
molecules

Review

Overview of the Structure–Dynamics–Function Relationships
in Borohydrides for Use as Solid-State Electrolytes in
Battery Applications

Tabbetha A. Dobbins

����������
�������

Citation: Dobbins, T.A. Overview of

the Structure–Dynamics–Function

Relationships in Borohydrides for

Use as Solid-State Electrolytes in

Battery Applications. Molecules 2021,

26, 3239. https://doi.org/10.3390/

molecules26113239

Academic Editors: Ewa

C.E. Rönnebro and Juan Carlos

Serrano Ruiz

Received: 6 December 2020

Accepted: 17 April 2021

Published: 28 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; dobbins@rowan.edu;
Tel.: +1-856-256-4366

Abstract: The goal of this article is to highlight crucial breakthroughs in solid-state ionic conduction
in borohydrides for battery applications. Borohydrides, Mz+BxHy, form in various molecular struc-
tures, for example, nido-M+BH4; closo-M2+B10H10; closo-M2+B12H12; and planar-M6+B6H6 with
M = cations such as Li+, K+, Na+, Ca2+, and Mg2+, which can participate in ionic conduction. This
overview article will fully explore the phase space of boron–hydrogen chemistry in order to discuss
parameters that optimize these materials as solid electrolytes for battery applications. Key properties
for effective solid-state electrolytes, including ionic conduction, electrochemical window, high energy
density, and resistance to dendrite formation, are also discussed. Because of their open structures
(for closo-boranes) leading to rapid ionic conduction, and their ability to undergo phase transition
between low conductivity and high conductivity phases, borohydrides deserve a focused discussion
and further experimental efforts. One challenge that remains is the low electrochemical stability of
borohydrides. This overview article highlights current knowledge and additionally recommends a
path towards further computational and experimental research efforts.
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1. Introduction

Recent advances in battery technologies have permitted the development of recharge-
able lithium ion batteries with high energy density, high power density, durability, long
term cycle life, and low loss in capacity with cycling. The intent of this article is to provide
inspiration to undertake research to advance “beyond lithium battery concepts”, specifi-
cally towards borohydride solid-state electrolytes. However, today lithium ion batteries are
dominating the market. Lithium ion batteries boast specific power densities of ~500 W/kg
and specific energy densities of up to 200 kWh/kg (values reported using 50% efficiency
estimates) [1]. These lithium ion batteries use an organic liquid electrolyte to ensure high
ionic conduction. Safety remains a concern for these materials because of the organic mate-
rials in the electrolyte layer [2–5]. Figure 1a schematically shows currently used batteries
with an organic liquid electrolyte layer to transport the Li+ ions. Figure 1b schematically
shows the essential components of an all solid-state battery—containing a solid electrolyte
layer between the electrodes. For the all solid-state lithium ion battery, it is important
for Li+ to diffuse rapidly across the electrolyte layer. Solid-state electrolytes, which have
high ionic conduction, will reduce the need for organic liquid electrolytes and will, in turn,
have a large impact on further growth of lithium ion battery technologies [6]. Materials
development in the electrolyte layer will revolutionize applications available for lithium
ion battery use.
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Figure 1. Schematics of (a) the current lithium ion battery containing a liquid electrolyte layer. (b) 
An all solid-state battery configuration. For the solid-state borohydride electrolyte shown in (b), a 
potential battery architecture would be comprised of LiCoO2 cathode and Li4Ti5O12 spinel anode. 

1.1. Why Study Borohydrides for Solid-State electrolytes? The Versatility of Boron–Hydrogen 
Chemistry 

This overview article work seeks to provide discussion germane to materials based 
in the borohydride family for solid-state electrolyte applications. The development of bo-
rohydrides as a class of materials for use as solid electrolytes could lead to innovations in 
low temperature fuel cells and safer ion conducting batteries. This class of materials has 
not been fully explored experimentally or computationally for use as solid-state electro-
lytes. A review by Matsuo and Orimo published in 2011 describes fast ionic conduction 
in LiBH4, LiNH2, and LiAlH4 systems (and their mixtures), providing a prospectus on im-
proving room temperature ionic conduction [7]. Nevertheless, these classes of materials 
do not explore the full spectrum of borohydride polymorphs. The promise of borohy-
drides for solid-state electrolytes was also assessed in a review article by Cuan et al. in 
early 2019 [8]. That comprehensive review is useful, and should be considered, for a very 
in-depth discussion of the ionic conductivity of borohydrides and carboranes as candidate 
solid-state electrolyte materials. 

