. The wheel surfaces are obtained from 
two structured-light-sensors which are calibrated by the iteration of the closest point. Li13 outlines a method to 
improve the Fourier transform profilometry (FTP). According to the geometrical conditions, the map of the light 
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phase is recovered by a gray-scale image of the fringe. Yun14 presents a framework to improve the FTP method by 
retrieving the absolute phase pixel-by-pixel. Two images with different frequencies are adopted in the approach. 
The high-frequency phase is generated from the low-frequency phase. An accurate and effective camera calibra-
tion technology is particularly important for the 3D reconstructions of objects. Three kinds of the calibration sys-
tems for the camera are recorded in the previous works: the 3D calibration system15–17, the 2D planar calibration 
system18–21 and the 1D linear calibration system22–24. 3D calibration system obtains the parameters of a camera by 
only one captured image. Meanwhile, high accuracy is achieved by the 3D calibration target. However, in order 
to extract enough feature points, the 3D target needs to be manufactured to a certain volume and the three faces 
of the volume must be accurately vertical to each other. Therefore, the process and transportation of the 3D target 
are time-consuming and inconvenient. Compared with the 3D target, the 2D planar calibration system has plenty 
of advantages. The 2D target calibration system is easy to be manufactured and suitable for the on-site calibration. 
In addition, the 2D planar calibration system provides sufficient calibration information in a convenient way. The 
1D target is also easy to be made than the 2D target and 3D target, however, the measurement accuracy of 1D 
target is lower than the 2D calibration system and the 3D calibration system because of the lack of information. 
Thus, the 2D planar calibration system is adopted in this study.

A reconstruction method of the 3D laser projective point is proposed for the measurement adopting the 
line-structured-light. The 3D reconstruction method of the laser projective point is cataloged into four parts. 
Firstly, the laser line of the projector lies on the plane that is coincident with the 2D calibration target plane. 
Therefore, on the same plane, non-collinear points can be extracted to construct a projection invariant. Secondly, 
a laser projective point and five non-collinear points on the target are randomly extracted from the captured 
image. Similarly, the invariant with the same points is calculated in the camera coordinate system. For the 
same points, the invariant in the image coordinate system is equal to the one in the camera coordinate system. 
According to the idea above, homogeneous linear equations are constructed and the closed form solution is 
determined by the decompositions of singular values. Thirdly, the optimization function is designed to promote 
the reconstruction accuracy by minimizing the parameterized re-projection errors of the laser point and the tar-
get points. The 3D laser points are reconstructed in the world coordinate system. Finally, the effects of the image 
quantity, the lens distortion and noises are experimentally evaluated by comparing the differences between the 
reconstruction displacements of the laser points and the real displacements.

The following paper is outlined as follows: Section 2, Methods, present the reconstruction approach consisting 
of the closed form solution and optimization solution. Section 3, Results, provide the experimentation to verify 
the reconstruction method. The factors, lens distortion, noises and application cases are considered in the section. 
Section 4, Discussion, evaluates the reconstruction method according to the absolute and relative errors. Section 
5, Summary, concludes the paper.

Methods
The reconstruction method of the projective point of the laser line includes two main components. The first 
component is to calibrate the camera, which has been accurately solved by Zhang21. The intrinsic and extrinsic 
parameters of a camera, including rotation matrix and translation vector, are provided by the calibration results. 
We consequently focus on the second component, to construct the projection invariant according to the laser 
projective point and five target points. The closed form solution of the laser projective point is achieved in this 
section and further improved by the optimization function.

