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Mix Contrast for COVID-19 Mild-to-Critical
Prediction

Yongbei Zhu , Shuo Wang, Siwen Wang, Qingxia Wu, Liusu Wang , Hongjun Li , Meiyun Wang ,
Meng Niu, Yunfei Zha, and Jie Tian , Fellow, IEEE

Abstract—Objective: In a few patients with mild COVID-
19, there is a possibility of the infection becoming severe or
critical in the future. This work aims to identify high-risk pa-
tients who have a high probability of changing from mild to
critical COVID-19 (only account for 5% of cases). Methods:
Using traditional convolutional neural networks for classi-
fication may not be suitable to identify this 5% of high risk
patients from an entire dataset due to the highly imbalanced
label distribution. To address this problem, we propose a
Mix Contrast model, which matches original features with
mixed features for contrastive learning. Three modules are
proposed for training the model: 1) a cumulative learning
strategy for synthesizing the mixed feature; 2) a commuta-
tive feature combination module for learning the commuta-
tive law of feature concatenation; 3) a united pairwise loss
assigning adaptive weights for sample pairs with different
class anchors based on their current optimization status.
Results: We collect a multi-center computed tomography
dataset including 918 confirmed COVID-19 patients from
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four hospitals and evaluate the proposed method on both
the COVID-19 mild-to-critical prediction and COVID-19 diag-
nosis tasks. For mild-to-critical prediction, the experimental
results show a recall of 0.80 and a specificity of 0.815.
For diagnosis, the model shows comparable results with
deep neural networks using a large dataset. Our method
demonstrates improvements when the amount of training
data is small or imbalanced. Significance: Identifying mild-
to-critical COVID-19 patients is important for early preven-
tion and personalized treatment planning.

Index Terms—Coronavirus disease 2019 (COVID-19),
contrastive learning, computed tomography, mixup, prog-
nosis.

I. INTRODUCTION

THE corona virus disease 2019 (COVID-19) has caused
serious public health safety problems and has become

a global health emergency [1]. Five percent of the COVID-
19 patients who are first diagnosed with a mild illness may
become critical in the future. Moreover, this high-risk group
of potentially critical patients have a very high mortality rate
(approximately 49%) [2]. Thus, identifying these high-risk
patients—who may change from mild to critical illness—is of
great importance for early prevention and personalized treatment
planning.

In current studies, clinical characteristics such as demograph-
ics, symptoms, and laboratory results have been used to predict
COVID-19 patients who may change to a severe or critical state
in the future [3]. For example, Liang et al. build a clinical risk
model based on a large dataset of clinical characters to predict
the occurrence of critical illness with an area under the curve
(AUC) of 0.88 [2]. Recently, using computed tomography (CT)
images for COVID-19 analysis has shown promising results. For
example, CT images have demonstrated much higher sensitivity
than reverse transcription polymerase chain reaction (RT-PCR)
methods in diagnosing COVID-19 [4], [5]. Consequently, a
study have designed prognostic models using CT images and
deep learning to predict COVID-19 patients who may become
severe or critical [6]. In these studies, severe and critical patients
are not separated. However, critical patients have a very high
mortality rate compared to severe patients. Therefore, focusing
on predicting patients who may change from mild to critical is
more important in clinical practice. However, it is difficult to
systematically collect a large CT dataset, and the characteristics
of the imbalanced small data (nearly 5% critical patients/positive
samples) make the research difficult. To address this problem, we
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adopt contrastive learning, which has recently shown progress
in few-shot learning [7] and unsupervised learning methods [8].
These methods learn representations from pairwise data instead
of a single sample and include three important components: 1)
Sample pairing: an image or feature (anchor) is paired with
multiple images or features (supports), respectively. In this
process, the anchor should be similar to the supports in the
same category and dissimilar to the supports in different classes.
2) Feature distance metric: distance measurements such as the
cosine distance are usually used to measure the similarity of
paired samples in an embedding space. 3) Pairwise loss: unlike
commonly used cross-entropy loss or mean square error loss
(MSE) methods, which measure the predictive performance of a
deep learning model, pairwise loss is used to measure the relative
distance between two paired features. This strategy of learning
the similarity between samples is suitable for small samples and
imbalanced samples.

Despite the advantage of contrastive learning, directly using
it in our imbalanced small data task leads to the following
challenges: 1) In contrastive learning, contrastive power im-
provement requires many negative pairs (sample pairs from
different classes) [9]. However, due to the highly imbalanced
characteristics of our dataset, each sample from the majority
class can only generate relatively few negative pairs. 2) Data
imbalance leads to an extreme imbalance of positive pairs (sam-
ple pairs from the same class). Each sample from the minority
class can only generate small numbers of positive pairs. In
comparison, samples from the majority class generate large
amount of positive pairs that show a large diversity, making the
learning process more difficult. 3) Most contrastive networks
and few-shot models usually adopt a fixed metric or calculate
the dot product between two features. Some methods, such as
the relation network method [7], provide a learnable metric that
shows better results. However, feature combinations used for 3D
image features do not satisfy the commutative law, which may
limit the performance and robustness of the model. 4) Due to the
highly imbalanced class distribution, many positive pairs include
anchors from the majority class, whereas few positive pairs
include anchors from the minority class. Commonly used loss
functions tend to classify the input sample pair into one class.

To address these problems, we propose the Mix Contrast
(MixCo) method for the learning of imbalanced small data
(Fig. 1). The MixCo model trains a contrastive network by
matching original features with mixed features. 1) For the minor-
ity class, abundant mixed images are synthesized, which provide
many negative pairs for the majority class. 2) Feature prototype
(the mean of original features; used as an anchor) can represent
the cluster center of the original features, and so can guide the
network to learn a compact intra-class feature space. However,
in the initial stages of training, the feature is not discriminative,
and the mean feature is not representative. Therefore, we design
a cumulative learning strategy (CLS) to gradually change the
anchor from one sample of the original feature space to the
mean feature. 3) Moreover, we adopt a learnable metric and
propose a commutative feature combination (CFC) to learn the
commutative law of feature concatenation to ensure that the
network inference is not affected by the feature concatenation
order. 4) Finally, we propose a united pairwise loss (UPL) to
maximize the margin between classes. Based on the source of

Fig. 1. Mix Contrast (MixCo) trains a contrastive network by matching
original features with mixed features. a) Different from existing meth-
ods that randomly select a sample as anchor and match it with other
samples, we synthesize an anchor in the embedding space, which is a
mixed feature map of the original features in each mini-batch. The mixed
anchor guides network efficiently learning a compact intra-class feature
space. b) A united pairwise loss is proposed to maximize the margin
between classes, which assigns an adaptive weight for positive-anchor
pairs and negative-anchor pairs according to their current optimization
status.

the anchors (positive or negative), we divide sample pairs into
positive-anchor and negative-anchor pairs. The UPL assigns an
adaptive weight for positive-anchor and negative-anchor pairs
based on their current optimization status. The contributions of
this work can be summarized as follows:

1) We propose a novel MixCo model for the classification
of imbalanced small data, which pairs original features
with mixed features for contrastive learning. The mixed
feature guides the network to learn a compact intra-class
feature space. In addition, UPL is proposed to maximize
the margin between classes, assigning adaptive weights
for sample pairs with different class anchors based on
their current optimization status.

