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Abstract 

In silico prediction of drug–target interactions is a critical phase in the sustainable drug development process, 
especially when the research focus is to capitalize on the repositioning of existing drugs. However, developing such 
computational methods is not an easy task, but is much needed, as current methods that predict potential drug–
target interactions suffer from high false-positive rates. Here we introduce DTiGEMS+, a computational method 
that predicts Drug–Target interactions using Graph Embedding, graph Mining, and Similarity-based techniques. 
DTiGEMS+ combines similarity-based as well as feature-based approaches, and models the identification of novel 
drug–target interactions as a link prediction problem in a heterogeneous network. DTiGEMS+ constructs the hetero-
geneous network by augmenting the known drug–target interactions graph with two other complementary graphs 
namely: drug–drug similarity, target–target similarity. DTiGEMS+ combines different computational techniques to 
provide the final drug target prediction, these techniques include graph embeddings, graph mining, and machine 
learning. DTiGEMS+ integrates multiple drug–drug similarities and target–target similarities into the final heterogene-
ous graph construction after applying a similarity selection procedure as well as a similarity fusion algorithm. Using 
four benchmark datasets, we show DTiGEMS+ substantially improves prediction performance compared to other 
state-of-the-art in silico methods developed to predict of drug-target interactions by achieving the highest average 
AUPR across all datasets (0.92), which reduces the error rate by 33.3% relative to the second-best performing model in 
the state-of-the-art methods comparison.
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Introduction
The exorbitant costs, low success rates, and time-con-
suming nature of the traditional experiment-based drug 
discovery processes have led to the incorporation of low 
cost in silico methods that can fast track drug discovery 

and development [1]. In this regard, computational 
methods that predict drug–target interactions (DTIs) 
have been pursued to reduce the research focus area 
towards drugs that may be more viable. One of the initial 
steps in knowing which drugs to pursue is based on the 
drugs’ ability to interact with a specific target protein to 
either enhance or inhibit its function [2]. However, there 
is a limited number of experimentally identified and 
validated DTI pairs. Thus, DTI prediction is an essen-
tial task in the early stage evaluation of potential novel 
drugs, and the search for novel uses of existing drugs, 
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i.e., drug repurposing [3]. To date, several approaches 
have been used to predict DTIs, but they all suffer from 
limitations and require substantially improved prediction 
performance.

One of the approaches used to predict DTIs, dock-
ing simulations [4, 5], requires the 3-dimensional (3D) 
structure of the protein target. However, such 3D struc-
tural information is not available for all targets, which 
limits the use of this approach. A second approach used 
to avoid this limitation when predicting DTIs is ligand-
based [6, 7]. This approach predicts DTIs by comparing 
a candidate ligand with the known ligands of the proteins 
targeted. This approach suffers from low performance 
in cases where the targeted proteins have few known 
ligands. Subsequently, several computational methods 
have been developed to avoid the limitations of these 
traditional methods. That is, to a certain extent other 
computational methods may suffer from the same limita-
tion but can incorporate features (such as different drug 
similarity, statistical and network features from DTIs 
heterogeneous graph, etc.) beyond ligand interaction fea-
tures to improve prediction accuracy, and the methods 
can be designed for target-based drug discovery. Most 
of these methods use three types of information which 
are: drug-related information (e.g., chemical informa-
tion for drugs), target-related information (e.g., protein 
sequences), or/and known DTI information. These meth-
ods can be grouped under three main categories namely: 
machine learning (ML)-based methods [8–12], deep 
learning (DL)-based methods [13–16] (DL is a branch 
of ML), and network-based methods [17–22]. Several 
comprehensive review articles summarized, analyzed, 
and compared the methods belonging to these categories 
[23–29].

ML-based methods were developed using a feature-
based approach wherein feature vectors represent DTIs 
[26] and a similarity-based approach that uses the “guilt-
by-association” principle [30]. Some of the first works 
that successfully predicted DTIs based on supervised ML 
had been done by Yamanishi and coauthors using phar-
macological, chemical, and genomic data [31–33]. Sev-
eral methods developed based on these assumptions are 
summarized in [23], and most of these methods achieved 
promising results. Network-based methods formulate the 
prediction of DTIs as link prediction problem in a heter-
ogeneous graph [19–21, 34–38]. For example, DASPfind 
[19] constructs a DTIs graph using a drug–drug similarity 
matrix, target–target similarity matrix, and known DTIs. 
After that, DASPfind ranks the DTIs based on their sim-
ple path scores to find the top 1% of DTIs. This method 
outperforms several network-based methods when the 
single top-ranked predictions are considered using the 
benchmark DTI datasets, Yamanishi_08 [33]. Since all 