The attractiveness of borohydrides is that they form in various molecular structures. 
Boron–hydrogen chemistry is versatile (forming bridge and cyclic structures), and this 
could lead to improved tunability in cationic conduction. For example, nido- M+BH4, 
closo-M2+B10H10, closo-M+B12H12, and planar-M6+B6H6 (with M = cations) can form ionic 
compounds with cations such as Li+, K+, Na+, Ca2+, and Mg2+. Anion structural renderings 
are shown in Figure 2. The closo-borane (-B10H102− and -B12H12−) structures have open chan-
nels for ionic conduction [9]. 

 
Figure 2. Structural renderings of (left to right) BH4−, B6H62, B10H102−, and B12H122− wherein the ionic 
radii are reported as 2 Å, 4.7 Å, 6 Å, and 5.8 Å, respectively. Image adapted with permission from 
[10]. Copyright permissions granted by American Chemical Society (2017). 

Figure 1. Schematics of (a) the current lithium ion battery containing a liquid electrolyte layer. (b) An
all solid-state battery configuration. For the solid-state borohydride electrolyte shown in (b), a
potential battery architecture would be comprised of LiCoO2 cathode and Li4Ti5O12 spinel anode.

1.1. Why Study Borohydrides for Solid-State Electrolytes? The Versatility of
Boron–Hydrogen Chemistry

This overview article work seeks to provide discussion germane to materials based
in the borohydride family for solid-state electrolyte applications. The development of
borohydrides as a class of materials for use as solid electrolytes could lead to innovations in
low temperature fuel cells and safer ion conducting batteries. This class of materials has not
been fully explored experimentally or computationally for use as solid-state electrolytes. A
review by Matsuo and Orimo published in 2011 describes fast ionic conduction in LiBH4,
LiNH2, and LiAlH4 systems (and their mixtures), providing a prospectus on improving
room temperature ionic conduction [7]. Nevertheless, these classes of materials do not
explore the full spectrum of borohydride polymorphs. The promise of borohydrides
for solid-state electrolytes was also assessed in a review article by Cuan et al. in early
2019 [8]. That comprehensive review is useful, and should be considered, for a very in-
depth discussion of the ionic conductivity of borohydrides and carboranes as candidate
solid-state electrolyte materials.

The attractiveness of borohydrides is that they form in various molecular structures.
Boron–hydrogen chemistry is versatile (forming bridge and cyclic structures), and this
could lead to improved tunability in cationic conduction. For example, nido- M+BH4,
closo-M2+B10H10, closo-M+B12H12, and planar-M6+B6H6 (with M = cations) can form ionic
compounds with cations such as Li+, K+, Na+, Ca2+, and Mg2+. Anion structural renderings
are shown in Figure 2. The closo-borane (-B10H10

2− and -B12H12
−) structures have open

channels for ionic conduction [9].
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Figure 2. Structural renderings of (left to right) BH4
−, B6H6

2, B10H10
2−, and B12H12

2− wherein the
ionic radii are reported as 2 Å, 4.7 Å, 6 Å, and 5.8 Å, respectively. Image adapted with permission
from [10]. Copyright permissions granted by American Chemical Society (2017).