Figure 1.  The reconstruction method of the laser projective point with the projection invariant generated from 
the five points on a 2D target.



www.nature.com/scientificreports/

3Scientific REPOrts | 7: 7049 | DOI:10.1038/s41598-017-07410-6

The reconstruction model of the laser projective point on an object is illustrated in Fig. 1. The recon-
struction approach is interpreted by the block diagram in Fig. 2. The camera, the target and the image plane 
define the three coordinate systems O(C)-X(C)Y(C)Z(C), O(W)-X(W)Y(W)Z(W) and O(I)-X(I)Y(I), respectively. In the 
camera-laser-line-based measurement system, a 2D target is employed to perform the two aims, the camera 
calibration and the projective point reconstruction of a laser line. A laser projector is connected to the target. The 
laser line of the projector lies on the O(W)-X(W)Y(W) plane that is the identical one of the target. Considering the 
coplanarity of the laser projective point, the laser line, the target plane and the target feature points, there is a pro-
jective invariant derived from the laser projective point on the measured object and the five points on the target. 
The laser projective point and the five points on the target should be non-collinear to avoid the linear dependence. 
The projective invariant in the world coordinate system is identical to the projective invariant of the laser projec-
tive point and the five mapping target points in the image coordinate system. The laser projective points and the 
mapping target feature points are extracted by the Harris method25.

Figure 2.  The block diagram of the reconstruction approach of the laser projective point.

Figure 3.  The verification method of the reconstruction results using a benchmark ruler with the checkerboard 
pattern.
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The laser line projector is fixed on a planar target attached with the world coordinate system. The laser line is 
located on the O(W)-X(W)Y(W) plane of the world coordinate system. Thus, the projective point of the laser line is 
also placed in the O(W)-X(W)Y(W) plane. In the projection geometry, the projective point x(I) in the image coordi-
nate system and the projective line l(I) in the image coordinate system can be given by ref. 26

=x xH (1)(I) (W)

= −l lH (2)(I) T (W)

where x(W) is the 2D homogenous coordinates of a point on the O(W)-X(W)Y(W) plane, l(W) is the 2D homogenous 
coordinates of a line on the O(W)-X(W)Y(W) plane, H is the homography matrix from the world coordinate system 
to the image coordinate system, the superscript (I) indicates the points or lines defined in the image coordinate 
system, the superscript (W) indicates the points or lines defined in the world coordinate system.

The 2D line on the O(W)-X(W)Y(W) plane, l(W), can be denoted by ref. 26

= ×l x x (3)p q
(W) (W) (W)

where x p
(W) and xq

(W) are two 2D points on the line l(W).
The projective line l(I) in the image coordinate system is given by ref. 26

= ×l x x (4)m n
(I) (I) (I)

where xm
(I) and xn

(I) are two 2D points on the line l(I).
A projection variable Ii

(I) generated from five 2D points on the 2D target and a laser projective point is con-
structed by
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where x1
(I) is the projective point of the laser line, −x i2 6,

(I)  are the five point coordinates on the 2D target in the image 
coordinate system, i is the group number of the five points on the target in an captured image.

Stacking Eqs (1)–(5), we have the projection invariant
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where x1
(W) is the unknown projective point of the laser line, −x i2 6,

(W)  are the five point coordinates on the 2D target 
in the world coordinate system, i is the group number of the five points on the target.

The projection invariant Ii
(I) in the image coordinate system is identical to the one in the world coordinate 

system, Ii
(W), then

× × × ×

− × × × × =

x x x x x x x x x x x

x x x x x x x x x x x x

{[( ) ] [( ) ] [( ) ] ( )

[( ) ] [( ) ] [( ) ] ( ) } 0 (7)

i i i i i i i i i i

i i i i i i i i i i

3,
(I)

4,
(I) T

1
(I)

5,
(I)

6,
(I) T

2,
(I)

3,
(W)

4,
(W) T

2,
(W)

5,
(W)

6,
(W) T

3,
(I)

4,
(I) T

2,
(I)

5,
(I)

6,
(I) T

1
(I)

5,
(W)

6,
(W) T

2,
(W)

3,
(W)

4,
(W) T

1
(W)

For different point combinations in the image, Eq. (7) is represented by a matrix form as

=x 0V (8)1
(W)

where 0is the zero vector,
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The unknown projective point x1
(W) in Eq. (8) is solved by the singular value decomposition27. As x1

(W) is 
located on the O(W)-X(W)Y(W) plane, in the jth image, the 3D projective point of the laser line is 

=B x x[ (1), (2), 0, 1]j
(W)

1
(W)

1
(W) T

 in the world coordinate system.
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In order to transform the 3D projective point from the free world coordinate system to the stationary camera 
coordinate system, the 3D projective point B j