2) For efficient MixCo training, we propose a novel CLS
to adjust contrastive learning, which is coupled with the
MixCo model’s training. In addition, a CFC is proposed
to learn the commutative law of feature concatenation,
which enhances the model’s robustness.

3) We evaluate the model on the COVID-19 mild-to-critical
prediction dataset to effectively predict patients who
might progress to critical illness. To demonstrate the
versatility of the method, we also use it for COVID-19
diagnosis and validate its performance on the diagnostic
dataset. Moreover, we evaluate the performance of MixCo
for different training data sizes.

II. RELATED WORK

This work draws on existing literature in contrastive learning,
mixup, metric based few-shot learning, and pairwise loss. Owing
to the large amount of literature, we have focused on the most
relevant papers.

A. Contrastive Learning

Contrastive learning has recently shown encouraging progress
in presentation learning in both self-supervised and supervised
settings. These methods learn representations from pairwise data
in which anchors are paired with support samples, and they are
designed to minimize contrastive loss [10]. Given an anchor
point, the loss forces it to be similar to the matching points
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(positive pairs) and dissimilar to the others (negative pairs).
In the self-supervised setting, there are mainly three con-
trastive loss mechanisms, including end-to-end update by back-
propagation [11], memory bank [12], and momentum con-
trastive [8]. These mechanisms differ in the maintenance method
of the supports and the updating method of the encoder network
[8]. In particular, the momentum contrastive method enables the
building of a large and consistent dictionary on-the-fly that facil-
itates contrastive unsupervised learning, and the introduction of
a queue decouples the dictionary size from the mini-batch size.

However, self-supervised methods need to use a large batch
size and build a large memory or dictionary, which is not suitable
for our task. Moreover, in the supervised setting, contrastive
learning leverages label information and demonstrates more
effective learning than cross-entropy. The key difference be-
tween supervised contrastive and self-supervised contrastive is
the positive pairs. Specifically, the self-supervised contrastive
uses only one positive pair per anchor, and the matching samples
are generated as data augmentations of a given sample (crops,
flips, color changes, etc.), whereas the supervised contrastive
considers many positive pairs per anchor. Khosla et al. [9]
combine the advantage of using labels and contrastive losses, and
consistently outperform cross entropy on supervised learning
tasks. Moreover, many key components facilitate contrastive
learning, such as data augmentations, normalized embedding,
large batch sizes, and more training steps. Our work is most
related to the supervised contrastive [9]. Similarly, we only
contrast samples in the current mini batch instead of building
a memory or dictionary. In addition, we use many positive pairs
and negative pairs per anchor instead of only one positive pair
per anchor.

B. Mixup

Mixup [13] applies the interpolations of samples to regularize
the neural network, which improves the generalization of the
convolutional neural network (CNN) and increased its robust-
ness to adversarial examples. Specifically, the mixed sample
generated by Mixup is a convex combination of pairs of exam-
ples and their labels. The following studies further explore linear
interpolations of the embedding space [13], patch mixing [14],
and rebalanced Mixup strategies [15], which show significant
improvement over Mixup itself. Mixup has also been widely
used in other learning tasks such as semi-supervised learning
[16], neural network calibration [17], and adversarial defense
[18]. Mixup is commonly used to generate new samples using
data augmentation. In this study, we synthesize a mean feature
map of the original feature maps with the same class using
Mixup. The mean feature map represents the cluster center of
the original features, which is used as an anchor for contrastive
learning, and proved to be better than using a random feature
map as an anchor.

C. Metric-Learning-Based Few-Shot Learning

Metric learning is used to learn a high-dimensional em-
bedding space, the similarity of sample pairs being measured

in the embedding space. In the few-shot learning setting, the
testing points are compared to few-shot labeled training points
and recognized using classifiers or nearest-neighbor methods.
Siamese networks [19], matching networks [20], and prototypi-
cal networks [21] use a linear classifier or fixed nearest-neighbor
method to calculate similarity. Instead of using a fixed metric,
a relation network [7] and a cross attention network [22] define
a relation classifier with a CNN, providing a learnable metric.
Similar to the relation network approach, This study adopts a
CNN (Compare Net) to achieve an adaptive metric. Moreover,
we propose a CFC to learn the commutative law of feature
concatenation to ensure the inference of Compare Net is not
affected by the feature concatenation order.

D. Pairwise Loss

To maximize the within-class similarity and minimize the
between-class similarity, we use pairwise loss to optimize the
CNN. It includes triplet loss, self-supervised contrastive loss,
supervised contrastive loss, and circle loss [23]. The key dis-
tinction among these methods is the number of positive and
negative pairs considered in an anchor. The triplet loss uses only
one positive and one negative pair. Self-supervised contrastive
losses use only one positive pair selected by co-occurrence [8] or
data augmentation [24], and use enormous negative pairs. In the
supervised contrastive loss, the positive pairs are chosen from
the same class, and the negative pairs are chosen from other
classes using hard-negative mining [25].

III. METHODOLOGY

In this paper, we attempt to leverage contrastive learning
methods in situations with extremely imbalanced medical image
classification and few positive samples. To achieve this goal,
we propose the MixCo and several essential components: CLS,
CFC, and UPL. This method includes three parts, as shown in
Fig. 2.

1) Image preprocessing and mixed-positive sample gen-
eration: here the original CT images are preprocessed
before being fed into the CNN; mixed-positive samples
are generated by interpolating linearly any two positive
samples.

2) Feature extraction and combination: positive and negative
samples are fed into the encoder network to generate
support features. The anchor of each class is generated
on-the-fly in the embedding space, which is a mixed
feature map of the same class of support features in each
mini batch. During this process, a CLS is proposed to
adjust the synthesis of the mixed feature. In addition,
feature combinations between the anchor and support
feature must satisfy commutative law.

