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Abstract

miR-124-1 is a tumour suppressor microRNA (miR). Epigenetic deregulation of miRs is implicated in carcinogenesis. Promoter
DNA methylation and histone modification of miR-124-1 was studied in 5 normal marrow controls, 4 lymphoma, 8 multiple
myeloma (MM) cell lines, 230 diagnostic primary samples of acute myeloid leukaemia (AML), acute lymphoblastic leukaemia
(ALL), chronic myeloid leukaemia (CML), chronic lymphocytic leukaemia (CLL), MM, and non-Hodgkin’s lymphoma (NHL),
and 53 MM samples at stable disease or relapse. Promoter of miR-124-1 was unmethylated in normal controls but
homozygously methylated in 4 of 4 lymphoma and 4 of 8 myeloma cell lines. Treatment of 5-Aza-29-deoxycytidine led to
miR-124-1 demethylation and re-expression of mature miR-124, which also associated with emergence of euchromatic
trimethyl H3K4 and consequent downregulation of CDK6 in myeloma cells harboring homozygous miR-124-1 methylation.
In primary samples at diagnosis, miR-124-1 methylation was absent in CML but detected in 2% each of MM at diagnosis and
relapse/progression, 5% ALL, 15% AML, 14% CLL and 58.1% of NHL (p,0.001). Amongst lymphoid malignancies, miR-124-1
was preferentially methylated in NHL than MM, CLL or ALL. In primary lymphoma samples, miR-124-1 was preferentially
hypermethylated in B- or NK/T-cell lymphomas and associated with reduced miR-124 expression. In conclusion, miR-124-1
was hypermethylated in a tumour-specific manner, with a heterochromatic histone configuration. Hypomethylation led to
partial restoration of euchromatic histone code and miR re-expression. Infrequent miR-124-1 methylation detected in
diagnostic and relapse MM samples showed an unimportant role in MM pathogenesis, despite frequent methylation found
in cell lines. Amongst haematological cancers, miR-124-1 was more frequently hypermethylated in NHL, and hence warrants
further study.
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Introduction

DNA methylation involves the addition of a methyl group to the

number 5 carbon of the cytosine ring in the CpG dinucleotide, by

catalyzing the cytosine into methylcytosine through DNA methyl-

transferase [1,2]. Cancer cells are characterized by global DNA

hypomethylation but gene-specific hypermethylation of promoter-

associated CpG islands of tumour suppressor genes (TSGs),

resulting in transcriptional repression, and hence serve as an

alternative mechanism of gene inactivation. Based on a pathway-

specific approach, multiple TSGs across pathways including cell

cycle regulation, JAK/STAT signalling, WNT signalling, and DAP

kinase-associated intrinsic tumour suppression have been shown to

be inactivated by gene hypermethylation in leukaemia, lymphoma

and multiple myeloma [3,4,5,6,7,8,9,10,11].

MicroRNA (miR) is a single-stranded, non-coding RNA

molecule of 22–25 nucleotides, which leads to downregulation of

target protein expression [12]. miRs are involved in carcinogen-

esis. miRs can be either oncogenic (oncomir) when TSGs are

targeted, or tumour suppressive (tumour suppressor miRs) when

oncogenes are targeted [12,13]. Little is known about the role of

hypermethylation of tumour suppressor miRs in haemic cancers.

Recently, miR-124-1 has been shown to be hypermethylated in

multiple cancers [14,15]. By luciferase assay, miR-124-1 has been

shown to downregulate CDK6 translation by binding on the 39

untranslated region (39 UTR) of the CDK6 mRNA, and also

reduce the retinoblastoma protein phosphorylation, thereby

demonstrating the tumour suppressor role of miR-124-1 [14].

In this study, we aimed to study the role of miR-124-1

methylation in a wide range of haematological malignancies

including acute myeloid leukaemia (AML), chronic myeloid

leukaemia (CML), acute lymphoblastic leukaemia (ALL), chronic

lymphocytic leukaemia (CLL), multiple myeloma (MM) and non-

Hodgkin’s lymphoma (NHL).