(W) is left multiplied by the calibrated rotation matrix R j
(WC) and the 

translation vector T j
(WC) as ref. 26

=B T B[R , ] (9)j j j j
(C) (WC) (WC) (W)

Figure 4.  The Harris recognition results of the laser points and 2D target points in the four experiments. The 
laser point and five target points are marked by green. (a,c,e,g) The recognition results of the laser points and 
the 2D target points in the experiments. (b,d,f,h) The laser points and 2D target points in the maps of gray-scale 
distributions of (a,c,e,g).
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where B j
(C) is the 3D projective point of the laser line in the camera coordinate system.

Considering the lens distortion coefficients k1 and k2, the ideal image points and the distortion image points 
are expressed by ref. 21
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where u, v are the ideal pixel coordinates, u0, v0 are the coordinates of the principal point, x, y are the ideal image 
coordinates in the camera coordinate system, û, v̂ are the real pixel coordinates. The initial solutions of the distor-
tion coefficients k1 and k2 are explained in ref. 21.

Equation (9) provides the initial solution of the 3D projective point B j
(C) of the laser line. It can be improved by 

the optimization process. The 3D laser projective point B j
(W) and the target feature points Ck j,

(W) are re-projected to 
the image coordinate system. The ideal laser projective point 

 k kx ( , )j
(I)

1 2  and the ideal target feature points 
 k kx ( , )k j,

(I)
1 2  are parameterized by Eq. (10). The re-projected points should approach the ideal points in the image. 

Therefore, the differences of the re-projected points and the ideal points in the image coordinate system are con-
tributed by minimizing the optimization function

∑∑=


























− + 





−


















= =

 

k k

k k k k

B T

T B x T C x

( , K, R , , , )

arg min K R , ( , ) K R , ( , )
(11)

j j j

j

N

k

M

j j j j j j k j k j

(W) (WC) (WC)
1 2

1 1

(WC) (WC) (W) (I)
1 2

2
(WC) (WC)

,
(W)

,
(I)

1 2

2

Figure 5.  The average logarithmic errors of the close form solution (CFS) and the nonlinear optimization 
solution (NOS) without considering the lens distortion. The numbers of images are 12, 16, 20 and 24, 
respectively. The displacements are 10 mm, 20 mm, 30 mm and 40 mm, respectively. The purple balls represent 
the CFS test errors. The green balls show the NOS error results.
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where 
 k kx ( , )j

(I)
1 2  is the ideal laser projective point parameterized by k1 and k2 in the jth image, 

 k kx ( , )k j,
(I)

1 2  is the 
kth ideal target feature points parameterized by k1 and k2 in the jth image, K is the intrinsic parameter matrix of 
the calibrated camera, N is the number of images, M is the number of the target feature points Ck j,

(W) in the jth 
image.

Data availability.  The datasets generated during the current study are available in the Figshare repository, 
https://doi.org/10.6084/m9.figshare.5074069.v1.

Results
The 3D reconstruction precision of the projective point of the laser line cannot be directly evaluated as there is 
no benchmark of the point in the camera coordinate system. However, the displacement between two projective 
points in the world coordinate system is identical to the one in the camera coordinate system. Thus, the displace-
ment of two projective points is considered as the relative benchmark for the reconstruction. The verification 
principle of the method is illustrated in Fig. 3. The ruler with the checkerboard pattern is chosen as the bench-
mark of the test. The feature point coordinates on the benchmark ruler can be reconstructed by the laser projector 
system.