1.2. Key Technical Challenges for Borohydrides as Solid-State Electrolytes

There are several technical challenges remaining for lithium ion batteries (in general)
and, in particular, for solid-state batteries. Among those are increasing ionic conduc-
tion, broadening the electrochemical stability window, alleviating dendrite formation, and
achieving high energy density. Figure 3 is reproduced from the work by Lu et al. [10] and
shows an assessment (in spider diagram) of how well the materials perform as battery
electrolytes with respect to ionic conduction, dendrite formation, and width of the elec-
trochemical window (which is defined by anodic reaction and electrochemical oxidation
potentials) [10]. Like Lu et al. [10], many others have undertaken comprehensive engi-
neering studies on borohydride materials, showing their promise for solid-state battery
applications [6,11–19]. This overview article examines some of the scientific underpinnings
for these performance metrics in borohydride solid electrolytes. The next sections of this
overview article focus their discussions solely on ionic conduction and electrochemical
stability in order to render detailed treatment of those topics (with some suggestions for
experimental undertakings that would enhance the field). This article serves to inspire
further research into the topic of borohydrides for solid-state battery applications.
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2. Borohydrides as Solid-State Electrolytes
2.1. Foundational Work with Borohydrides in the Electrolyte Layer of Batteries

Early research utilizing borohydrides in the electrolyte layer was done with the
addition of organic liquid carriers [11,20,21]. Work published by researchers at the Toyota
Research Institute of North America (Ann Arbor, MI) [20,21] used organic liquid phases
tetrahydrofuran (THF) and dimethoxyethane (DME) with Mg(BH4)2 and LiBH4 mixtures as
electrolytes in operational batteries and showed reasonably high full cell electric potential
and cycle life. Work using Mg(BH4)2 and LiBH4 was followed by use of carboranes,
e.g., (C2BH10H11)2Mg, in diglyme and tetraglyme solvents as electrolytes [11,22] which
demonstrated a wide electrochemical window of 3.6 V [11]. Similar data were collected in
our laboratory at Rowan University in order to determine whether particle morphology
is influenced by cycling. Figure 4a shows results of three cycles for voltammetry done by
on solutions similar to those used in literature [20,21] on 2 M LiBH4 with 0.5 M NaBH4 in
THF solution. Microstructure changes are indeed apparent before (Figure 4a) and after
(Figure 4b) cycling, and these changes could play a role in limiting the cycle life of batteries
formed using these materials.
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Contemporaneous with work done using borohydrides inside of solvents, borohy-
drides in the closo-borane phases were being considered as superionic conductors for rapid
ion motion through their open channel pore structures [12,23–25]. Researchers doing theo-
retical work began to suggest that the superionic conduction would make closo-boranes
promising for solid electrolytes [10,12,26]. The reasons for this superionic conduction are
described in the theory paper by Kweon et al. as a flat energy landscape (with many
available sites for hopping), symmetry competition that ejects the cation from particular
sites, and thermal reorientation of the anions [12]. Since Lipscomb first published the
probable structure of B10H10

− in 1959 [27], there have been many studies undertaken to
understand the aromatic character over 3D space in carboranes and boranes primarily by
NMR and density functional theory [28,29]. Only a few crystallographic measurements
have been performed on closo-boranes using diffraction [30–34]. Many years after the
first proposed structure of the closo-borane B10H10

−, a 2004 diffraction study by Lipscomb
confirmed the Cu2B10H10 structure [31]. Experimental studies showed that Li2B12H12 has
an ionic conduction of 0.1 S/cm at ~110 ◦C, even higher than was predicted [13]. Further,
Kim et al. [14] demonstrated that with deficiencies on the Li and H sites in Li2B12H12, ionic
conductivities can be improved by three orders of magnitude [14]. Other studies on solid
electrolytes with the BH4

− allomorph have demonstrated their feasibility for competitive
ionic conduction (but with a narrower electrochemical window relative to sulfide and
phosphate class of solid electrolyte materials) [15–19,35].
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2.2. A Survey of Ionic Conductivity in Borohydrides

Ionic conduction is considered the most important variable for solid electrolytes,
and hence there have been many material developments for improved ionic conductiv-
ity [9,20,36–38]. Table 1 describes some experimentally and computationally determined
ionic conductivities. Some traditional ionic conductors that are considered “good” in per-
formance with respect to this measure are included in Table 1 for comparison. Addition of
adducts and other modifications to borohydrides have been demonstrated to be effective at
improving ionic conduction [6,39–41]. As an example, pure lithium borohydride (LiBH4

