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ABSTRACT

Chromatin modification (CM) is a set of epigenetic
processes that govern many aspects of DNA repli-
cation, transcription and repair. CM is carried out by
groups of physically interacting proteins, and their
disruption has been linked to a number of complex
human diseases. CM remains largely unexplored,
however, especially in higher eukaryotes such as
human. Here we present the DAnCER resource,
which integrates information on genes with CM
function from five model organisms, including
human. Currently integrated are gene functional an-
notations, Pfam domain architecture, protein inter-
action networks and associated human diseases.
Additional supporting evidence includes orthology
relationships across organisms, membership in
protein complexes, and information on protein 3D
structure. These data are available for 962 experi-
mentally confirmed and manually curated CM
genes and for over 5000 genes with predicted CM
function on the basis of orthology and domain com-
position. DAnCER allows visual explorations of
the integrated data and flexible query capabilities
using a variety of data filters. In particular, disease
information and functional annotations are mapped
onto the protein interaction networks, enabling the
user to formulate new hypotheses on the function
and disease associations of a given gene based on
those of its interaction partners. DAnCER is freely
available at http://wodaklab.org/dancer/.

INTRODUCTION

Epigenetics plays a key role in DNA replication, transcrip-
tion and repair (1,2), and its disruption is implicated in the
development of many forms of cancer and other complex
human diseases (3,4). As a result, there are now a growing
number of projects dedicated to the study of chromatin
modification—a crucial component of epigenetic processes
(5). Chromatin modification (CM) is defined as the alter-
ation of DNA or protein in chromatin, which may result
in changing the chromatin structure (6). It encompasses
chromatin remodeling (eviction, deposition or sliding of
nucleosomes along DNA), histone exchange (substitution
of core histones with histone variants) and covalent
modification of histones (acetylation, methylation,
ubiquitylation, phosphorylation, etc.).
Similarly to other cellular processes, CM is carried out

by groups of physically interacting proteins (7,8).
Anomalies in protein interactions often lead to disease
phenotypes (9). Yet there remains a dearth of public data-
bases and analysis tools that explore the relationship
between the chromatin machinery and human disease,
especially in the context of protein-interaction networks.
ChromDB (10) is perhaps the best known and compre-

hensive chromatin database, but no direct links are
provided to human disease annotations or to data on
protein interactions. ChromatinDB (11) contains only
data on CM genes from the yeast Saccharomyces
cerevisiae and is therefore ill-suited for analyzing links of
CM proteins to disease in human. The recent Human
Histone Modification Database (12) provides detailed in-
formation on specific types of chromatin modifications
and their relationship to cancer. Data on interaction
partners, or links to diseases other than cancer are not
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available. The Network of Cancer Genes resource (NCG)
(13) maps cancer-related phenotypes onto the human
protein-interaction network, but focuses entirely on
cancer and is not specific to CM and related epigenetic
processes. Other related resources focus either on
DNA methylation rather than chromatin machinery
[MethyCancer (14)], or on specific diseases [liver cancer
in OncoDB.HCC (15)], or on disease-related interactions
of proteins with chemicals in the environment rather than
on protein networks [Comparative Toxicogenomics
Database (16)].
Thus, most of the existing resources devoted to CM

focus mainly on detailed information about individual
genes and proteins, and less on their interaction partners
in the cell or their associated disease phenotypes. To fill
this gap, we developed DAnCER (disease-annotated chro-
matin epigenetics resource), publically available at: http://
wodaklab.org/dancer.
Molecular interactions between genes and proteins are

underpinning all biological processes, and in particular
those of CM. Our research effort therefore strives to
explore CM-related genes in the context of their
protein-interaction network, their partnership in
multi-protein complexes and cellular pathways, as well
as their gene expression profiles. To gain additional
insights into the CM process in human cells, we also
explore patterns of evolutionary conservation across
model organisms of properties such as the amino acid
sequence, domain composition and 3D structure, to inter-
action patterns and regulatory mechanism.

MATERIALS AND METHODS

CM genes

DAnCER collates records of CM-related genes from
human and four model organisms. Genes are represented
in DAnCER using the NCBI Entrez Gene identifiers (17).
Individual gene pages also contain links to matching
records in model organism databases (18–22).
The collection of genes stored in DAnCER is based on a

core set of genes whose CM function is deemed ‘con-
firmed’. This set was derived using in-house manual
curation from the existing literature on CM (23–25),
from the analysis of protein complexes and their
associated function (26,27), and from external genomic
databases that provided experimental annotations (6,28).
The ‘confirmed’ CM genes include those whose products
are histones, various categories of histone-modifying
enzymes, and members of protein complexes known to
regulate CM processes.
This collection has been expanded with additional genes

whose CM-related function is predicted using computa-
tional methods. Two main methods have been used so
far to predict CM-related function. One is an evolutionary
analysis of the CMmachinery (29), which uses an in-house
version of the InParanoid algorithm (30) to uncover
protein homology relationships in CM genes across
more than a 100 different organisms. The second
method relies on Pfam domain composition and
domain co-occurrence in CM genes in human and yeast.