Figure 6.  Experimental results of the close form solution (CFS) and the nonlinear optimization solution (NOS) 
affected by the noises of 0.01, 0.02, 0.03 and 0.04, respectively. (a–d) The first group of comparison results of 
CFS and NOS in the displacements of 10 mm, 20 mm, 30 mm and 40 mm, respectively. (e–h) The second group 
of comparison results of CFS and NOS in the displacements of 10 mm, 20 mm, 30 mm and 40 mm, respectively. 
(i–l) The third group of comparison results of CFS and NOS in the displacements of 10 mm, 20 mm, 30 mm and 
40 mm, respectively. (m–p) The fourth group of comparison results of CFS and NOS in the displacements of 
10 mm, 20 mm, 30 mm and 40 mm, respectively.

https://doi.org/10.6084/m9.figshare.5074069.v1
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The projective laser point B j
(W) in the world coordinate system is achieved by the optimization process. It is 

transformed to the projective laser point B j
(C) in the camera coordinate system. The reconstruction displacement 

error of two projective laser points is

= − −−E BB B (12)j j j
(C) (C)

1
(C)

0

where Ej
(C) is the reconstruction displacement error, B0 is the benchmark of the point displacement.

In the experiments, a 140 mm × 160 mm target is designed with 13 × 15 points. The distance of adjacent cor-
ners is 10 mm. 2048 × 1536 resolution is used in the experiments. Four groups of experiments are performed 
to reconstruct the displacements among the 3D laser points and verify the accuracy of the reconstruction. The 
Harris corner recognition results and the gray-scale distributions in four groups of experiments are shown in 
Fig. 4. The blue points indicate the recognition results of the 2D target points. In addition, there are six green 
points in every image. Five of them are non-collinear points that are randomly selected in the 2D target. The other 
one is the laser projective point.

Figure 5 shows the reconstruction errors of laser points of the nonlinear optimization solution (NOS) and the 
close form solution (CFS), without considering the distortion in the four groups of experiments. Figure 5(a–d) 
describe the reconstruction errors of the four groups, respectively. In the first group, when the displacement is 
10 mm and the image quantities increase from 12 to 24, the average logarithmic errors of CFS are 5.99 lnmm, 
4.15 lnmm, −0.58 lnmm and −1.37 lnmm, respectively. The average logarithmic errors of NOS are 5.84 lnmm, 
4.01 lnmm, −0.64 lnmm and −1.66 lnmm, respectively. The average logarithmic errors of CFS are respectively 
6.23 lnmm, 4.17 lnmm, 0.04 lnmm and −1.06 lnmm while the displacement is 20 mm and the image quan-
tities increase. The corresponding average logarithmic errors of NOS are 5.89 lnmm, 4.06 lnmm, −0.12 lnmm 
and −1.37 lnmm, respectively. When the displacement is 30 mm and the image quantities increase, the average 