of the drug–drug similarity (or target–target similarity), 
as well as DTIs, can be represented as adjacency matri-
ces, matrix factorization approaches have recently been 
integrated with ML-based methods or/and network-
based methods for prediction of DTIs [29, 39–43]. Graph 
embedding techniques [44, 45] applied on knowledge-
graphs also improves the DTI prediction performance 
[46, 47] through the learning of low-dimensional feature 
representation of drugs or targets to be used in ML or DL 
based method. For example, DTINet [20] used matrix 
factorization as well as graph embedding approaches, to 
predict a novel DTIs from a heterogeneous graph. That 
is, DTINet combines several types of drug- and target 
protein-associated information, including drug-disease 
association, drug-side effect associations, drug–drug 
similarity, drug–drug interactions, protein–protein inter-
action, protein-disease association, and protein–pro-
tein similarities to construct a full heterogeneous graph. 
DTINet constructs the objective function using matrix 
factorization and then learns a low-dimensional feature 
representation that captures the topological properties of 
each node in this heterogeneous graph. DTINet uses this 
feature representation to predict the DTIs. This method 
outperforms other state-of-the-art methods using the 
HPRD and DrugBank datasets. However, DTINet cannot 
predict the interaction of new drugs or targets, which is 
considered a limitation of this method [20].

Also, scaling these network-based methods to graphs 
with a massive number of nodes is not possible. Thus, 
recent use of DL techniques that are capable of dealing 
with graphs with a vast number of nodes, as well as large 
datasets and a large number of features has emerged for 
prediction of DTIs. These methods use DL techniques in 
the feature learning step or the prediction step [13, 14, 
48–50]. DL-based methods work better with drug and 
target information from multiple sources for better per-
formance since the information from a single source does 
not provide sufficient data for DL. For example, NeoDTI 
(NEural integration of neighbOr information for DTI 
prediction) [50], a DL-based method, integrates diverse 
information from 8 different sources (such as drug 
chemical structure similarity, drug side effects, and pro-
tein sequence similarity), to construct a heterogeneous 
network. NeoDTI learns feature representation for each 
drug and target by preserving the topological represen-
tations. NeoDTI is a powerful and robust tool compared 
to other recent DTIs prediction methods [50]. Other type 
of DL-based methods uses raw representations of input 
data such as SMILES or fingerprints of drugs and amino 
acid, or nucleotide sequences for proteins to develop an 
end-to-end learning model to predict DTIs [16, 51–53]. 
For example, DeepConv-DTI [51] applies a convolutional 
neural network (CNN) to the amino-acid sequences 



Page 3 of 17Thafar et al. J Cheminform           (2020) 12:44 	

of proteins and Morgan/Circular fingerprints that is a 
descriptor of the substructure of a drug after analyzing 
the molecule as a graph [54]. The CNN captures the local 
patterns for proteins that enrich their features. After that, 
the model concatenates the protein and drug features 
and feeds them to a deep, fully connected layer for the 
prediction of DTIs.

Here, to further improve prediction performance 
for DTIs, we propose a computational method that 
utilizes topological information as well as multiple 
drug similarities and target similarities. This method 
called DTiGEMS+ (Drug–target interaction predic-
tion using Graph Embedding, graph Mining, and Sim-
ilarity-based techniques) approaches DTI prediction 
as a link prediction problem in a heterogeneous graph. 
DTiGEMS+ avoided limitations associated with the 
previously developed methods by integrating different 
techniques from graph embedding, graph mining, and 
fusing multiple similarities that reflect different infor-
mation sources. DTiGEMS+ outperforms several state-
of-the-art-methods using benchmark datasets in terms 
of AUPR performance metric. Our method proves its 
efficiency in the performance evaluation metrics and in 

predicting novel DTIs that are validated using literature 
and different databases.

Materials
Benchmark datasets
There are four gold standard datasets (Yamanishi_08) 
collected and compiled by [33], which were commonly 
used as benchmark datasets to evaluate the perfor-
mance of recently developed DTIs prediction meth-
ods. Each of the four datasets, namely Enzyme (E), Ion 
channel (IC), G-protein-coupled receptor (GPCR), and 
Nuclear receptor (NR), represents one of the significant 
families of protein targets. These benchmark datasets 
are publicly available at http://web.kuicr​.kyoto​-u.ac.
jp/supp/yoshi​/drugt​arge. Table  1 provides the statis-
tics for all datasets used in this study. The sparsity ratio 
represents the number of known DTIs divided by the 
number of unknown DTIs and reflects the imbalanced 
nature between positive and negative samples (see 
Table 1).