3) Contrastive learning and UPL: the combined feature map
is fed into the compare network to produce a similar-
ity score, and the UPL assigns an adaptive weight for
positive-anchor pairs and negative-anchor pairs based on
their current optimization status. The components are
described in detail in the following subsections.
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Fig. 2. Framework of the MixCo network. It consists of three parts: 1) Image preprocessing and mixed samples generation: mixed samples are
generated by interpolating linearly any two samples in the same class for minority class (positive) samples. 2) Feature extraction and combination:
positive and negative samples are input to the encoder network to generate support features, and the support features are maintained as a dynamic
updated queue. A positive (negative) anchor is generated on-the-fly in the embedding space, which is a mixed features of positive (negative)
support features in each mini-batch. A CLS is proposed for synthesizing the mixed feature and to adjust contrastive learning. In addition, feature
combinations between anchor and support features must satisfy commutative law. 3) The compare network and united pairwise loss: the combined
feature map is fed into the compare network to produce a similarity score, and the UPL assigns an adaptive weight for positive-anchor pairs and
negative-anchor pairs based on their current optimization status.

Fig. 3. ROI acquirement procedure. The lung ROI is cropped from the
original CT images based on the lung segmentation results.

A. Image Preprocessing and Mixed-Positive Sample
Generation

1) Image Preprocessing: The original CT images should
be preprocessed before being input into the CNN. The prepro-
cessing standardizes the regions of interest (ROIs) of the CT
images and stabilizes the prediction model. The preprocessing
procedure consists of three steps, including lung segmentation,
ROI acquirement, and normalization (Fig. 3).

a) Lung Segmentation: A deep learning segmentation
model based on DenseNet121-FPN [26] is trained on the VES-
SEL12 dataset [27]. It can automatically segment the lung region
from the original CT image to acquire the lung mask.

b) ROI Acquirement: The cubic bounding box of the
segmented lung mask is used as the ROI to crop the lung area in
the original CT image. The lung ROI includes the lung areas and
inflammatory tissues attached to the lung wall. The lung ROI is
shown in Fig. 3(c).

c) Normalization: The three-sigma rule of thumb is used
to exclude abnormal values of the CT images, which suppresses

Fig. 4. Mixed-positive image is the linear interpolation of any two
original positive images.

the intensities of non-lung areas inside the lung ROI. Afterwards,
the lung ROI is resized to 240× 360× 48 and standardized using
z-score normalization, making all the image intensities inside the
ROI consistent, obeying a normal distribution.

2) Mean Mixup and Mixed-Positive Sample Generation:
We resort to Mixup to expand the minority class (positive) sam-
ples in our data. Different from the traditional Mixup method,
which interpolates linearly random images or features, we de-
fine mean Mixup Fmm(.)interpolating linearly two images or
multiple features with the same class label. To simplify the
calculation, mean Mixup performs element-wise mean operation
of images or features. We apply mean Mixup to the positive
samples for generating mixed-positive samples. For example, we
randomly select two samples (xi, yi;xj , yj , Fig. 4(b), (c)) from
the positive sample set and perform the mean Mixup procedure
to generate a mixed-positive sample xmm, as shown in Fig. 4(a).
Thus, the label ymm is unchanged.

xmm = Fmm(xi, xj) (1)

ymm = yi = yj (2)
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Fig. 5. Network parameters of the encoder network and compare
network.

3) Support Features as a Queue: For MixCo’s stable
training, we maintain the support features as a feature queue. The
queue is dynamic, and the features in the queue are progressively
replaced. For every class, the current feature is queued, and the
oldest feature in the queue is removed. The queue size is always
a typical mini-batch size instead of building a dictionary [8]
or a large memory bank[12]. Moreover, the mixed anchor is
generated by the features in the queue, and slowly updated the
queue making the anchor consistent during training.

B. Feature Extraction and Combination

We construct an encoder network to extract the features of
samples. Subsequently, the support features are combined with
an anchor to build combined features, which are input to the
compare network for further analysis.

1) Encoder Network: The encoder network aims to learn
a projection function f(.)and map images to an embedding
space. The network has a similar architecture to that of [7], as
shown in Fig. 5(a). The network contains four 3D convolutional
blocks, each of which is composed of a 3D convolution layer
(kernel size, 3 × 3 × 3), a 3D batch-normalization layer, and a
rectified linear unit (ReLU) nonlinearity layer. The max pooling
layer is used to down-sample the feature maps generated from
the 3D convolutional blocks. The batch-normalization layer is
used to normalize the feature map output from each convolution
layer—this is beneficial to the subsequent contrastive learning
for analyzing the small difference between feature maps.

2) Anchor Generation With a Cumulative Learning Strat-
egy: By intuition, if an anchor is the cluster center of one class
of features, using contrastive learning, the network may force the
features to maintain a small distance from the anchor. This means
that the features will be close to each other, that is, the features
will have a compact intra-class feature space. Consequently, we
try to build an anchor representing the cluster center for the
features of each class. Similar to k-means algorithms [28] that
set the cluster center at the centroid of the corresponding cluster,
we synthesize a mean feature for each class of features as the
cluster center. During training in each mini-batch (batch size of
each class is b), the mean feature fmm is generated on-the-fly
using the mean Mixup in the embedding space:

fmm = Fmm(f(x1), f(x2), . . . , f(xb)) (3)

Fig. 6. Adaptive strategy with different parameter p for generating λ.

However, in the initial stages of training, the image feature is
not discriminative; hence, the mean feature is not representative.
Similar to k-means, which randomly selects K samples as the
initial cluster centers, we randomly select a feature of the sample
xk as an anchor. Besides, we propose a CLS for gradually
shifting the anchor from the feature of a random sample in each
training batch to the mean feature. By controlling the weights
for fmm andf(xk)with an adaptive trade-off parameter λ, the
weighted feature map λfmm and(1− λ)f(xk) are integrated as
an anchor feature map fwm. The output anchor is formulated
as:

fwm = λfmm + (1− λ)f(xk) (4)

The λ in the CLS is automatically generated based on the
training epoch. Specifically, the number of total training epochs
for cumulative learning is denoted byTmax and the current epoch
by T. λis calculated by:

λ = 1−
(
max

{
0, 1− T

Tmax

})p

(5)

where λ gradually increases as the number of training epochs
increases. The anchor is initialized using the feature of a random
sample and then gradually shifts to the mean feature. As shown
in Fig. 6, when the parameter p is 0 or infinity, the strategy is
named as No-mix or All-mix, respectively. Other strategies are
(0 < p < �)exponent increments with different growth rates.