Group Displacement Solution method

Error mean

Noise 0.01 Noise 0.02 Noise 0.03 Noise 0.04

1

10 mm
Close form solution 0.30 0.35 0.40 0.47

Nonlinear optimization solution 0.21 0.32 0.38 0.42

20 mm
Close form solution 0.39 0.46 0.61 0.82

Nonlinear optimization solution 0.28 0.40 0.56 0.61

30 mm
Close form solution 0.46 0.54 0.75 0.97

Nonlinear optimization solution 0.40 0.49 0.68 0.85

40 mm
Close form solution 0.58 0.63 0.78 1.16

Nonlinear optimization solution 0.50 0.61 0.74 0.99

2

10 mm
Close form solution 0.27 0.35 0.39 0.46

Nonlinear optimization solution 0.20 0.31 0.36 0.42

20 mm
Close form solution 0.38 0.41 0.56 0.73

Nonlinear optimization solution 0.27 0.39 0.45 0.59

30 mm
Close form solution 0.48 0.53 0.67 0.86

Nonlinear optimization solution 0.39 0.47 0.55 0.74

40 mm
Close form solution 0.61 0.65 0.71 0.99

Nonlinear optimization solution 0.48 0.61 0.66 0.89

3

10 mm
Close form solution 0.27 0.32 0.39 0.43

Nonlinear optimization solution 0.18 0.29 0.37 0.39

20 mm
Close form solution 0.38 0.41 0.61 0.66

Nonlinear optimization solution 0.25 0.33 0.49 0.54

30 mm
Close form solution 0.52 0.56 0.69 0.89

Nonlinear optimization solution 0.36 0.44 0.64 0.74

40 mm
Close form solution 0.67 0.76 1.02 1.15

Nonlinear optimization solution 0.46 0.66 0.83 0.94

4

10 mm
Close form solution 0.25 0.30 0.41 0.47

Nonlinear optimization solution 0.18 0.27 0.35 0.42

20 mm
Close form solution 0.42 0.47 0.66 0.73

Nonlinear optimization solution 0.28 0.41 0.54 0.60

30 mm
Close form solution 0.57 0.63 0.77 0.98

Nonlinear optimization solution 0.41 0.58 0.72 0.83

40 mm
Close form solution 0.74 0.87 1.11 1.27

Nonlinear optimization solution 0.53 0.76 0.94 1.06

Table 1.  The error means of the close form solution (CFS) and the nonlinear optimization solution (NOS) 
affected by the noises related to Fig. 6.
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logarithmic errors of CFS are 6.52 lnmm, 4.32 lnmm, 0.44 lnmm and −0.75 lnmm, respectively. The related aver-
age logarithmic errors of NOS are 6.45 lnmm, 4.24 lnmm, 0.35 lnmm and −1.03 lnmm, respectively. The aver-
age logarithmic errors of CFS are 6.67 lnmm, 4.39 lnmm, 0.62 lnmm and −0.51 lnmm while the displacement is 
40 mm and the image quantities increase. The corresponding average logarithmic errors of NOS are 6.54 lnmm, 
4.29 lnmm, 0.55 lnmm and −0.80 lnmm.

In the second group, when the displacement of 10 mm and the image quantities rise from 12 to 24, the means 
of logarithmic errors of CFS are 5.86 lnmm, 3.27 lnmm, −0.11 lnmm and −1.30 lnmm, respectively. The corre-
sponding means of the logarithmic errors of NOS are 5.75 lnmm, 3.19 lnmm, −0.15 lnmm and −1.65 lnmm, 
respectively. When the displacement is 20 mm and the image quantities grow up, the average logarithmic errors 
of CFS are 6.02 lnmm, 3.44 lnmm, 0.56 lnmm and −1.02 lnmm, respectively. The average logarithmic errors of 
NOS are 5.98 lnmm, 3.31 lnmm, 0.45 lnmm and −1.33 lnmm, respectively. When the displacement is 30 mm 
and the image quantities grow up, the means of logarithmic errors of CFS are 6.13 lnmm, 3.66 lnmm, 0.90 lnmm 
and −0.78 lnmm, respectively. The means of logarithmic errors of NOS are 6.05 lnmm, 3.54 lnmm, 0.84 lnmm 
and −0.95 lnmm, respectively. The average logarithmic errors of CFS are 6.32 lnmm, 3.75 lnmm, 1.10 lnmm and 
−0.57 lnmm while the displacement is 40 mm and the image quantities grow up. The means of logarithmic errors 
of NOS are 6.13 lnmm, 3.70 lnmm, 1.05 lnmm and −0.77 lnmm, respectively.

Figure 7.  Experimental results of the close form solution (CFS) and the nonlinear optimization solution 
(NOS) with respect to the lens distortion. The noise levels are 0.01, 0.02, 0.03 and 0.04, respectively. (a–d) The 
first group of comparison results of CFS and NOS in the displacements of 10 mm, 20 mm, 30 mm and 40 mm, 
respectively. (e–h) The second group of comparison results of CFS and NOS in the displacements of 10 mm, 
20 mm, 30 mm and 40 mm, respectively. (i–l) The third group of comparison results of CFS and NOS in the 
displacements of 10 mm, 20 mm, 30 mm and 40 mm, respectively. (m–p) The fourth group of comparison 
results of CFS and NOS in the displacements of 10 mm, 20 mm, 30 mm and 40 mm, respectively.
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In the third group, when the displacement is 10 mm and the image quantities increase from 12 to 24, the 
means of the logarithmic errors of CFS are 6.46 lnmm, 2.57 lnmm, 0.01 lnmm and −1.36 lnmm, respectively. 
The average logarithmic errors of NOS are 6.17 lnmm, 2.47 lnmm, −0.2 lnmm and −1.93 lnmm, respectively. 
The means of the logarithmic errors of CFS are 6.64 lnmm, 2.67 lnmm, 0.68 lnmm and −1.01 lnmm while the 
displacement is 20 mm and the image quantities increase. The average logarithmic errors of NOS are 6.31 lnmm, 
2.54 lnmm, 0.52 lnmm and −1.45 lnmm, respectively. When the displacement is 30 mm and the image quantities 
increase, the means of logarithmic errors of CFS are 6.75 lnmm, 2.72 lnmm, 1.25 lnmm and −0.68 lnmm, respec-
tively. The average logarithmic errors of NOS are 6.45 lnmm, 2.60 lnmm, 1.19 lnmm and −1.07 lnmm, respec-
tively. When the displacement is 40 mm and the image quantities increase, the means of logarithmic errors of CFS 
are 6.80 lnmm, 2.84 lnmm, 1.57 lnmm and −0.43 lnmm, respectively. The average logarithmic errors of NOS are 
6.60 lnmm, 2.73 lnmm, 1.48 lnmm and −0.78 lnmm, respectively.