Data preprocessing and similarity calculations
Starting from the “guilt-by-association” principle that 
similar drugs may share similar targets and vice versa 
as illustrated in Fig.  1, we incorporate and utilize sev-
eral information sources in our approach in the form 
of different similarity measures (i.e., kernels) between 
each drug pair or target (i.e., protein) pair. Several 
drug–drug similarity and target–target similarity are 
calculated to capture different sources information 
from different points of view.

Table 1  Benchmark Yamanishi_08 datasets statistics

Statistics NR GPCR IC Enzyme

No. of drugs 54 223 210 445

No. of targets 26 95 204 664

Known DTIs 90 635 1476 2926

Unknown DTIs 1314 20,550 41,364 292,554

Sparsity ratio 0.068 0.031 0.036 0.010

Fig. 1  DTIs prediction problem depiction

http://web.kuicr.kyoto-u.ac.jp/supp/yoshi/drugtarge
http://web.kuicr.kyoto-u.ac.jp/supp/yoshi/drugtarge
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Multiple drug–drug similarities
Following the [10] study, we computed or retrieved 10 
representations or characteristics that can be used to 
determine drug similarity. That is, six different represen-
tations were used for the similarity between drugs based 
on the chemical structure (SDF, MOL, or SMILES for-
mats) including the SIMCOMP similarity (provided by 
[33]), and the Spectrum [55], Marginalized [56], Lambda-
k [55], Tanimoto, and Min–Max-Tanimoto [57] similarity 
matrices, calculated using Rchemcpp [58], KEGGREST 
[59], and ChemmineR [60]. Similarly, three different rep-
resentations, retrieved from the [10] study, were used for 
the similarity between drugs based on the side effects, 
including SIDER [61], AERS-freq [62], and AERS-bit [62] 
similarity matrices. The tenth drug similarity was cal-
culated based on the gaussian interaction profile (GIP), 
introduced in [63], that projects the drug–target network 
structure in the form of a network interaction profile. 
Additional file 1: Table S1 summarizes all the drug simi-
larity matrices with their names and sources.

Multiple target–target similarities
Similar to drug similarities, we computed or retrieved 10 
target similarity matrices from the [10] study. Seven dif-
ferent representations mirror the similarity between tar-
gets based on the amino-acid protein sequence including 
the normalized Smith–Waterman (SW) scores [64], and 
two Spectrum similarity matrices (with k-mers equal to 
3 and 4), and four Mismatch similarity matrices (with 
different parameters of k-mers length and the number 
of maximal mismatch per k-mer) recalculated using the 
R packages, KEGGREST [59], and KeBABS [65]. Gene 
Ontology (GO) similarity matrices based on the GO 
terms were calculated using the GO.db and annotate R 
packages [66]. Protein–protein interaction (PPI) similar-
ity that mirrors the shortest distance between each target 
pair in the PPI network, obtained from [10] study. The 
GIP is calculated for the targets as we did for the drugs. 
Additional file 1: Table S1 summarizes all the target simi-
larity matrices with their names and sources.

Methods
Problem formulation
In this work, we adopt a network-based approach. We 
define a weighted heterogeneous graph represented 
by the DTIs network augmented with the drug–drug 
similarity graph and target–target similarity graph. This 
defined graph G (V, E) consists of a set of drugs D = {d1, 
d2,…, dn} of n drug nodes, and set of targets T = {t1, t2,…, 
tm} of m target nodes. DTI graph G contains three types 
of edges. The first type of edge represents the interaction 
between drug and target nodes, and edges from this type 
were assigned a weight of 1. The second and third types 

of an edge represent the similarity between drugs and the 
similarity between targets, and these types of edges are 
assigned weights that have a real value between 0 and 1 
(0,1]. Given graph G, we define the DTI prediction prob-
lem as a link prediction problem, where the goal is to 
predict unknown true interactions (represented by links) 
between drugs and targets (see Fig. 1).