3) Commutative Feature Combination: For a learnable
metric, the anchor and support features are combined before
being fed into the compare network. Here, we assume the feature
combination to be a concatenation of feature maps in depth.
In our observation, when we exchange concatenation order,
the output of the compare network varies (Section V-A). To
ensure that the feature combination satisfy the commutative law
for a consistent prediction, we propose a CFC operator, which
puts two combined features that satisfy the commutative law
of concatenation order into one training batch. It contains two
parts: a pairing unit and an exchange unit: (i) The pairing unit
pairs the anchor with support features (including positive and
negative features) and concatenates Cd(.) to the pairwise feature
maps f(xi) and f(xj) in depth as a combined feature mapfij :

fij = Cd(f(xi), f(xj)) (6)
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Fig. 7. Pairing and combining of an anchor with positive and negative
feature maps to generate the commutative combination feature fcc.

(ii) The exchange unit first exchanges the concatenation order
offij to build a new feature mapfji:

fji = Cd(f(xj), f(xi)) (7)

CombiningCb(.) the combination feature maps every class
(fk

ij andfk
ji; k = 1, 2, … K, K represents the class number) in

batches as a commutative combination feature fcc:

fcc = Cb(f
1
ij , f

1
ji, . . . , f

K
ij , f

K
ji ),K = 2 (8)

Under the toy scenario, where there is only a single anchor and
a pair of positive and negative features, the function of the CFC
is shown conceptually in Fig. 7. The outputs from the encoder
network are feature maps offanc, fpos, and fneg , and each has
a size of c× d× l × w × h with c channels, d depth, l length,
w width, and h height. The pairing unit first duplicates fanc and
then concatenates it with fpos andfneg , respectively, to form two
combined feature maps (fp

ijand fn
ij) of size c× 2d× l × w × h.

Subsequently, the exchange unit exchanges the concatenation
order in the combined feature map to build new feature maps
(fp

ji andfn
ji). Finally, four feature maps (fp

ij , fp
ji, f

n
ij , and fn

ji)
are put into one training batch. In this toy scenario, the final
commutative combination feature is fcc, a tensor of size 4c×
2d× l × w × h.

C. Compare Network and Pairwise Loss

1) Compare Network: The combined feature map fcc is
further fed into the compare network withg(.) calculating the
similarity score of the pairwise samples. The anchor feature is
compared with the features of the support samples by the com-
pare network, and it yields a similarity score ranging from 0 to 1,
determining whether they are from the same category or different
category. As shown in Fig. 5(b), the network contains three 3D
convolutional blocks, one adaptive average pooling layer, and
two fully connected layers. A sigmoid function transforms the
output of the last fully connected layer to a similarity score.
Similar to the encoder network, each block is composed of a 3D
convolution layer, a 3D batch-normalization layer, and a ReLU
activation layer. The 3D convolutional kernel size of 1× 3× 3
is used in the convolution layer, which is different from that in
the encoder network.

2) United Pairwise Loss: The pairwise loss aims to max-
imize the within-class similarity Si

p and minimize the between-
class similarity Sj

n. Given an anchor, we assume that there are
K within-class similarity scores and L between-class similarity
scores, which are denoted as {Si

p} (i = 1, 2,.., K), and {Sj
n}

(j = 1, 2,.., L), respectively. Sun et al. [23] propose a unified
loss function Lunified (9) for metric learning with class-level
labels and with pair-wise labels to minimize each Sj

n as well as
to maximize Si

p. The unified loss tries to make the smallest Si
p

greater than the largest Sj
n. Based on this unified optimization

target, we define a unified optimization distance Od to measure
the optimization status for different pairwise losses, and set the
margin item margin (m) to be 0.5.

Lunified = log[1 +
K∑
i=1

L∑
j=1

exp(r(Sj
n − Si

p +m))] (9)

Od = max{0,max{Sj
n} −min{Si

p}+m} (10)

When the pairwise loss is applied to imbalanced data, the
optimization distance Od for different categories of anchor (Ck,
k = 1, 2,.., K) is different; however, they are equal in optimiza-
tion. Thus, we propose a UPL that unites the optimization of
sample pairs with different categories of anchor. The union
loss is the weighted sum of the pairwise loss with different
category anchors, which dynamically balances the optimization
depending on their current optimization status. Here, we define:

Lunion =
∑
k

Lpair(C
k) softmax

k
[Od(C

k)] (11)

In the experiments, when the positive pairs deviate too far
from the optimization distance of negative pairs (Od(C

p) >
Od(C

n)), a large weighting factor has to be obtained to achieve
an effective update with a large gradient. The loss Lpairis calcu-
lated based on conventional classification loss (MSE and focal
loss) and pairwise loss, such as triplet, supervised contrastive
loss and circle loss.

3) Inference Phase: In the inference phase, the training set
is used as the support set. Given a testing case x, the similarity
scores between x and the support samples xk

i are calculated as
Sk

i . Specifically,Sk
i = G(x,xk

i ) (G is the MixCo model,xk
i is

the i-th sample in the sample set Nk with label k). The category
of x is judged by the mean similarity score Sk

mean and belongs
to the category with the highest mean score.

Sk
i = G(x, xk

i ) (12)

Sk
mean = softmax

k
[

1

|Nk|
∑
i

Sk
i ] (13)

In the experiment, the predicted category is:

Category =

{
1, Sp

mean > Sn
mean

0, Sp
mean < Sn

mean
(14)

IV. EXPERIMENTS

A. Evaluation Datasets and Empirical Settings

In this section, we present the image datasets used in the
experiments.

1) Patient Database: A total of 918 patients from four hos-
pitals participated in this study, including 559 patients from the
Renmin Hospital of Wuhan University (Center 1), 113 patients
from the Henan Provincial People’s Hospital (Center 2), 98
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TABLE I
MILD-TO-CRITICAL ILLNESS PREDICTION DATASET

TABLE II
THE COVID-19 DIAGNOSIS DATASET

patients from the Beijing Youan Hospital (Center 3), and 148
patients from the 2nd Affiliated Hospital of the Harbin Medical
University (Center 4). This multi-center retrospective study was
approved by the Institutional Review Board of the four hospitals,
and the requirement for informed consent was waived.