Materials and Methods

Patient samples
Diagnostic bone marrow or tissue samples were obtained in 20

ALL, 20 AML, 11 CML in chronic phase, 50 CLL, 55 MM and
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74 NHL patients. Diagnosis of leukaemia and lymphoma were

made according to the French-American-British Classification and

WHO Classification of Tumours respectively [16,17,18,19]. Of

the 20 ALL patients, there were eleven male and nine female

patients with a median age of 35 years (range: 13–62). There were

six common ALL, one early B precursor, ten precursor B ALL and

three pre-T ALL. Of the AML patients, there were nine male and

eleven female with a median age of 41.5 years (range: 20–72). The

AML cases comprised three M1, fourteen M2, two M4 and one

M5 subtype. Of the 50 CLL patients, there were twenty three

(46%) patients with limited stage (,stage II) and twenty seven

(54%) with advanced stage ($stage II) disease with a median age

of 65.5 years (range: 37–91) [3]. Forty (80%) were male. The

median presenting lymphocyte count was 176109/L (range: 10–

2366109/L). Of the 55 MM patients, the median age was 57 (25–

87) years. The diagnosis of MM was based on standard criteria

[20]. Apart from five patients with insufficient clinical data, there

were seven (14%) Durie-Salmon stage I, thirteen (26%) stage II,

and thirty (60%) stage III patients. In order to study if miR-124-1

methylation might be acquired at the time of relapse or after

repeated chemotherapy, a total of 53 serial samples from 12 MM

patients including those at stable disease, refractory relapse,

relapse, primary refractory disease or refractory disease progres-

sion were included. Of the 74 patients with NHL, there were 17

patients with peripheral T cell lymphoma (two anaplastic large cell

[ALCL], four angio-immunoblastic T-cell [AITL], eleven periph-

eral T-cell, not otherwise specified [PTCL, NOS]), 10 with natural

killer (NK)/T-cell lymphoma, 47 patients with B-cell lymhoma

(twenty-one follicular: grade 1 to 2, eight nodal marginal zone,

three mantle cell lymphoma and fifthteen diffuse large B-cell

lymphoma). The study has been approved by Institutional Review

Board of Queen Mary Hospital with informed consent.

Cell lines and culture
Lymphoma (SU-DHL-1, SUP-M2, SUP-T1, and KARPAS-

299) and MM (KMS-12-PE, MOLP-8, OPM-2, and U-266) cell

lines were purchased from Deutsche Sammlung von Mikroorga-

nismen und Zellkulturen GmbH (DMSZ) (Braunschweig, Ger-

many). LP-1 and RPMI-8226 were kind gifts from Dr Orlowski

(Department of Hematology/Oncology, MD Anderson Cancer

Center, USA). WL-2 was kindly provided by Dr Andrew

Zannettino (Myeloma and Mesenchymal Research Laboratory,

Division of Haematology, Institute of Medical and Veterinary

Science, Adelaide, Australia). NCI-H929 was purchased from

American Type Culture Collection (ATCC). Cell cultures were

maintained in RPMI media 1640 (IMDM for LP-1) (Invitrogen,

Carlsbad, CA, USA), supplemented with 10% fetal bovine

serum (Invitrogen, Carlsbad, CA, USA), 50 U/ml penicillin, and

50 mg/ml streptomycin (Invitrogen, Carlsbad, CA, USA) in a

humidified atmosphere of 5% CO2 at 37uC.

Methylation-specific polymerase chain reaction (MSP)
DNA was extracted from bone marrow samples of ALL, AML,

CML, CLL, and MM at diagnosis, diagnostic tissues (either lymph

node or nasal biopsy in nasal NK-cell lymphoma) in patients with

NHL, and lymphoma and MM cell lines by standard method.

MSP for aberrant gene promoter methylation was performed as

previously described [8]. Treatment of DNA with bisulfite for

conversion of unmethylated cytosine to uracil (but unaffecting

methylated cytosine) was performed with a commercially available

kit (EpiTect Bisulfite Kit, QIAGEN, Hilden, Germany). Primers

used for the methylated MSP (M-MSP) and unmethylated MSP

(U-MSP) were published previously [14]. DNA from normal bone

marrow donors (N = 5) was used as negative control, while

enzymatically methylated control DNA (CpGenome Universal

Methylated DNA, Chemicon, Temecula, CA, USA) was used as

positive control in all the experiments.