We constructed all possible pairs between drugs and 
targets by generating a “negative sample”. Generating this 
“negative sample” involved creating connections (i.e., 
unknown interaction) between drug nodes and target 
nodes that have no edges. Thus, similar to other exist-
ing computational approaches, we used a reliable set of 
DTIs as positive interactions, and randomly generated 
drug–target pairs to generate negative DTIs. That is, 
DTIs existing in the positive set were removed from the 
randomly generated drug–target pairs to generate nega-
tive DTIs. This is done, since there are not enough exper-
imentally-validated negative DTIs available for most sets 
of drugs and targets. In our work, we believe that random 
pairing is probably more likely to be well-represented 
for negative DTIs since the ratios of known (positive) 
versus non-existing (not known, negative) DTIs is very 
small. Then, we extracted features for each drug–target 
pair using different techniques. The feature vector is rep-
resented by X = {x1, x2, …, xn*m} and their labels Y = {y1, 
y2, …, yn*m} where n*m is equal to the number of drugs 
multiplied by the number of targets that represents the 
number of all possible (drug, target) pairs. If there is a 
known interaction for the drug–target pair, the class label 
y for this pair is equal to 1 (y = 1); otherwise, the class 
label is equal to zero (y = 0). Thus, it is a binary classifica-
tion task. The aim is to find novel DTIs with high accu-
racy and low false-positive rate. The proposed method 
integrates several techniques from the perspective of ML 
similarity-based, feature-based, and graph-based meth-
ods for DTI prediction.

Similarity‑based algorithms
Similarity integration technique
We used several integration functions to combine the 
multiple similarities matrices, including summing them 
up to take the average (AVG), taking the geometric 
mean (GeoM), choosing the maximum similarity value 
(MAX), or applying the similarity network fusion algo-
rithm (SNF) that was introduced by [67] (see Fig. 2). Each 
similarity measure is represented by a square matrix, as 
shown in Fig. 2. The SNF first constructs a sample simi-
larity network for each of the similarity matrices (i.e., 
drugs represent network nodes, and the similarity repre-
sents the networks’ weighted edges but without self-loop 
edges, and the same thing is done for the target proteins 
separately). Then, SNF uses a nonlinear method that 
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iteratively integrates these networks by updating each of 
the networks with the information from the other net-
works (making the similarity criteria more discriminant 
with each step) using K-nearest neighbor (KNN). SNF 
stops when networks converge to a single network after 
a few iterations. More details about the SNF function and 
its parameters are explained in [67].

Similarity selection technique
To select the optimal subset of similarities that are robust 
and should improve the prediction task, we applied a 
forward similarity selection (FSS) procedure as a heu-
ristic process to obtain the best similarity combination. 
FSS follows the same concept as forward feature selec-
tion, where a pair of drug–drug similarity and target–tar-
get similarity are added in a “greedy fashion” until one 
observes no improvement in the performance. In more 
detail, the input for the FSS algorithm is a list of all drug–
drug similarity matrices (all_DDsim) and a list of all tar-
get–target similarity matrices (all_TTsim). The algorithm 
initializes two other lists, one empty list (DDsim) to add 
selected drug–drug similarity matrix as well as another 
empty list (TTsim) to add selected target–target similar-
ity matrix. FSS starts with a one drug–drug similarity 
and one target–target similarity and do this iteratively 
for all possible combinations of the lists: all_DDsim and 
all_TTsim and then report the results of all these combi-
nations. The pair of drug–drug similarity and target–tar-
get similarity with the best results are chosen to be the 
first similarity fixed in the DDsim and TTsim. In the sec-
ond round, we have one fixed drug–drug similarity and 
target–target similarity, and we add another single simi-
larity to both drug–drug and target–target lists and fuse 
them using SNF, and report all results. Again, the similar-
ity with the best results is added and fixed in DDsim and 

TTsim. We repeat these steps, and each round, we add 
similarities with the best result to the selected similarity 
sets and fuse them and only stop the repetitions when 
the results converge (i.e., have no improvements). These 
“fused” results are used to generate graph G1.

Graph embedding for feature learning
Given a graph G = {V, E}, a graph embedding method 
will transform graph G into Rd where d ≪ |v|. In simple 
words, the graph embedding method will represent each 
node in the graph with a feature vector which is much 
smaller than the actual number of nodes in the graph 
while preserving the graph structure and properties [45]. 
To do this, we used the algorithmic framework of node-
2vec [68], to apply feature representational learning on 
the full heterogeneous graph G that consists of the train-
ing part of known DTIs after hiding the DT edges in the 
test data, drug–drug similarity matrix (DD sim), and tar-
get–target similarity (TT sim) (Fig. 4).