2) Mild-to-Critical Illness Prediction Dataset: In the mild-
to-critical prediction task, data of 457 COVID-19 patients from
Center 1 were used, including that of 50 patients who finally
changed from mild to critical (Table I). In many studies, the ratio
between the training (including validation samples) and testing
sets is set at a ratio of 7:3 or 8:2, hence we follow this setting
to split the data of the majority class. However, since the data
of the minority class are small, the ratio of 7:3 or 8:2 will lead
to a very small testing set in the minority class. Consequently,
according to the data amount, we split the data of minority class
at a ratio of 2:1 or 3:1. Due to imbalanced distribution, the data
of the majority class were randomly split into training (n = 326)
and testing (n = 81) sets at a ratio of 8:2. Since there are only
50 positive samples (minority class), we used two-fold cross-
validation to evaluate the performance of the proposed method
and used an early stop strategy during the training model. Lastly,
the proportion of positive samples in the training set is 0.071,
which gets close to the real ratio of 0.05. Before training, the CT
images were preprocessed: (1) lung ROIs were cropped from
the CT images and normalized, and (2) mixed-positive samples
were generated.

3) COVID-19 Diagnosis Dataset: To demonstrate the ver-
satility of the MixCo model, we used it for COVID-19 diagno-
sis (identifying COVID-19 vs. other types of pneumonia) and
evaluated its performance for different training data sizes. In
this experiment, data of 918 patients from the four centers were
used (Table II). All CT images were preprocessed, and the data
of each center were split into training, validation, and testing sets
at a ratio of 6:1:3. To compare the performance of the MixCo
model for different amounts of training data, a subset of training
data (at ratios of 25%, 50%, 75%, and 100%) were randomly
extracted for experiments.

4) Lung Nodules Classification Dataset: The public
LIDC-IDRI dataset [29] includes 1010 patients (1018 scans)
and we extract 2654 nodules using pylidc toolkit [30]. For
each nodule, there are 1-7 radiologists drawing the contour and
providing a malignancy rating score (1-5). We used the same

TABLE III
THE LIDC-IDRI DATASET

criteria in previous study [31]–[33], where the nodules with
average rating score above 3.5 are labeled as malignant and the
nodules rated less than or equal to 3.5 are labeled as another
class (unsure or benign). Due to imbalanced distribution, the
data of the majority class were randomly split into training
(including validation samples) and testing sets at a ratio of 7:3.
Similar with the first experiment, we used a half of positive
samples (minority class) as the testing dataset. Since there are
190 positive samples (minority class) in the training set, we
use tree-fold cross-validation with 127 training samples and
the mean results of three experiments are reported, as shown
in Table III.

B. Model Training and Implementation Details

Batch normalization and data augmentation (random center
crop) were used during training of the networks. For the MixCo
models, we used Adam optimization and the initial learning rate
was set to 0.01, which was subsequently reduced by a factor of
0.5 when the training loss was reduced to tenths of the previous
value. The Tmax in the CLS was set to 1000, and the batch
size was set to 8. A big batch size was proven to be effec-
tive in contrastive learning. However, owing to GPU memory
limitations, we used a gradient averaging strategy, where one
back-propagation was used after multiple forward propagation
iterations. For testing, the last three results (the interval was 10 it-
erations) of each model are shown. To compare the performance
of the MixCo model with a small training dataset, a 3D Resnet50
model was adopted, which was pre-trained using eight medical
datasets [34]. We used the stochastic gradient descent (SGD)
method with an initial learning rate of 10e-2 and a momentum
of 0.9 in the experiments with Resnet50.

We implemented the CNN using Pytorch [35] 1.4 on a ma-
chine running Ubuntu 16.04 with CUDA 10.0 and cuDNN.
Training was performed on a 24 GB NVIDIA TITAN RTX.

V. RESULTS

A. The Performance of MixCo in Predicting
Mild-to-Critical Patients

The proposed MixCo model was benchmarked against the
standard classification networks (ResNet50) with different
learning strategies (resample, focal loss, and Mixup). Further-
more, the research most closely related to ours, including Re-
lationNet and Supervised contrastive learning (SupCon) were
compared. The basic MixCo model consisted of an encoder
network and a compare network, and used the mixed anchor
and Triplet loss methods. To validate the effects of the proposed
components, including the CFC, CLS, and UPL, we added the
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TABLE IV
THE PERFORMANCE OF MIXCO

components to the basic MixCo model one by one. In addition,
all experiments used mixed-positive samples.

As shown in Table IV, the classification network with Focal
loss shows a higher F1-score than the other two strategies,
illustrating that reweighting strategy is useful to stop the model
from classifying all samples to the majority class. SupCon shows
an F1-score comparable to the Focal loss algorithm. We further
validated the effectiveness of the proposed components, and the
results showed that every module demonstrated an improvement.

Using the CFC improved the recall from 0.493 to 0.553. Using
the CLS with an appropriate parameter P showed better results
with recall = 0.753 and specificity = 0.833. When adding the
UPL strategy, the MixCo model showed the best performance
with a recall of 0.8 and a specificity of 0.815.

F1-Score is the harmonic average of a trading off between
precision and recall, which can comprehensively evaluate model
performance, especially on the imbalanced data. In all experi-
ments, our model shows the maximal F1-score, and it shows
large improvement than other methods in terms of recall, but
shows slight decrease in terms of specificity. In the COVID-19
mild-to-critical prediction task, we aim to identify high-risk
patients who have a high probability of changing from mild to
critical COVID-19 (only account for 5% of cases). It is important
to early identify the high-risk patients and avoid missed care.
Hence, recall (sensitivity) is more important than specificity.
We use the Chi-square test [36] to evaluate the improvement
of the MixCo model over ResNet50 (with Focal loss). The
results indicate the improvement of our model on recall value
is statistically meaningful (p = 0.007) and the decrease of our
model on specificity value is not significant (p = 0.316).

In the training dataset, due to the limited positive samples,
many negative samples are paired with the same positive sample
with the same combination order. Hence, the Compare Network
tends to overfit. By exchanging the feature combination order,
the output of the compare network varied, and the distribution of
the prediction difference (with/without a CFC) is shown in Fig. 8.
As expected, by using the CFC during training, the difference
was small enough; that is, the compare network could apply
commutative law, which enhances the model’s robustness and
yields a higher recall. To prove our hypotheses, we analyze the
weights of the first convolution layer in Compare Network. The
size of the weights is 64 × 128 × 1 × 3 × 3 and can be divided
into 64 groups.