−)
has a room temperature ionic conductivity of ~10−7 S/cm [40]. Doping and adducts have
been demonstrated to enhance ionic conductivities. These increases are realized for a
variety of reasons, among which are stabilizing high ionic conductivity phases, expanding
the lattice, and forming high conductivity sub-lattice pathways [40,41]. Work has been
done in adding ligands, such as -NH2, to affect ionic conduction in borohydrides. For
example, MgBH4 having an ionic conductivity of 10−8 S/cm realizes an increase in ionic
conduction to 10−5 S/cm with the addition of an -NH2 adduct [39].

Table 1. Ionic mobility in solid-state electrolytes. Ionic conductivity is tuned by modification with adducts, nanoconfinement,
doping, and anionic additions.

Material Temperature
(◦C)

Solid-State Cationic
Conductivity (S/cm) Reference

Traditional “Good” Ionic
Conductors

Perovskites (e.g., LLZO,
LLTO, LiTi(PO4)3) RT 10−3 to 10−5 [6]

Untreated Borohydrides

LiBH4 107 2 × 10−3 [16]
Mg(BH4)2 30 10−12 [39]
LiB10H10 60 3 × 10−2 [10]
NaB10H10 RT 3 × 10−2 [10]

Nanoconfined LiBH4 RT 10−3 [18]

Adducts
Mg(BH4)2—NH2 30 5 × 10−8 [39]
Mg(BH4)2—NH2 70 6 × 10−5 [39]

Cationic Doped and Anion
Additions

Li4(BH4)3I RT 10−2 [40]
Na-doped LiBH4-BO3 RT 10−5 [41]

LiCa3(BH4)(BO3)2 RT 1 × 10−5 to 2.5 × 10−6 [41]

Anionic Additions LiBH4-LiX (X = Cl, Br, I) RT 10−4 to 10−7 [6]

RT = room temperature.

The conductivity for Mg(BH4)2 with an adduct of -NH2 reaches ionic conductivity
levels of 10−6 S/cm at 150 ◦C [39,42]. This compares well with the highly researched
Mg3(PO4)2, which has an ionic conductivity of 10−6 S/cm at temperatures in excess of
400 ◦C. Another factor that is well known to affect ionic conduction in LiBH4 is crystal-
lographic phase. When measured above the orthorhombic to hexagonal phase transition
(occurring at 130 ◦C), a higher ionic conduction is realized in the elevated temperature
hexagonal phase [15]. The lithium ion conductivity is realized in the hexagonal phase of
LiBH4 is 10−3 S/cm [15]. It will be useful to develop approaches to stabilize the elevated
temperature phase down to room temperature. Work done by doping LiCa3(BH4)(BO3),
formed by decomposing LiBH4, Ca(BH4)2 in the presence of carbon, has demonstrated a Li+

conduction of 10−5 S/cm at room temperature [41]. The -BO3 molecular unit is reported
to define the transport pathway for the lithium ion [41]. Additions of, Sr2+, Eu2+, and
Na+ have all demonstrated improved Li+ conductivity when added to LiCa3BH4BO3. The
larger-sized divalent substitutions, Sr2+ and Eu2+, expand the lattice to enhance transport.
The monovalent Na+ substituting onto Ca2+ O-sites also causes a lattice expansion when
there is excess Li+ [41].

As noted earlier in this paper, the open structure of the closo-boranes (BnHn
−) results

in increased ionic conduction over the nido- BH4
− units. In fact, closo-boranes realize ionic
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conductivities, which are five orders of magnitude higher than nido- structures. Other
work has shown that rapid cationic conduction (3 × 10−2 S/cm) occurs in the LiB10H10 and
NaB10H10 phases [10,12]. Similarly, rapid ionic conduction is observed for the -B12H12 closo-
borane phases [10–12,20,24]. Because of their high ionic conductivities, ease of synthesis
and safety of use, for the closo-boranes should also be considered. The closo-boranes
(BnHn

−) could readily be synthesized following the resin-based ion exchange methods as
described in the thesis by Blake [43], beginning with commercial triethanolamine (TEAH)-
BnHn purchased from Boron Specialties, LLC. Some borohydrides, such as borane, diborane,
and pentaborane, are known to be toxic and pose environmental safety hazards and so
safe handling must be considered. These are primarily in stoichiometries x < 5 in BxHy
(e.g., BH3, B2H6, or B5H9) and are liquid or gaseous at room temperature, toxic, and highly
reactive with oxygen in air.