To reduce the node2vec processing time, we removed 
the weak edges that do not provide any informative 
meaning, from the drug–drug and target–target simi-
larity graphs. That is, for each drug (or target), we kept 
the top-k similar drugs (or targets) and removed all other 
edges. After removing all weak edges, the drug–drug 
and target–target KNN similarity graphs are augmented 
with the training part of DTIs and fed into the node2vec 
model.

After applying node2vec on the heterogeneous graph G 
to learn feature representation for each drug and target, 
cosine similarity is calculated between each pair of drugs 
and each pair of targets to construct two new matrices. 
These matrices are, Md, drug–drug similarity matrix of size 
n*n where n is the number of drugs, and Mt, target–target 
similarity matrix with size m*m, where m is the number of 

Fig. 2  Integrating multiple similarities using different functions
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targets; they are used to construct graph G2. After calculat-
ing cosine similarity, new edges could appear between pairs 
of drugs (or targets) based on the structural and topological 
similarities that don’t have high similarity in the main graph 
with KNN drug similarity and KNN target similarity, which 
further prevents the missing of important information.

To utilize and obtain the optimal set of node2vec hyper-
parameters, grid search algorithm is applied on the valida-
tion data. The values of the hyperparameters that are tested 
on the training data are as follows: Return parameter p 
(controls the likelihood of immediately revisiting a node in 
the walk) and In–out parameter q (allows the search to dif-
ferentiate between “inward” and “outward” nodes) can be 
one of the values {0.25, 0.5, 1, 2, 4} as specified in node2vec 
work, dimension d can be {16, 32, 64, 128}, number of walk 
per source, num-walk tried values {5, 10, 15, 20}, and walk-
length takes range based on the size of the graph. For exam-
ple, in NR dataset we tested values of walk-length starts 
with 10 and add 5 each time until reach 60 {10:5:60}, while 
in Enzyme dataset which its graph much bigger we tested 
the values {50:10:160}. The walk parallelizes by assigning 
the hyperparameter workers to several workers based on 
the CPU core number. Additional file 1: Table S4 provides 
the optimized hyperparameter values for each dataset.

Graph‑based feature extractions for drug–target path 
scores
At this stage, the two heterogeneous weighted graphs G1 
and G2 are used to extract graph-based features. Multiple 
path scores between each drug–target pair for each graph 
is used to mirror these features (see Fig. 4). The path score 
is calculated for each simple path starting from the source 
node (i.e. drug) and ending with the target node (i.e. target 
protein) for each drug–target pair using path score, simi-
lar to the DASPfind path score introduced by [19] using the 
following formula:

where P ={p1, p2, …., pn} is the set of paths that connect 
drugi to targetj. In our study, we reduce the computational 

(1)score
(

di, tj
)

=

n
∑

p=1

∏

(Pweights)

costs by limiting the path length to be less than or equal 
to three (i.e., path length = 2 or 3). Thus, there are six 
potential path structures Ch = {C1, C2, C3, C4, C5, C6} 
(referred to as path categories in [21, 34]); each starting 
with a drug node, ending with a target node, and each 
node in the path appearing only once (no cycling). The six 
path structures include the two path structures with path 
length = 2 (C1: (D–D–T) and C2: (D–T–T)), and four 
path structures with length = 3 (C3: (D–D–D–T), C4: 
(D–T–T–T), C5: (D–D–T–T), and C6: (D–T–D–T)). We 
calculated two features for each path structure by deter-
mining, 1/the Sum of all meta-path scores for each path 
structure, and 2/the Max score of all meta-path scores 
under each path structure. A meta-path is all paths that 
have the same path structure, and the meta-path score is 
the product of all the edge weights from the start drug 
node to the ending target node in the path structure. 
Rijh denotes the set of paths between a pair of drugi and 
targetj. The equations used to determine the features for 
each path structure are defined and described in Table 2.

To ensure longer paths are not disadvantaged in our 
method, each (Max or Sum) path score is calculated inde-
pendently, where each score considers all sets of paths 
that belong to a specific path structure. Thus, scores from 
different path structures are not mixed together in one 
feature. Also, scores are further normalized using min 
max normalization to make sure that features are equally 
treated by the classifier.

We extract 12 features for each (drug, target) pair and 
for each constructed heterogeneous graph (i.e., G1 and 
G2) (explained in detail in “DTIs predictive model” sec-
tion) that are combined to form a 24-dimensional fea-
ture vector. Figure 3 provides an example that illustrates 
the graph-based feature extraction process through the 
D–D–D–T path structure.