Fig. 8. The distribution of the prediction difference.

Fig. 9. The histogram of the MSE values.

Each group consists of 128 3D convolution kernels with the
size of 1 × 3 × 3. According to hypotheses, for each group, the
parameters between the first 64 kernels and the last 64 kernels are
commutative, hence we calculate the MSE between every two
corresponding convolution kernel weights, e.g., both the first and
the 64th convolutional kernels. After calculation, we get 4096
(64 × 64) MSE values and compare the MSE values between
the model with CFC (mean is 0.039) and the model without CFC
(mean value is 0.107) using the T-test. The P-value in T-set is
less than 0.001, which proves our hypothesis., The histogram of
MSE values between the model with CFC and the model without
CFC is shown in Fig. 9.

B. Different Cumulative Learning Strategies

An increment function with parameter P was proposed for
the cumulative learning of the MixCo model. By adjusting the
parameter P, the learning speed changes—a larger P making the
anchor shift to the mean feature faster.

We show the change in metric values (accuracy, precision,
recall, F1-score, and specificity) and the iteration number as the
P value increases, in Fig. 10. Note that all experiments used
the UPL approach. The results showed that using the all-mix
strategy yielded significantly better performance than the no-mix
strategy, which improved the recall from 0.360 to 0.627. For the
exponent increment strategies, the good and stable stages (in
the blue zone) are highlighted, from which we can draw three
observations: 1) The MixCo model exhibits high robustness
with parameter P (1 < P < 16); 2) The models using a CLS
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Fig. 10. The change of metric values (accuracy, precision, recall, F1-
score and specificity) and the iteration number as the P value increases.

Fig. 11. Examples of the mean feature and original feature. The fea-
tures in the dashed box show a similar structure.

converge faster; 3) Compared to the all-mix strategy, the CLS
further improves the recall of the MixCo model to 0.8.

The NoMix strategy is based on instance discrimination (ran-
domly select a sample as the anchor and match it with other
samples), which treats two samples as a positive (negative) pair
if they are from the same (different) category, regardless of their
feature diversity. Hence, the paired sample shows a large diver-
sity, making the learning process difficult. In the experiments,
the number of positive sample (Np) is 25 and the negative sample
(Nn) is 326, therefore the number of paired samples is 69575
calculated according to Formula 1. In comparison, the samples
are paired with the two anchors in the CLS strategy, and the
number of paired samples is only 702 calculated according to
Formula 2. As shown in Fig. 9, NoMix strategy needs many
iteration numbers and does not converge to a stable state due to
the large amount of paired samples, which is consistent with our
hypothesis.

N = C2
Np + C2

Nn + 2×Np×Nn (15)

N = 2× (Np+Nn) (16)

An increment function with parameter P was proposed for
the cumulative learning of the MixCo model. By adjusting the
parameter P, the learning speed changes—a larger P making the
anchor shift to the mean feature faster, but needs more training
iteration. These observations prove our motivation that in the
initial stages of training, the mean feature is not representative,
and leaning from the instance anchor initially is necessary for
Compare Network.

After training, the feature similarity of different samples
from the same category gradually increased, as shown in the
dashed box area in Figs. 11(a)–(f). The features show a similar

TABLE V
EFFECT OF THE UPL STRATEGY

TABLE VI
INFERENCE USING A SUBSET OF SUPPORT SAMPLES

structure and are similar to the mean feature (Fig. 11(g), anchor).
The results confirmed our motivation for considering the mean
feature as an anchor to guide the network to learn a compact
intra-class feature space.

C. Advantage of the United Pairwise Loss

To prove the advantage of the proposed UPL strategy, we
explored several different optimization functions. Specifically,
we tested using MSE, focal loss, supervised contrastive loss
(SupCon), and Triplet loss. As shown in Table V, the models

with a UPL strategy yielded better recall and F1-score results
than those with the original strategy. These observations prove
that the UPL strategy is effective, balancing the optimization
of imbalanced data to improve the performance for minority
classes. Among these strategies, the best was Triplet loss with
the UPL.

D. Inference Using a Subset of Support Samples

In the inference phase, the training data are used as the
support set. When the support size is large, the performance can
probably improve. However, it can lead to more computational
overhead and can be time-consuming. Therefore, we explored
possible critical values as a trade-off. We used stratified random
sampling to acquire a subset of the support data for inference.
Table VI shows the prediction results of one MixCo model using
different numbers of support samples. We randomly performed
10 samplings for each subset size, and the following metrics
were calculated: Recall, F1 score, and Specificity.

The results show that a larger number of support samples yield
better performance and smaller prediction variance. However,
from Table VI, we can see that when the number of support
samples exceeds 20, the results do not show much improvement
but bring more memory usage and inference time. We use Chi-
square test [36] to evaluate the results with 20 support samples
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TABLE VII
COMPARISON BETWEEN THE MIXCO AND RESNET50 MODELS REGRADING

DIFFERENT AMOUNTS OF TRAINING DATA

and 25 support samples, and the p value is 0.854 for recall value.
Therefore, we can select a small number of typical examples
(n = 20) as the support set.

E. The Versatility of MixCo in COVID-19 Diagnosis

To demonstrate the MixCo model’s versatility, we performed
experiments on the diagnosis dataset and evaluated the per-
formance of it with respect to different training data sizes.
Table VII shows the performance of both the MixCo model and
the pre-trained 3D Resnet50 model [34] for the four centers.
For each center, four experiments with part of the training data
(at ratios of 25%, 50%, 75%, and 100%) were used. For a fair
comparison, the MixCo and 3D Resnet50 models used the same
settings. Due to data imbalance in Center 1, focal loss was used
for training the Resnet50 model. The following metrics were
calculated: AUC, Rcall and Specificity.

Overall, the results in the four centers were consistent, and
the performances of both models improved as the amount of
training data increased. When the two models were trained with
100% of the training data, they consistently had high AUCs.
However, the MixCo model outperformed the Resnet50 model
steadily on imbalanced data (Center 1). In addition, when the
amount of training data decreased, the MixCo model showed
better performance than the Resnet50 model. To provide a
more intuitive comparison, Fig. 12 shows the AUC comparison
between the MixCo and Resnet50 models regrading different
amounts of training data. The Resnet50 model relies on large
amounts of data for pre-training and transferring the model. By
contrast, the MixCo model can be trained from scratch on small
amounts of data. This is important for COVID-19 analysis when
large labeled data are difficult to collect.