Bisulfite genomic sequencing (BGS)
Bisulfite-treated DNA was used as template. Promoter region of

miR-124-1 was amplified and cloned using TOPO TA Cloning Kit

(Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s

instructions. Primers used were published previously [14].

5-Aza-29-deoxycytidine (5-AzadC) treatment
For treatment with 5-AzadC (Sigma-Aldrich, St. Louis, MO,

USA), cells were seeded in six-well plates at a density of 16106

cells/ml, and cultured with 1 mM of 5-AzadC for 3 days. Cells on

day 0 and day 3 of 5-AzadC treatment were harvested.

RNA isolation and stem-loop reverse
transcription-polymerase chain reaction (RT-PCR)

Total RNA was isolated using mirVanaTM miR Isolation Kit

(Ambion, Austin, TX, USA), according to the manufacturer’s

instructions. RT was performed using TaqmanH MicroRNA RT

Kit and TaqmanH MicroRNA Assay Kit (Applied Biosystems,

Foster City, CA, USA), according to the manufacturer’s

instructions. Total RNA was reverse transcribed in 1 mM dNTPs,

50 U MultiScribeTM Reverse Transcriptase, 16RT Buffer, 3.8 U

RNase Inhibitor, and 16 stem-loop RT primer at following

thermal cycling condition: 16uC for 30 minutes, 42uC for

30 minutes, and 85uC for 5 minutes. Quantitative real-time

PCR of miR-124 was performed using 1.33 ml of 1:15 diluted

RT product in 16TaqmanH Universal PCR Master Mix, and 16
TaqmanH Assay at 95uC for 10 minutes, followed by 40 cycles of

95uC for 15 seconds and 60uC for 1 minute. RNU48 was used as

reference for data analysis using the 22DDCt method [21].

Chromatin immunoprecipitation (ChIP)
ChIP assays were conducted according to manufacturer’s

instructions (Upstate, Cat# 17-610). Cells of 26106 were fixed

in 1% formaldehyde for each ChIP. Fixed cells were washed by

cold PBS, resuspended in lysis buffer, and sheared into fragments

ranging between 200 and 800 bp in size on ice using 431A cup

horn (Misonix, Farmingdale, NY, USA). ‘Input’ of 1% was

reserved as control, immunoprecipitation was performed by 4uC
overnight incubation with anti-H3K4me3 (Upstate, 04-745), anti-

H3K9me3 (Upstate, 17-625; Abcam, 8898), anti-H3K9ac (Up-

state, 17-658), anti-H3K27me3 (Upstate, 17-622) and normal

rabbit IgG respectively. Immunoprecipitated complex was col-

lected by magnetic protein A beads. The complex was washed,

treated with proteinase K, and reverse cross-linked by heat.

Primers used for ChIP-PCR of miR-124-1 were forward: 59- CAA

AGA GCC TTT GGA AGA CG -39 and reverse: 59- GGA AGA

GGG GTG GGT AGA AG -39. ChIP-PCR was also controlled by

GAPDH promoter and Alu repeats [22,23].