2.3. Electrochemical Stability Window of Borohydrides

The electrochemical stability window is the electric potential range over which the
material is electrochemically stable. One drawback of borohydrides is their narrow electro-
chemical windows [10,44]. Figure 5 shows the calculated electrochemical stability ranges
for common electrolytes and electrodes (relative to lithium metal at 0 V). The Cuan et al. [8]
R article provides example of electrochemical stability window for a limited selection
of borohydrides. A more comprehensive list relative to these materials is provided by
Ceder et al. [45] and Lu et al. [10]. Most electrochemical stability window data reported
in the literature has been computationally predicted. Although focused on high ionic
conduction oxides, nitrides, and sulfides, Ceders et al. [44] include LiH and LiBH4 in elec-
trochemical stability window calculations (Figure 5). Lu et al. [10] provide electrochemical
stability window calculations for a variety of borohydrides shown in Figure 5. With the
exception of CaB12H12, the electrochemical stability ranges are all below 3V. Lu et al. [10]
also provide comparison to experiments in the cases of LiBH4 and NaBH4 (not shown
in Figure 5). For all materials examined in that work, the measured stability window is
larger than the computationally predicted electrochemical window. This is reportedly
due to slow kinetics of the decomposition reaction (and product phase formation) at the
cathode [10]. Furthermore, Lu et al. [10] show electrochemical windows computational
predictions assuming removal (i.e., not inclusive) of BxHy product species. Higher cathodic
potentials are demonstrated in computations performed without the BxHy species [10].
The electrochemical window of the borohydride LiBH4 is predicted to be low, ranging
from 0.5 V to 1.9 V (vs. Li metal) [44]. Other compounds, such as Li2S and Li3PS4, are
stable up to 2.3 V to 2.5 V vs. Li metal, while LiH is stable down to 0 V [44]. The stability
window for other borohydrides has been reported in theoretical work to be as high as
5.5 V (for CaB12H12) [10]. It will be important to establish reliable approaches to measure
the electrochemical window. In practice, BxHy product species cannot be easily removed
and must be considered. In practical applications, the electrochemical windows could be
far from those predicted computationally. This is an important avenue of experimental
research that should be undertaken. Moreover, research which considers interlayered
compounds comprised of several borohydrides as the solid electrolyte could serve the
objective of increasing electrochemical window of the entire layer while isolating product
phases into close proximity to one another for overcoming diffusion barriers to forming
starting compounds upon reverse cycling.
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Figure 5. Image showing electrochemical stability windows for several potential solid electrolyte
materials adapted with permission from works of Ceder et al. (in solid fill) [44] and Lu et al. [10] (in
hashed fill). Copyright permissions granted by Cambridge University Press (2018) and American
Chemical Society (2017), respectively.

2.4. Useful Characterization Techniques to Gain Insights on
Structure-Dynamic-Property Relationships

The experimental data are determined by the most widely used approach for mea-
suring ionic conductivity: impedance spectroscopy. Impedance spectroscopy is able to
distinguish localized, non-localized, and space charge effects [46–48]. More useful insights
are gained when additionally using characterization techniques that measure structure
and dynamics. Lithium ion conductivity LiBH4 is 10−3 S/cm in the high temperature
hexagonal phase [15]. To examine the stability of the hexagonal phase at temperatures
lower than 130 ◦C, we used Raman spectroscopy to track the structural changes in the
BH4