F. The Versatility of MixCo in Lung Nodules
Classification

We evaluate the predictive performance between ResNet mod-
els with focal loss and our method, as shown in Table VIII.

Fig. 12. AUC comparison between the MixCo and Resnet50 models
regrading different amounts of training data.

TABLE VIII
THE PERFORMANCE OF MIXCO ON LIDC DATA

Fig. 13. The change of Sp − Sn values of both positive-anchor pairs
and negative-anchor pairs during training. We highlight the final training
process (in the blue zone), and the optimization process of both change
periodically.

MixCo shows a higher F1-score (0.574 vs 0.508) and Recall
value (0.577 vs 0.375).

G. Analysis of the Optimization Process Using the
United Pairwise Loss

The UPL unites the optimization of positive-anchor pairs
and negative-anchor pairs. The union dynamically balances
the optimization depending on the current optimization status.
For example, when the optimization of positive-anchor pairs
deviates too far from that of negative-anchor pairs, the UPS
assigns a larger weight to positive-anchor pairs. For simplicity,
Sp is defined as the mean of {Si

p} in each training epoch, and
Sn is defined as the mean of {Si

p}. To intuitively understand
the optimization process, the changes in Sp − Sn in both the
positive-anchor and negative-anchor pairs during the training
process, are shown in Fig. 13. At initialization, all Sp and Sn

scores were small, and hence the Sp − Sn values were similarly
small.



ZHU et al.: MIX CONTRAST FOR COVID-19 MILD-TO-CRITICAL PREDICTION 3735

Subsequently, the optimization of negative-anchor pairs easily
dominated the training, leading to a rapid increase in the Sp −
Sn values. At this time, the UPL restrained the optimization of
negative-anchor pairs and enhanced the optimization of positive-
anchor pairs until Sp − Sn in both the negative-anchor pair and
the positive-anchor pair reached the same value. Consequently,
the optimization process periodically changed until it converged
to a stable status (as shown by the blue zone in Fig. 13).

VI. DISCUSSION

In this work, we consider employing contrastive learning
on imbalanced small data and discussed how to incorporate
this idea into the early identification of high-risk patients with
COVID-19 who may develop critical illness. By matching the
mixed feature with original features for contrastive learning,
the networks attain rapid convergence, and the mixed feature
can guide network learning of a compact intra-class feature
space. In the training phase, maintaining the support samples as
a progressively updated queue is the key to the MixCo model’s
steady training. Moreover, the model design of MixCo conforms
to the evidence-based medicine method. In the inference phase,
each tested case is paired with the support samples to calculate
the similarity scores. The category of the tested case is judged
by the mean similarity score of each class and belongs to the
category with the highest mean score. Hence, the cases that have
been confirmed give instance-based evidence to the diagnosis,
which presents good interpretability. Lastly, the MixCo model
has far fewer parameters than the deep learning model, which is
convenient for its use in applications.

In principle, the SupCon is the basic component of our model.
Although we do not use a balanced strategy for SupCon, it
shows an F1-score comparable to the best classification strategy
(reweighting), as show in Table IV, which proves our hypothesis
that when using the few positive samples (minority class) with
large amount of negative samples (majority class) to construct
sample pairs, and combined with contrastive learning can im-
prove the model’s performance of identifying positive samples.
However, when we directly combine the advantages of the
learnable metric in RelationNet and the contrastive learning
in SupCon, the MixCo (Basic) and MixCo (CFC) show worse
performances. This may be caused due to the following rea-
son: samples from the majority class generate many positive
pairs (sample pairs from the same classes) that show a large
diversity, making the learning process more difficult. Hence,
we design feature prototypes for each class as the anchors
in contrastive learning, which guide the network to learn a
compact intra-class feature space. This mechanism brings a
significant improvement according to the results. Furthermore,
the positive features learned by our model also focused on part
of the cardiovascular system (Fig. 11), which is consistent with
previous clinical findings that the cardiovascular abnormality
may be a sign of fatal outcome of COVID-19. According to
previous studies, COVID-19-related pneumonia can cause acute
myocardial injury and chronic damage to the cardiovascular
system [37], and myocardial injury is significantly associated
with fatal outcome of COVID-19 [38]. Hence, MixCo model

is consistent with the clinical practice [37], [38]. Besides, the
proposed MixCo model aims to learn with imbalanced small
data on medical image, which has two key features: (i) there are
only very small amount of positive (disease) samples, and (ii) the
large amount of negative samples show large diversity. Conse-
quently, our proposed method has the potentiality to be applied
in many image-based disease predictions with imbalanced class
distribution, such as Alzheimer’s disease diagnosis [39].

Despite the good performance of the MixCo model, this work
has several limitations. First, compared with the conventional
CNN model, this method needs to construct a dynamic queue
and dynamic anchors of each class during training and needs
extra reference data for model inference. Although our model
has the merits of fewer parameters, building and saving ex-
tra intermediate data (a queue and the anchors) needs more
computational resources than the conventional CNN model.
Second, the fine-scale analysis for the lung region may yield
better results; hence, contrastive analysis of each lung lobe
and bronchopulmonary segment worth further study. Lastly,
some clinical and biochemical markers are related to COVID-19
prognosis; however, we only used image information. Including
more clinical and biochemical information in the system may
further improve results.

VII. CONCLUSION

In conclusion, we propose a novel MixCo model that can
be employed for imbalanced small data. We apply the MixCo
model for COVID-19 mild-to-critical prediction, and it can
identify high-risk COVID-19 patients who have a high prob-
ability of changing from mild to critical illness, with a high
recall and specificity, which is important for early prevention
and personalized treatment planning. Besides, compared with
deep neural networks, the proposed MixCo model demonstrates
improvements for some image-based disease predictions with
imbalanced class distribution, such as COVID-19 diagnosis and
lung nodule classification.

REFERENCES

[1] C. Wang et al., “A novel coronavirus outbreak of global health concern,”
Lancet, vol. 395, pp. 470–473, Feb. 2020.

[2] W. Liang et al., “Development and validation of a clinical risk score
to predict the occurrence of critical illness in hospitalized patients with
COVID-19,” JAMA Intern. Med., vol. 180, no. 8, pp. 1–9, Aug. 2020.

[3] D. Colombi et al., “Well-aerated lung on admitting chest CT to predict
adverse outcome in COVID-19 pneumonia,” Radiology, vol. 296, no. 2,
Aug. 2020, Art. no. 201433.

[4] S. Wang et al., “A fully automatic deep learning system for COVID-19 di-
agnostic and prognostic analysis,” Eur. Respir. J., vol. 65, no. 2, Aug. 2020,
Art. no. 2000775.