Western blot for CDK6
Cells were harvested and lysed in RIPA buffer (50 mM Tris-

HCl, pH 7.4, 150 mM NaCl, 0.2% SDS, 1% Triton X-100,

2 mM EDTA) supplemented with protease inhibitors including

4 mg/ml aprotinin, 2 mg/ml leupeptin, 1 mg/ml pepstatin A,

20 mg/ml PMSF, and 1 mM Na3VO4. Cell debris was removed

by centrifugation at 10,0006g for 5 minutes at 4uC. Protein lysate

was denatured in an equal volume of loading buffer (100 mM

Tris-HCl, pH 6.8, 200 mM DTT, 4% SDS, 0.2% bromophenol

blue, 20% glycerol), heated at 95uC for 5 minutes, and separated
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Figure 1. Methylation of miR-124-1. (A) Schematic diagram showing the distribution of CpG dinucleotides (solid vertical lines) over the precursor
(solid black box) and mature miR-124-1. Sequence analysis of the M-MSP product from bisulfite-treated positive control DNA showed that the
cytosine [C] residues of CpG dinucleotides were methylated and remained unchanged, whereas all the other C residues were unmethylated and were
converted to thymidine [T], indicating complete bisulfite conversion and specificity of MSP. Grey bars indicated the amplification regions of the MSP,
ChIP, and BGS primers. (B) U-MSP showed that the methylated positive control [P] was totally methylated, and all five normal controls (N1–N5) were
unmethylated. In the M-MSP, the methylated control was positive (methylated) but all normal controls were negative (unmethylated). For the cell
lines, SUP-T1, SUP-M2 (ALK+), SU-DHL-1 (ALK+), KARPAS-299 (ALK+), KMS-12-PE, LP-1, OPM-2, and WL-2 were completely methylated of miR-124-1. (C)
Bisulfite genomic sequencing for the bisulfite-treated promoter region of miR-124-1 of normal controls (N1–N5), lymphoma and myeloma cell lines of
different methylation statuses (MM, UM, or UU), and the methylated positive control were depicted. Unmethylated (empty circle) and methylated
(filled circle) CpG dinucleotides were shown by eight independent clones for each sample.
doi:10.1371/journal.pone.0019027.g001
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on 10% SDS-PAGE. Separated samples were then transferred to a

0.2 mm nitrocellulose membrane (Bio-Rad, Hercules, CA). The

membrane was blocked at room temperature for 1 hour in 5%

skim milk diluted in PBS-Tween 20 (0.5% v/v). The membrane

was then incubated with CDK6 primary antibody (1:1000) at 4uC
overnight with shaking. After washing 3 times of 15 minutes each

in PBS-Tween 20 (0.5% v/v), the membrane was incubated with

anti-mouse horseradish peroxidase conjugate secondary antibody

(1:1000) at room temperature for 1 hour. After washing 3 times of

15 minutes each in PBS-Tween 20 (0.5% v/v), signals were

detected by ECL Western blotting detection reagents (Amersham

Biosciences, Buckinghamshire, UK) and exposed to X-ray film.

Statistical analysis
The frequency of miR-124-1 methylation in different types of

haematological cancers was computed by Chi-Square or Fisher

Exact test. In CLL, correlation between miR-124-1 methylation

status with continuous (mean age, mean diagnostic haemoglobin,

lymphocyte and platelet counts) and categorical variables (gender

and Rai staging) were studied by Student t-test and Chi-square test

(or Fisher Exact test) respectively. Overall survival (OS) is

measured from the date of diagnosis to the date of last follow-up

or death. OS of patients with limited Rai stage (stages 0, I and II)

were compared to those with advanced stage (stage III and IV).

Survival is plotted by the Kaplan-Meier method and compared by

the log-rank test. All p-values were two-sided. In NHL, correlation

between miR-124-1 methylation with continuous (mean age) and

categorical variables (gender, histological subtypes, lineage [B, T

or NK/T] and nodal/extranodal presentation) were studied in 49

patients with complete clinical data by Student’s t-test and Chi-

square test (or Fisher Exact test) respectively. Moreover, in 25

primary B-cell NHL samples in which both DNA and RNA were

available, the mean expression of miR-124 in methylated and

unmethylated lymphoma were compared by the Student’s t-test.

Results

MSP
Controls. Direct sequencing of the M-MSP products from

the methylated positive control showed the expected nucleotide

changes after bisulfite treatment, therefore confirming complete

bisulfite conversion and specificity of MSP (Figure 1A). None of

the five normal control marrows showed aberrant methylation of

miR-124-1 (Figure 1B). The positive and negative controls showed

the expected MSP results (normal DNA: U-MSP positive/M-MSP

negative; methylated DNA: U-MSP negative/M-MSP positive).

Lymphoma cell lines. The profile of methylation of miR-

124-1 of lymphoma cell lines was shown in Figure 1B. SUP-T1,

SUP-M2 (ALK+), SU-DHL-1(ALK+) and KARPAS-299 (ALK+)

were homozygously methylated for miR-124-1.

Myeloma cell lines. The profile of methylation of miR-124-1

of myeloma cell lines was shown in Figure 1B. Apart from MOLP-

8 and RPMI-8226, which were completely unmethylated (UU) of

miR-124-1, KMS-12-PE, LP-1, OPM-2, and WL-2 were

homozygously methylated (MM) for miR-124-1, whereas NCI-

H929 and U-266 were hemizygously methylated (MU) for miR-

124-1.

Bisulfite genomic sequencing confirmed miR-124-1 hypomethy-

lation in five normal controls, hypermethylation in the methylated

positive control, and the corresponding methylation statuses (MM,

MU, and UU) as detected by MSP (Figure 1C).