To speed up the running time, we obtain the path 
scores by applying 3D matrix multiplication. We rep-
resented each graph with an adjacency matrix, that 
includes the drug–drug adjacency matrix (DD_sim), 
target–target adjacency matrix (TT_sim), and drug–tar-
get interaction matrix (DTI). The path score for each 
path structure is represented by matrix multiplication 
operation as introduced in [69]. The length of each path 

Table 2  The equations used to determine path structure features

Score description Equation

The meta-path score is the product of all the edge weight scores from the start drug node to the 
ending target node in each path structure

score
(

di , tj , h, q
)

=
∏

∀ex∈Pq

(wx)

The sum of all meta-path scores for each path structure (Sum feature) SumScore
(

di , tj , h
)

=
∑

∀Pq∈Rijh

score
(

di , tj , h, q
)

The max path score is the highest meta-path score under each path structure (Max feature) MaxScore
(

di , tj , h
)

= MAX∀Pq∈Rijh
(

score
(

di , tj , h, q
))
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structure is equal to the number of multiplied adjacency 
matrices. Thus, if the path length = 3, such as D–T–T–
T, 3 matrices are multiplied to obtain the same results. 

For Sum score features, regular matrix multiplication is 
enough to be performed, and the resulting matrix repre-
sents the sum features. However, for the Max scores fea-
ture, a 3D matrix multiplication is performed to obtain 
the multiplied value (i.e. the multiplied edge scores) 
for each path structure, and then choose the max score 
instead of summation process. Additional file 1: Table S3 
provides the corresponding matrix multiplication to each 
path structure, as well as the semantic meaning for each 
path structure.

DTIs predictive model
Feature selection
The accuracy of a predictive model relies on identify-
ing the essential features of the examined dataset. Thus, 
empirical analysis and many experiments were per-
formed (using a concept similar to the forward feature 
selection method), to identify a collection of the most 
relevant features for this classification task. Analyzing 
the performance involved removing one or a combina-
tion of features. Consequently, after applying the feature 

Fig. 3  An illustration of Sum and Max scores for a D–D–D–T path 
structure

Fig. 4  DTiGEMS+ prediction Framework. DTIs: drug–target interactions; DD: drug–drug; TT: target–target; FV: feature vector; FSS alg.: forward 
similarity selection algorithm; SNF fuc: similarity network fusion function; COS similarity: cosine similarity; ML: machine learning
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selection step, the dimension of the feature vectors fed 
into the predictive model reduced from 24 to range 
between 18 and 20 features based on the dataset.

Sampling techniques for imbalanced data
To deal with the number of unknown DTIs being much 
larger than the number of known DTIs, as shown in 
Table  1, we applied oversampling techniques on the 
training data to adjust the data to be balanced. That is, 
Random oversampling [70] or the Synthetic Minority 
Over-sampling Technique (SMOTE) [71] were applied 
to the minority class (i.e., positive known DTIs) to have 
the same number as the major class (negative unknown 
DTIs) in training data. The implementation of both tech-
niques was done using the imbalanced-learn python 
package [72]. Random oversampling contributes to the 
best classification performance in some datasets, while 
SMOTE contributes better in other datasets.

Classification model
Supervised machine learning model is used to predict 
DTIs based on three different classifiers for each data-
set mainly: Artificial neural network (NN) also called 
multilayer perceptron (MLP) [73], random forest (RF) 
[74], and adaptive boosting (Adaboost) [75] classifiers 
using scikit-learn implementation [76]. In our work, for 
each classifier used for a specific dataset, the most criti-
cal parameters are optimized using the training datasets 
to improve the classifier performance. Example of these 
parameters, for the NN classifier, include activation func-
tion, the size of hidden nodes and layers, and batch size, 
while the RF classifier parameters include, the number 
of trees, the maximum depth of the trees, the number of 
features to consider when looking for the best split, the 
function to measure the quality of a split, and others. On 
the other hand, we used Adaboost to boost the decision 
tree classifier, so that similar parameters similar to those 
used in the RF is optimized. The input to these classifi-
ers is the feature vector X of all possible drug–target pairs 
with their labels Y.