In the fourth group, when the displacement is 10 mm and the image quantities rise from 12 to 24, the average 
logarithmic errors of CFS are 5.96 lnmm, 3.95 lnmm, 0.44 lnmm and −1.45 lnmm. The corresponding means of 
the average logarithmic errors of NOS are 5.64 lnmm, 3.92 lnmm, 0.08 lnmm and −1.74 lnmm, respectively. The 
average logarithmic errors of CFS are 6.26 lnmm, 4.59 lnmm, 0.84 lnmm and −0.91 lnmm, with the displacement 
of 20 mm and the image quantities grow up. The means of the average logarithmic errors of NOS are 5.96 lnmm, 
4.58 lnmm, 0.70 lnmm and −1.29 lnmm, respectively. When the displacement is 30 mm and the image quantities 
grow up, the average logarithmic errors of CFS are 6.34 lnmm, 5.05 lnmm, 1.16 lnmm and −0.57 lnmm, respec-
tively. The corresponding means of the average logarithmic errors of NOS are 6.23 lnmm, 4.87 lnmm, 1.10 lnmm 
and −0.95 lnmm. The average logarithmic errors of CFS are 6.51 lnmm, 5.31 lnmm, 1.53 lnmm and −0.33 lnmm 
with the displacement of 40 mm and the image quantities grow up. The corresponding average logarithmic errors 
of NOS are 6.44 lnmm, 5.09 lnmm, 1.36 lnmm and −0.64 lnmm, respectively.

It is apparent from the experimental results in Fig. 5 that the error gradually increases with the increasing 
displacement with the same image quantity. The displacement of the proposed optimization method with lens 