Having observed that CM domains tend to co-occur with
a limited number of partner domains in CM genes, we
exploit this property to establish patterns of domain com-
position characteristic of CM function. We then train a
Support Vector Machine predictive model (31) using the
domain annotations of confirmed CM genes and use it to
predict putative CM function in additional human genes,
which were not earlier known to be CM-related (Pu S.
et al., manuscript in revision).

Gene annotations and supporting evidence

For each confirmed or putative CM gene, DAnCER
displays several types of supporting evidence and add-
itional annotations collected from both in-house and
external resources. Disease annotations for human genes
are obtained from the well-curated online Mendelian in-
heritance in man (OMIM) resource (32). Functional an-
notations from the Gene Ontology (GO) (6) are retrieved
on-the-fly for each gene, which ensures the display of the
most current known annotations; only experimental
evidence codes are used for retrieval of the GO data.
Other collected data include information on proteins
from UniProt (33), homologous gene clusters from
InParanoid (30,34), domain composition from Pfam
(35), and membership in protein complexes (27,28).
Supporting evidence includes PubMed identifiers, a
range of metrics associated with the reliability of the pre-
dicted information, and web links to external resources.
DAnCER search allows filtering the data using a range of
these attributes.

Interaction neighborhoods

DAnCER allows users to visually explore the full inter-
action neighborhoods of individual CM genes, including
protein complexes. The integrated visual display repre-
sents genes, diseases, physical protein–protein inter-
actions, protein complexes, genetic interactions, domains
and other information present in the interaction neighbor-
hood. The displays are generated using Cytoscape Web
(36). A customized Cytoscape plugin OrthoNets with add-
itional visualization features has also being developed
(http://wodaklab.org/orthonets/).

The interaction data are consolidated from 10 major
public databases: BIND (37), BioGRID (38), CORUM
(28), DIP (39), HPRD (40), IntAct (41), MINT (42),
MPact (43), MPPI (44), OPHID (45). This collection
contains 40 4384 interactions from over a thousand differ-
ent organisms, of which 26 3479 are physical protein–
protein interactions curated from literature. The consoli-
dation was performed using the iRefIndex process (46).
All interactions, along with their supporting evidence,
are available on the iRefWeb resource (http://wodaklab.
org/iRefWeb), and are seamlessly merged with the data in
DAnCER.

3D structures

Knowledge of a protein’s 3D structure is essential for the
examination of the spatial effect of specific mutations on
protein interactions, especially if such mutations lead to
phenotypic abnormalities. Therefore, we scan the entire
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protein data bank (PDB) (47) using BLASTp sequence
alignment algorithm (48), and retrieve all known 3D
protein structures that match any of our CM proteins
within a certain threshold of sequence similarity. To
ensure broad coverage, we retain two types of PDB
matches: longer but possibly imprecise alignments, such
as those between homologs (BLAST e-value �1e–15 and
sequence identity at least 50%); and relatively short but
near-exact alignments, targeting 3D structures of isolated
domains and short motifs (e-value �1e–4 but sequence
identity at least 90%). For each gene, the retrieved 3D
structures are grouped into families according to the
SCOP classification (49) where possible, and can be
sorted by standard BLAST metrics. Original BLAST
alignments are also shown.

RESULTS

DAnCER currently contains information on 5976 genes
from human, mouse Mus musculus, yeast S. cerevisiae,
fruit fly Drosophila melanogaster and worm
Caenorhabditis elegans. Among the 1924 human genes,
422 have been confirmed as related to CM. The rest
have domain composition indicative of a CM function
and/or are linked through homology to known CM
genes from other organisms. For 1202 human genes
(62% of all human genes) we are able to find relevant
3D structure information, in most cases from multiple
PDB records. This constitutes a reasonable coverage of
the human data, although many of the PDB matches are
to homologous proteins in other species. This and other
statistical information is available at the DAnCER search
page and statistics page (Figure 1).

A distinctive feature of DAnCER is its neighborhood-
based approach to disease representation. For each
human CM gene, DAnCER shows diseases that are

associated not only with that gene but also with any of
its interacting partners, which includes both pairwise
interactions and membership in multi-protein complexes.
Given that experimental annotations of mammalian
genomes are often incomplete, this important feature
will help users to hypothesize potentially novel disease
associations that can be inferred from known protein
interactions and complexes.
For example, only 205 human genes in DAnCER have

known disease associations—but as many as 1036 have
protein interaction neighbors implicated in various
diseases. The existence of such interactions per se does
not necessarily imply a shared disease association, but
may warrant further analysis, especially if multiple
partners in the interaction neighborhood share similar
diseases. Figure 2 illustrates the case of SUV420H2, a
known human histone methyltransferase (50). Although
OMIM does not provide a direct disease association for
SUV420H2, this protein interacts with several members of
the Retinoblastoma 1 family (51), with the corresponding
interactions curated by HPRD and the disease associ-
ations of the RB1 protein mapped visually in DAnCER.
Users alerted to the presence of these interaction neighbor
diseases may trace the supporting evidence and observe,
for example, that the authors of the study viewed their
protein-interaction experiments as ‘linking tumor suppres-
sion and the epigenetic definition of chromatin’.
Furthermore, despite the lack of a direct disease associ-
ation, the OMIM record for SUV420H2 references a study
that correlates aberrant expression of SUV420H2 and the
associated changes in histone H4 trimethylation with
tumor progression (52).
DAnCER allows users to quickly identify these and

other interesting patterns by selecting appropriate search
filters. These cases may then be prioritized for a more
focused analysis using either experimental or