The DTiGEMS+ framework
Figure 4 provides the stepwise framework used to obtain 
the feature vector, X, for all drug–target pairs that are 
used to predict the missing edges (unknown DTIs to be 
positive interaction). We generated X from two graphs 
(G1 and G2). We generated graph G1 as follows: (1a) 
applied the FSS procedure to all DD and TT similarities, 
to select the optimal similarities subset, (2a) integrated 
these selected similarities using the SNF algorithm, then, 
(3a) used the DD fused similarity, TT fused similarity, 
and the DTI training part to construct the heterogeneous 
graph G1. Simultaneously, we prepared the second graph 

G2 as follows: (1b) applied node2vec to the initial hetero-
geneous graph G, to generate the feature representations 
for each node, (2b) calculated cosine similarity for each 
drug–drug pair and target–target pair, then, (3b) used 
the DD cosine similarity, TT cosine similarity, and the 
DTI training part to construct the heterogeneous graph 
G2. As a fourth step (4), for both graphs G1 and G2, we 
extracted 12 path scores for each graph, from six path 
structures. Then as a (5) and (6) step, feature selection 
was applied to eliminate weak features, followed by the 
generated feature vector, X = {x1, x2, …, xn*m}, with their 
labels Y = {y1, y2, …, yn*m} for all drug–target pairs, being 
fed into the supervised ML prediction model using NN, 
RF, or Adaboost classifiers. Then the output of the classi-
fier is the class label, which is either a positive or negative 
label.

Evaluation methods
Evaluation metrics
To evaluate the prediction accuracy, the area under the 
receiver operating characteristic (ROC) curve (AUC) 
[77], as well as the area under the precision-recall curve 
(AUPR) [77], are calculated on the testing data. To deter-
mine the AUC and AUPR, we calculated the false posi-
tive rate (FPR), recall (also called true positive rate (TPR) 
or sensitivity), and precision (also called positive predic-
tive value) [78], based on true positive (TP), false positive 
(FP), true negative (TN) and false negative (FN) values, as 
shown in Eqs. 2, 3, and 4, respectively.

The ROC curve is constructed using different recall, 
and FPR values of different thresholds, to calculate the 
AUC. AUPR is calculated based on different precision 
and recall values at different cut-offs that used to con-
struct the curve, and then the area under this curve is 
calculated. The closer the value of AUC and AUPR are 
to 1, the better the performance is. For highly imbal-
anced (i.e., number of unknown DTIs is much higher 
than the known DTIs) data, the AUC is considered 
an over-optimistic evaluation metric for prediction of 
DTIs, while AUPR is thought to provide better assess-
ment in such imbalance data cases, because it sepa-
rates the predicted scores of true interactions from the 
predicted scores of unknown interaction. Thus, we use 

(2)FPR =
FP

TN + FP

(3)Recall = TPR =
TP

TP + FN

(4)Precision =
TP

TP + FP
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AUPR as the significant evaluation metric and for the 
comparison with state-of-the-art methods, but also 
calculate the error rate (ER), and the relative error rate 
reduction for the best performing model compared to 
the second-best performing model (ΔER), defined in 
Eqs. 5, and 6, respectively:

Experimental settings
For DTiGEMS+ prediction performance evaluation, 
we performed tenfold cross-validation (CV) on each 
benchmark dataset separately. The data was randomly 
partitioned into 10 subsets in a stratified fashion 
where each subset must include the same percent-
age of negative and positive samples (i.e., known and 
unknown DTIs). We kept aside 1 subset of the data 
for testing and used the remaining 9 subsets to train 
the model. This process was repeated 10 times to have 
each subset of the data to be in the test part and the 
other 9 subsets to train the model. This CV is called 
a random CV setting where random drug–target pairs 
are removed to be in test data. The AUPR and AUC 
calculated for each fold, then the average AUPR and 
the average AUC of the tenfolds are reported. Here, we 
removed the corresponding edges to all known DTIs 
that are in the test set from all constructed graphs in 
our framework, including G, G1, and G2.

Results and discussion
Here, we compare the DTI prediction performance 
between our method and the state-of-the-art methods 
and validate the newly predicted DTIs using several data-
bases. We also highlighted several possible characteristics 
that could be boosting the prediction performance of the 
DTiGEMS+ method compared to other methods.

(5)ER = 1− AUPR

(6)�ER =
(ER2 − ER1)

ER2

DTI prediction performance of DTiGEMS+
To evaluate our method, we compare the DTI prediction 
performance of DTiGEMS+ and seven state-of-the-art 
methods using the benchmark Yamanishi_08 datasets. 
The state-of-the-art methods include TriModel [46], 
DDR [21], DNLMF [43], NRLMF [39], KronRLS-MKL 
[10], RLS-WNN [79], and BLM-NII [80]. We chose these 
methods to give a broad perspective of DTiGEMS+ DTI 
prediction performance compared to network-based (i.e., 
graph-based) and or matrix factorization-based meth-
ods, as they are all ML similarity-based methods that use 
prior knowledge to integrate multiple similarity measures 
from different sources.