Primary samples at diagnosis. miR-124-1 hypermethylation

was not detected in any of the CML. On the other hand, miR-124-1

methylation was found in one (2%) MM samples at diagnosis, one

(2%) MM samples at relapse/progression, 1 (5%) ALL, 3 (15%)

AML, 7 (14%) CLL and 43 (58.1%) NHL samples (p,0.001)

(Figure 2A). Amongst the lymphoid malignancies, there was

significantly more frequent miR-124-1 methylation in NHL than

MM, CLL or ALL (p,0.001). In CLL, there was no correlation

between miR-124-1 methylation and age (p = 0.79), gender (p = 0.99),

diagnostic lymphocyte count (p = 0.89); Hb (p = 0.98), platelet count

(p = 0.42), advanced Rai stage ($stage 2) (p = 0.69) and death

(p = 0.41). The projected OS in CLL patients with and without miR-

124-1 methylation were 86% and 62% (p = 0.36). Amongst

lymphoma samples, miR-124-1 was methylated in seven NK/T

(70.0%), thirty-one B-cell NHL (66.0%), and five T-cell NHL (29.4%)

(p = 0.023). However, miR-124-1 methylation did not correlate with

age (p = 0.457), gender (p = 0.99) or Ann Arbor stage (p = 0.105) of

the lymphoma patients.

In order to determine the role of miR-124-1 methylation on the

expression of miR-124 in primary samples, we analyzed the

methylation status and expression level in 25 primary B-cell NHL

samples in which both DNA and RNA were available. By MSP

and stem-loop qRT-PCR, 22 samples displayed methylated MSP

signals and three were completely unmethylated (Figure 2B).

Moreover, methylation of miR-124-1 was associated with a lower

level of miR-124 expression, and hence a higher DCt (Ct miR-124 -

Ct RNU48) (p = 0.01) (Figure 2C).

5-AzadC treatment of lymphoma and myeloma cells
SU-DHL-1, KARPAS-299, KMS-12-PE, and WL-2 cells were

completely methylated for miR-124-1. Upon 5-AzadC demethyl-

ation treatment, miR-124-1 U-MSP signal emerged on day 3, with

re-expression of mature miR-124 as shown by Taqman stem-loop

qRT-PCR (Figure 3A). 5-AzadC treatment led to augmentation of

euchromatic histone code with abundance of trimethyl H3K4 at

miR-124-1 promoter region (Figure 3B). GAPDH promoter and Alu

repeat element, with the inherent hypo- and hypermethylated

DNA, were used as biological controls for euchromatin and

heterochromatin configurations (Figure 3B). Finally, demethyla-

tion of miR-124-1 by 5-AzadC with miR-124 re-expression led to

downregulation of CDK6 (Figure 3C).

Discussion

There are several observations.

Firstly, in this study, we showed that miR-124-1 is not methylated

in normal blood cells but is hypermethylated in lymphoma and

myeloma cell lines, which can be re-expressed upon hypomethylat-

ing treatment. In cancer, miRs may be hypermethylated by two

patterns. First, tumour suppresssor miRs are expected to be

hypomethylated in normal cells but hypermethylated in cancer

cells [24]. On the other hand, some miRs may be hypermethylated

in both normal and tumour cells, and therefore, hypermethylation

of these miRs is tissue-specific but not tumour-specific. For example,

miR-127 and miR-373 are hypermethylated in both the normal and

cancer cells [24,25]. Therefore, our data and those from Lujambio

et al. showed that miR-124-1 is differentially methylated in cancer

Figure 2. Promoter methylation of miR-124-1 and expression of miR-124 in primary samples. (A) Methylation of miR-124-1 in primary
samples. (B) M-/U-MSP analysis of miR-124-1 promoter methylation status and (C) Stem-loop qRT-PCR analysis of the mature miR-124 expression in 25
primary NHL samples with matched DNA and RNA. DCt, Ct miR-124 -Ct RNU48.
doi:10.1371/journal.pone.0019027.g002

Role of miR-124-1 Methylation in Haemic Cancers

PLoS ONE | www.plosone.org 5 April 2011 | Volume 6 | Issue 4 | e19027



Role of miR-124-1 Methylation in Haemic Cancers

PLoS ONE | www.plosone.org 6 April 2011 | Volume 6 | Issue 4 | e19027



cells but not normal cells, consistent with its tumour suppressor role

[14]. In addition to miR silencing associated with miR-124-1

methylation, miR expression could be restored by miR-124-1

demethylation, which was associated with restoration of the

euchromatin code trimethyl H3K4. Moreover, miR-124-1 re-

expression after hypomethylating treatment was associated with

downregulation of CDK6 expression, consistent with data that

CDK6 is a target of translation repression by miR-124-1 [14].