Figure 1. Portion of the DAnCER statistics page. Histogram summarizing disease annotations for human CM genes. Bars represent the number of
genes in the dataset (vertical axis, logarithmic scale), associated with a given number of distinct disease annotations in OMIM (32) (horizontal axis).
Shown are disease associations for genes with a confirmed CM function (blue bars), and disease associations for genes whose CM function has been
inferred by computational methods and not yet confirmed (red bars). The majority of genes have only one disease association.
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computational approaches. To facilitate this task, all
DAnCER search results show a brief statistical summary
of disease associations for each retrieved gene, its inter-
action neighborhood size, and diseases found in its
neighborhood.
The detailed DAnCER records present various types of

annotations and supporting evidence for the known
CM-related genes, as well as for genes whose CM
function has not yet been experimentally confirmed. The
user may examine the homologs of each gene across the
four model organisms, compare their annotations (such as
similarity of protein structures, or experimentally sup-
ported GO terms), and visualize their interaction neigh-
borhoods. DAnCER allows single-gene as well as gene-list
queries. Search filters enable retrieval of the genes that
match user-specified restrictions for the organism of
interest, the number of interacting partners, the level of
support (confirmed versus putative), availability of known
3D structures and a range of other attributes.
The mapping of DAnCER data onto the protein-

interaction networks from iRefWeb provides a rich
visual context for exploring interaction neighborhoods
of CM-related proteins. The web-enabled graphs are

customizable and support different node types for
proteins, diseases, complexes, domains, etc. This allows
a highly intuitive visual examination of various patterns
in the integrated data. All graph nodes and edges are
linked to the original data records in DAnCER and
iRefWeb, which contain further annotation details and
links to primary data sources and literature.

DISCUSSION

To our knowledge, the simultaneous focus of DAnCER
on CM, molecular networks and human disease is unique
among existing databases. As a result, it provides the bio-
medical community with a combination of useful features
that are either unique, or are not available together in any
other resource and would be very time-consuming for a
user to assemble. Therefore, we believe that this resource
would be a welcome addition to the tools currently avail-
able to molecular biologists as well as to medical research-
ers interested in epigenetics and the genetic mechanisms of
diseases.

Several types of predictions and analyses presented in
DAnCER were produced in-house and hence are unavail-
able elsewhere, such as the systematic fuzzy-match search
for 3D structures over the entire Protein Databank, as well
as the predictions of genes and domains with CM
function, based on evolutionary and domain-architecture
analyses. DAnCER also provides added value by mapping
the supporting data from public resources, into a single
environment, and offers users a convenient web-accessible
visual interface to the integrated data.

DAnCER is part of an interdisciplinary project
involving seven Canadian laboratories, whose objective
is to elucidate the mechanisms of CM and remodeling
processes and gain understanding on how their disruption
may lead to human disease.

During the course of our project we intend to expand
DAnCER to include data on gene expression profiles,
transcriptional regulation and signal transduction
pathways. In addition we plan to store data on protein
interactions and complexes derived by the project team
using affinity purification and mass spectrometry (53,54),
as well as results of knockdown experiment using RNA
interference to probe functional roles of predicted CM
genes and their interacting partners. We are also
planning to consolidate disease annotations from
multiple sources, and to develop tools in iRefWeb for
automatically comparing human interactions to their
counterparts in model organisms.
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Figure 2. Visualization of disease annotations mapped onto the protein
interaction neighborhood in DAnCER. The graph illustrates the inter-
action neighborhood of a human histone methyltransferase SUV420H2
(node highlighted in yellow), which interacts with three proteins from
the RB1 family: Rb1 (retinoblastoma 1), RBL1 (retinoblastoma-like 1)
and RBL2 (retinoblastoma-like 2). Although OMIM does not provide a
direct disease association for SUV420H2, its interactor Rb1 is
implicated in four different types of tumors (dark red parallelograms).
The domain composition for all proteins is also shown (orange tri-
angles), indicating that all RB1-family proteins except RBL2 share
the same combination of domains; whereas SUV420H2 contains a
SET domain, which is associated with lysine methyltransferase
enzymes. The labels on the protein-interaction edges indicate that
each interaction is supported by one experimental study (51). The
node sizes are proportional to the node degrees, indicating that the
RB1-family proteins have many more interactors (shown after
double-clicking on the node). Similarly, bladder cancer and osteosar-
coma are associated with more genes than retinoblastoma and
pinealoma; and SET domain occurs in more human proteins than
any of the other four domains shown. Views are generated with
Cytoscape Web (36).
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