Group Displacement Solution method

Error mean

Noise 0.01 Noise 0.02 Noise 0.03 Noise 0.04

1

10 mm
Close form solution 0.25 0.33 0.38 0.45

Nonlinear optimization solution 0.17 0.28 0.36 0.41

20 mm
Close form solution 0.37 0.42 0.61 0.71

Nonlinear optimization solution 0.27 0.37 0.45 0.53

30 mm
Close form solution 0.45 0.51 0.69 0.91

Nonlinear optimization solution 0.38 0.48 0.57 0.75

40 mm
Close form solution 0.58 0.62 0.75 1.00

Nonlinear optimization solution 0.48 0.59 0.69 0.95

2

10 mm
Close form solution 0.25 0.34 0.38 0.46

Nonlinear optimization solution 0.18 0.28 0.34 0.38

20 mm
Close form solution 0.36 0.39 0.54 0.66

Nonlinear optimization solution 0.26 0.35 0.41 0.54

30 mm
Close form solution 0.44 0.50 0.60 0.84

Nonlinear optimization solution 0.37 0.47 0.49 0.63

40 mm
Close form solution 0.56 0.64 0.70 0.91

Nonlinear optimization solution 0.47 0.62 0.65 0.83

3

10 mm
Close form solution 0.19 0.31 0.39 0.42

Nonlinear optimization solution 0.14 0.26 0.34 0.37

20 mm
Close form solution 0.27 0.39 0.56 0.61

Nonlinear optimization solution 0.22 0.33 0.41 0.53

30 mm
Close form solution 0.38 0.45 0.67 0.79

Nonlinear optimization solution 0.32 0.42 0.60 0.64

40 mm
Close form solution 0.49 0.71 0.91 1.01

Nonlinear optimization solution 0.41 0.62 0.78 0.93

4

10 mm
Close form solution 0.21 0.30 0.39 0.45

Nonlinear optimization solution 0.16 0.26 0.32 0.39

20 mm
Close form solution 0.31 0.44 0.62 0.68

Nonlinear optimization solution 0.25 0.38 0.45 0.57

30 mm
Close form solution 0.44 0.61 0.75 0.88

Nonlinear optimization solution 0.35 0.47 0.66 0.71

40 mm
Close form solution 0.56 0.81 0.99 1.13

Nonlinear optimization solution 0.43 0.70 0.86 1.02

Table 2.  The error means of the close form solution (CFS) and the nonlinear optimization solution (NOS) with 
regard to the lens distortion related to Fig. 7.
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distortion is closer to the real displacement than the optimization method without considering the distortion. 
When the image number is 24, the reconstruction error of the displacement approaches its minimum. As the 
image number increases, the camera calibration is more accurate. Accordingly, the difference between the recon-
structed displacement of the laser points and the actual displacement declines with the increasing image number. 
Therefore, in the following experiments, 24 images are adopted to calibrate the camera and analyze the test errors.

In the reconstruction of the displacement between the projection laser points, noise is an indispensable factor 
to be evaluated. The noise effects on the displacement reconstructions are investigated in the experiments. Four 
kinds of Gaussian noises are added to test the influences on the reconstruction errors. The experimental results of 
NOS and CFS without considering the lens distortion in the four groups are illustrated in Fig. 6. Four groups of 
experiments are performed to compare the effects of the noises and displacements. The statistical data are shown 

Figure 8.  Three examples of the applications using the close form solution (CFS) and the nonlinear 
optimization solution (NOS). The first example is to measure the wheelbase of a car model. The second example 
is to test the distance between two positioning holes on a circuit board. The third one is to obtain the diameter 
of a coin. E1 is the reconstruction error of CFS without respect to the lens distortion. E2 is the reconstruction 
error of CFS with respect to the lens distortion. E3 is the reconstruction error of NOS without respect to the lens 
distortion. E4 is the reconstruction error of NOS with respect to the lens distortion. (a) The measurement photo 
of the first example. (b) The measurement results of the first example. (c) The measurement photo of the second 
example. (d) The measurement results of the second example. (e) The measurement photo of the third example. 
(f) The measurement results of the third example.
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in Table 1. It is evident that the reconstruction error shows a stable growing trend with the increasing noise in 
the above experimental results. The errors of NOS are smaller than the errors of CFS under the same noise level. 
Therefore, NOS provides a higher accuracy. Under the same noise and the same optimization condition, the error 
values increase with the increasing displacement.

In the 3D reconstruction process of the displacement between the laser points, the lens distortion is the other 
important factor to be evaluated. The effects of the lens distortion on the displacement reconstructions are inves-
tigated in the experiments. The experimental results of NOS and CFS with regard to the distortion effects are 
shown in Fig. 7. Four groups of experiments with regard to the lens distortion are performed to compare the 
effects of the noises and displacements. The statistical results are listed in Table 2. In the experiments above, the 
results reflect that the error variances of CFS and NOS show the growing trend with the increasing noise level. The 
means of errors based on CFS and NOS rise as the displacement increases. The error variations of NOS method 
are closer to the real displacements than CFS method under the identical noise and displacement. The errors 
prove that NOS provides high accuracy for the 3D reconstructions of the laser projective points.

Taking all the factors into consideration, we get the conclusion that the average errors of CFS and NOS grow 
with the increase of noise. Moreover, the reconstruction results of NOS considering the lens distortion contribute 
a higher accuracy and are closer to the true values. In addition, the average errors of both CFS and NOS decline 
with the decreasing displacement.