[5] L. Li et al., “Artificial intelligence distinguishes COVID-19 from commu-
nity acquired pneumonia on chest cT,” Radiology, vol. 296, Mar. 2020,
Art. no. 200905.

[6] K. Zhang et al., “Clinically applicable AI system for accurate diagnosis,
quantitative measurements, and prognosis of COVID-19 pneumonia using
computed tomography,” Cell, vol. 181, no. 6, pp. 1423–1433, Jun. 2020.

[7] F. Sung et al., “Learning to compare: Relation network for few-shot
learning,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2018,
pp. 1199–1208.

[8] K. He et al., “Momentum contrast for unsupervised visual representation
learning,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2020,
pp. 9729–9738.



3736 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 68, NO. 12, DECEMBER 2021

[9] P. Khosla et al., “Supervised contrastive learning,” in Proc. Adv. Neural
Inf. Process. Syst., 2020, p. 33.

[10] R. Hadsell, S. Chopra, and Y. LeCun, “Dimensionality reduction by
learning an invariant mapping,” in Proc. IEEE Comput. Soc. Conf. Comput.
Vis. Pattern Recognit., 2006, pp. 1735–1742.

[11] P. Bachman, R. D. Hjelm, and W. Buchwalter, “Learning representations
by maximizing mutual information across views,” in Proc. Adv. Neural
Inf. Process. Syst., 2019, pp. 15535–15545.

[12] Z. Wu et al., “Unsupervised feature learning via non-parametric instance
discrimination,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2018,
pp. 3733–3742.

[13] H. Zhang et al., “mixup: Beyond empirical risk minimization,” 2017,
arXiv:1710.09412.

[14] S. Yun et al., “Cutmix: Regularization strategy to train strong classifiers
with localizable features,” in Proc. IEEE Int. Conf. Comput. Vis., 2019,
pp. 6023–6032.

[15] H.-P. Chou et al., “Remix: Rebalanced mixup,” in Eur. Conf. Comput. Vis.,
2020, pp. 95–110.

[16] D. Berthelot et al., “Mixmatch: A holistic approach to semi-supervised
learning,” in Proc. Adv. Neural Inf. Process. Syst., 2019, pp. 5049–5059.

[17] S. Thulasidasan et al., “On mixup training: Improved calibration and
predictive uncertainty for deep neural networks,” in Proc. Adv. Neural
Inf. Process. Syst., 2019, pp. 13888–13899.

[18] T. Pang, K. Xu, and J. Zhu, “Mixup inference: Better exploiting mixup to
defend adversarial attacks,” in Int. Conf. Learn. Representations, 2019.

[19] G. Koch, R. Zemel, and R. Salakhutdinov, “Siamese neural networks for
one-shot image recognition,” in Proc. ICML Deep Learn. Workshop, 2015.

[20] O. Vinyals et al., “Matching networks for one shot learning,” in Proc. Adv.
Neural Inf. Process. Syst., 2016, pp. 3630–3638.

[21] A. v. d. Oord, Y. Li, and O. Vinyals, “Representation learning with
contrastive predictive coding,” 2018, arXiv:1807.03748.

[22] R. Hou et al., “Cross attention network for few-shot classification,” in
Proc. Adv. Neural Inf. Process. Syst., 2019, pp. 4003–4014.

[23] Y. Sun et al., “Circle loss: A unified perspective of pair similarity opti-
mization,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2020,
pp. 6398–6407.

[24] T. Chen et al., “A simple framework for contrastive learning of visual
representations,” in Int. Conf. Mach. Learn., 2020, pp. 1597–1607.

[25] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified embedding
for face recognition and clustering,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2015, pp. 815–823.

[26] G. Huang et al., “Densely connected convolutional networks,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2017, pp. 4700–4708.

[27] R. D. Rudyanto et al., “Comparing algorithms for automated vessel
segmentation in computed tomography scans of the lung: The VESSEL12
study,” Med. Image Anal., vol. 18, pp. 1217–1232, Oct. 2014.

[28] T. Kanungo et al., “An efficient K-means clustering algorithm: Analysis
and implementation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24,
no. 7, pp. 881–892, Jul. 2002.

[29] S. G. Armato III, et al.,“ The lung image database consortium (LIDC) and
image database resource initiative (IDRI): A completed reference database
of lung nodules on CT scans,” Med. Phys., vol. 38, no. 2, pp. 915–931,
Feb. 2011.

[30] M. C. Hancock and J. F. Magnan, “Lung nodule malignancy classification
using only radiologist-quantified image features as inputs to statistical
learning algorithms: Probing the lung image database consortium dataset
with two statistical learning methods,” J. Med. Imag., vol. 3, Oct. 2016,
Art. no. 044504.

[31] S. Hussein et al., “Risk stratification of lung nodules using 3D CNN-based
multi-task learning,” in Proc. Int. Conf. Inf. Process. Med. Imag., 2017,
pp. 249–260.

[32] B. Wu et al., “Joint learning for pulmonary nodule segmentation, attributes
and malignancy prediction,” in Proc. IEEE 15th Int. Symp. Biomed. Imag.,
2018, pp. 1109–1113.

[33] B. Wu et al., “Learning with unsure data for medical image diagnosis,” in
Proc IEEE/CVF Int. Conf. Comput. Vis., 2019, pp. 10590–10599.

[34] S. Chen, K. Ma, and Y. Zheng, “Med3d: Transfer learning for 3D medical
image analysis,” 2019, arXiv:1904.00625.

[35] A. Paszke et al., “Pytorch: An imperative style, high-performance
deep learning library,” in Proc. Adv. Neural Inf. Process. Syst., 2019,
pp. 8026–8037.

[36] A. Agresti, Categorical Data Analysis. New York, NY, USA: Wiley, 1990,
pp. 350–354.

[37] Y. Y. Zheng et al., “COVID-19 and the cardiovascular system,” Nat. Rev.
Cardiol., vol. 17, pp. 259–260, May 2020.

[38] T. Guo et al., “Cardiovascular implications of fatal outcomes of patients
with coronavirus disease 2019 (COVID-19),” JAMA Cardiol., vol. 5,
pp. 811–818, Jul. 2020.

[39] C. Huang et al., “Split LBI: An iterative regularization path with struc-
tural sparsity” in Proc. 30th Int. Conf. Neural Inf. Process. Syst., 2016,
pp. 3377–3385.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