Furthermore, to ensure ChIP specificity, we showed two trimethyl

H3K9 antibodies of different preparations generated comparable

results, which further controlled the ChIP technically together with

input and IgG controls; in addition to GAPDH and Alu repeat

element, with the inherent hypo- and hypermethylated DNA, which

served as biological controls for euchromatin and heterochromatin

configurations.

Secondly, as miR-124-1 is localized to chromosome 8p, where

loss of heterozygosity (LOH) is frequently found in various solid

cancers [26,27,28,29], and certain subtypes of NHL including

mantle cell [30], and small B cell lymphoma [31]. Therefore, miR-

124-1 hypermethylation may collaborate with LOH to result in

biallelic miR-124-1 inactivation in NHL, thereby fulfilling the

Knudson’s hypothesis [32]. This was supported by the finding that

miR-124-1 was preferentially methylated in lymphoma, in

particular, in B- and NK/T-cell lymphomas, which was associated

with a lower expression of miR-124. Therefore methylation of miR-

124-1 might be important in lymphomagenesis.

Fourthly, miR-124-1 was preferentially hypermethylated in NK/

T-cell lymphoma, which is an Epstein-Barr virus–associated,

aggressive extranodal lymphoma more frequently encountered in

Asia, and Central and South America [33]. Various tumour

suppressor genes have been shown to be frequently hypermethy-

lated in NK/T-cell lymphoma including p73, CDKN2A, CDKN2B,

hMLH1 and RARb [34], but hypermethylation of miR-124-1 is one

of the first reports of methylation of miR in NK/T-cell lymphoma.

On the other hand, in contrast to frequent (del)8p in B-cell

lymphoma, del(8p) is infrequent in NK/T-cell lymphoma [35], and

hence, in NK/T-cell lymphomas, miR-124-1 might be inactivated

by biallelic hypermethylation instead of deletion together with gene

hypermethylation. Apart from NHL, miR-124-1 methylation is

infrequent in other haematological malignancies in contrast to solid

cancer such as colon and lung cancers, in which miR-124

methylation was detected in 48%–75% of primary samples [14].

On the other hand, in contrast to a previous report of frequent

hypermethylation of miR-124 in ALL [36], only 5% of ALL patients

carried hypermethylation of miR-124-1 in this series. Possible

reasons included the small sample size here and the inclusion of

merely adult but not paediatric patients in our study.

Finally, despite frequent hypermethylation of miR-124-1 in

myeloma cell lines, miR-124-1 methylation was found infrequent

in diagnostic marrow samples, and hence we postulated that miR-

124-1 methylation may be acquired during disease progression or

after repeated chemotherapy. In particular, we included samples

after repeated chemotherapy regimens after clinical relapse.

However, no significant methylation of miR-124-1 was demonstrat-

ed in relapsed myeloma marrow samples either, even after repeated

intensive chemotherapy regimens. Therefore, miR-124a methyla-

tion is unimportant in the pathogenesis or progression of MM.

In summary, miR-124-1 hypermethylation is tumour-specific,

associated with gene silencing, which can be reversed by

hypomethylating treatment. Re-expression of miR-124 by 5-

AzadC treatment was associated with emergence of a partial

euchromatin histone code and consequent downregulation of

CDK6. Amongst haematological malignancies, miR-124-1 is

preferentially hypermethylated in NHL (in particular NK/T-cell

lymphoma), in which methylation of miR-124-1 was associated

with a lower expression of miR-124, and hence warrant further

study in lymphoma. Finally, in MM, despite frequent miR-124-1

methylation in myeloma cell lines, miR-124-1 methylation was

infrequent in primary samples including relapse samples, and

hence unimportant in myeloma pathogenesis.
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