Three application cases are provided to further show the applications of the reconstruction method. The 
wheelbase of a car model, the distance between two holes on the circuit board and the diameter of a coin are cho-
sen as the objects to be measured. Every measured value is tested by the reconstruction method twenty times. The 
benchmarks of the tests are determined by the measurement outputs of a vernier caliper. The benchmark values 
are 64.00 mm, 41.07 mm and 19.08 mm, respectively. The measurement results are shown in Fig. 8. Four kinds of 
the reconstruction errors are considered in the three cases. The means of the reconstruction errors, CFS without 
respect to the lens distortion, are 1.10 mm, 0.61 mm and 0.40 mm in the three measurements. Then, the means of 
the reconstruction errors, CFS with respect to the lens distortion, are 0.95 mm, 0.53 mm and 0.35 mm in the three 
measurements. Furthermore, the means of the reconstruction errors, NOS without respect to the lens distortion, 
are 0.84 mm, 0.45 mm and 0.27 mm in the three measurements. However, the means of the reconstruction errors, 
NOS with respect to the lens distortion, are 0.68 mm, 0.40 mm and 0.20 mm, respectively. The NOS with respect 
to the lens distortion demostrates the best performance in the three applications. Its average error is 0.43 mm, 
which proves that the reconstruction method can be used in some non-contact measurements and inspections.

Discussion
A method to reconstruct the 3D laser point is proposed in the paper and realized by the project invariant gener-
ated from five points on a target plane. A laser projector is fixed on the 2D target in order to locate the laser point 
and the points of the 2D target on the same plane. The projective invariants are obtained from the laser projective 
point and the five non-collinear points that are randomly selected from the 2D target. The coordinates of the laser 
points are initially determined by the singular value decomposition. The optimization function is constructed by 
the differences between the re-projection points and the ideal points of the 2D target points and the laser points 
that are extracted in the image coordinate system. The 3D reconstructions of the laser projective points are finally 
obtained by minimizing the parameterized re-projection errors in the optimization function. The effects of the 
image quantity, the lens distortion and the displacement are analyzed by the experiments. In the first group of 
experiments, the error means are 0.30 mm, 0.40 mm, 0.54 mm and 0.68 mm on the condition that the displace-
ment grows from 10 mm to 40 mm. In the second group of experiments, the error means are 0.29 mm, 0.39 mm, 
0.49 mm and 0.64 mm. In the third group of experiments, the error means are 0.28 mm, 0.37 mm, 0.49 mm and 
0.69 mm. In the fourth group of experiments, the error means are 0.28 mm, 0.41 mm, 0.55 mm and 0.75 mm. The 
error mean is 0.47 mm in the four groups of experiments. Considering the reasonable measurement scope in the 
experiments, it is necessary to evaluate the relative errors of the reconstruction method in the experiments. The 
relative errors of the first group are 3.03%, 2.02%, 1.82% and 1.69%. The relative errors of the second group are 
2.94%, 1.96%, 1.63% and 1.61%. The relative errors of the third group are 2.77%, 1.86%, 1.65% and 1.72%. The 
relative errors of the fourth group are 2.82%, 2.06%, 1.82% and 1.88%. The largest relative error is 3.03%, which 
is less than 5% of the normal measurement instruments, in the four groups of experiments. The error variation 
grows with the increasing displacement. The projection invariant realizes the 3D reconstructions of the laser 
projective points. Moreover, the optimization function considering the lens distortion effectively promotes the 
reconstruction accuracy of the 3D laser projective points, which has the applicable potential to detect and recon-
struct the 3D feature points or profile of objects.

Summary
In summary, a reconstruction method for a laser projective point is discussed by the invariant deter-
mined by the five points on a 2D target. The close form solution is achieved by the differences between the 
image-coordinate-invariants and world-coordinate-invariants. The nonlinear solution is conducted by minimiz-
ing the parameterized re-projection errors. The experiment results verify that the mean of the measurement 
errors is 0.47 mm and the largest measurement error is 0.75 mm. The mean of the relative errors is 2.08% and the 
largest relative error is 3.03%. It is proved that the reconstruction method can support the applications in more 
general systems of the non-contact measurements and inspections. In future works, the improvement method to 
enlarge the measurement scope should be investigated for the wide applications.
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