− unit with temperature on ramp up and ramp down at a slow heating and cooling rate
of 5 ◦C/min (Figure 6). Gomes, Hagemann, et al. [49] reported that Raman spectroscopy
tracks structural changes occurring to the BH4

− molecular unit upon phase transition
from the orthorhombic to the hexagonal phase. Figure 6 shows Raman data collected at
Rowan University. Heating LiBH4 to elevated temperatures shows that the B-H stretching
modes (at ~2300 cm−1) transition from a ν3 splitting to a single broad peak at elevated
temperature, which is consistent with a phase transition to the hexagonal phase (which
occurs at 130 ◦C) [49]. Upon cooling, the single broad peak persists down to 113 ◦C,
suggesting the possibility to extend the structural features associated with the elevated
temperature hexagonal phase down below the phase transition [15]. Additional research
could explore whether the stability of this single broad peak associated with the high tem-
perature hexagonal phase could be further decreased towards room temperature by using
additives or processing conditions to stabilize it. As well, Maekawa et al. explored lithium
halides for the purpose of stabilizing the elevated temperature phase [40]. Additions of
LiCl were also demonstrated to increase ionic conduction in LiBH4

− (although not by the
mechanism of stabilizing the hexagonal phase) [6]. Nanostructuring LiBH4 has a marked
effect on room temperature ionic conduction, measured at 10−3 S/cm [18]. The relationship
between the crystallographic phase, state of the BH4

− unit (determined by techniques
such as Raman spectroscopy), and ionic conductivity (using impedance spectroscopy)
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should be explored for both nanostructured LiBH4 and the LiBH4 having additives such
as lithium halides incorporated in the materials processing. Vibrational spectroscopy and
other crystallographic and structural measurement techniques should be, ideally, partnered
with ionic conductivity measurements in order to gain “fine-structure” insights that could
lead to novel approaches to improved properties.
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Other advanced characterization techniques, such as quasi-elastic neutron scattering
(QENS), which can deliver both structural information (such as H-H distances), diffusivities,
and mechanism of motion (i.e., tumbling, hopping, etc.), should be considered when
studying ionic mobility in borohydrides. Impedance spectroscopy was used to study
superionic conduction in the Na2B12H12 phase. Results suggest that the high rotational
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mobility of the in -B12H12
2− anionic structures aids in the high ionic mobility of Na+ [24].

Furthermore, QENS studies performed by two separate teams of researchers both suggest
that the motion of the B12H12

2− anions plays a correlated role in cationic conduction [50,51].
In another example, fundamental insights were gained using QENS, and results showed
that even at temperatures as low as 4 K to 70 K, tunneling rotational dynamics for molecules
as large as ammonia (NH4) in -B12H12

2− structures is possible [52].

3. Conclusions

In work documenting battery development by Scrosati, the timeline growth in lithium
ion battery sales in various market sectors (i.e., HEV, cellular, notebooks, power tools, and
camcorders) between 2000 and 2015 demonstrates the enormous potential of the technol-
ogy to penetrate further into new markets [5,53]. There is a need for more research to
understand key scientific barriers to the development of a new class of solid electrolyte
materials, i.e., borohydrides. Ideal solid-state borohydride electrolytes will address the
four scientific barriers of (i) low room temperature ionic conduction in the solid-state, (ii)
formation of deleterious phases and dendrites at the electrolyte/anode interface, (iii) low
electrochemical window (voltage range over which the phase is electrochemically stable),
and (iv) low energy density owing to poor mechanical stability of thinner electrolytes.
The development of new solid electrolytes could additionally lead to innovations in low
temperature fuel cells (as well as safer ion conducting batteries). Boron–hydrogen chem-
istry is versatile (forming bridge and cyclic structures), and this could lead to improved
tunability in cationic conduction. Materials developments require a better understand-
ing of scientific underpinnings in order to create new materials for all solid-state battery
applications. Specifically, the knowledge gap yet to be addressed surrounds our under-
standing of which strategies for enhancing ionic mobility (i.e., additives, dopants, mixtures,
adducts, and nanostructuring) ultimately perform best at enhancing solid-state diffusion
in these materials.
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