To provide a fair comparison of DTI prediction per-
formances, we used the same benchmark datasets, 
tenfold CV random setting, evaluation metrics, and 
optimal parameters provided by each method. Our 
method DTiGEMS+ outperforms all other methods by 
achieving the best performance across all benchmark 
datasets (highest averageAUPR = 0.92, highest aver-
ageAUC = 0.99), which is 4% higher averageAUPR and 
1% higher averageAUC than the second-best method 
(TriModel) (see Table  3). It also has the best average 
ranking position across all datasets (the lower ranking 
position, the better is the method). In Table  3, the best 
results in each row are indicated in italic font with under-
line, while the second-best results are only in italic font.

For each dataset, DTiGEMS+ (in blue) performs 
better in terms of AUPR 0.88(0.094), 0.86(0.031), 
0.96(0.013), and 0.97(0.005) for the NR, GPCR, IC, and 
E datasets, respectively, and the values between brack-
ets are the standard deviations of AUPR in tenfolds CV. 
DTiGEMS+ outperforming the second-best method 
(TriModel, in purple) by 4%, 6%, 3%, and 2% for the NR, 
GPCR, IC, and E datasets, respectively (shown in Fig. 5). 
DTiGEMS+ also outperformed the other methods in 
terms of AUC for each dataset except TriModel that have 
the same performance for the NR, IC, and E datasets 
(see Additional file  1: Table  S5). Figure  5 further shows 
better DTI prediction performance was achieved using 
the IC and E datasets; this may be attributed to these 

Table 3  Average scores for  the  AUPR, AUC, and  ranking position for  all comparison methods across  all benchmark 
datasets

We rounded-off all results to two decimal places. The italic font with underline indicates the best result in each category, while the italic font only indicates the 
second-best result

Methods BLM-NII KronRLS RLS-WNN NRLMF DNILMF DDR TriModel DTiGEMS+

Average AUPR 0.68 0.73 0.76 0.80 0.78 0.87 0.88 0.92

Average AUC​ 0.92 0.90 0.96 0.95 0.95 0.96 0.98 0.99

Average of the ranking posi-
tion across all datasets

8 7 6 4 5 3 2 1
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datasets having a more extensive set of positive interac-
tion data the models can use to refine the features used 
for prediction. Moreover, based on individual AUPR 
values reported from tenfold CV experiments, we cal-
culated the statistical significance in terms of the perfor-
mance improvement of our method relative to the next 
best method TriModel using Wilcoxon test which is a 
nonparametric statistical test that compares two paired 
groups (refers to the Rank sum test, or the Signed Rank 
test). As a result, we demonstrate that DTiGEMS+ shows 
significant statistical difference with probability values 
(P-values) < 0.05 obtained over GPCR, IC, and E datasets 
as 0.04, 0.004 and 0.002, respectively, except for NR data-
set which has P-value > 0.05.

Two other evaluation metrics are used to gain more 
insights about the prediction performance improve-
ment of our method DTiGEMS+ over the other meth-
ods which are: error rate (ER), and the relative error rate 
reduction for the best performing method compared to 
the second-best performing method (ΔER), defined in 
Eqs.  5 and 6, respectively. Table  4 provides a compari-
son of the ERs for DTiGEMS+ , as the best performing 
method, and TriModel, as the second-best performing 

method. We also provide the relative error rate reduction 
based on the two top-performing methods in each data-
set. The DTiGEMS+ method consistently reduced the 
relative error rate compared to the other state-of-the-art 
methods.

Furthermore, we show the practical assessment of the 
predictive power of DTiGEMS+ for real scenarios of DTI 
prediction at each drug node. This test is done to show 
the ability of our model in re-positioning a particular 

Fig. 5  Comparison results for DTiGEMS+ and other methods in terms of AUPR using the Yamanishi_08 datasets. The best performing method is 
indicated in blue, the second-best method in purple, and all other methods in green

Table 4  Relative error rates associated 
with  DTiGEMS+ and the  second-best performing model 
TriModel

Datasets ER1 
of DTiGEMS+ (%)

ER2 
of TriModel 
(%)

Relative ER 
reduction (%)

NR 12.00 16.00 25.00

GPCR 14.00 20.00 30.00

IC 4.00 7.00 42.86

E 3.00 5.00 40.00

The average of ΔER across all datasets 34.47
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drug other than a hub node drug. It should be noted that 
hub nodes will likely not be the subject of drug research 
and development as they are likely well-studied. Our pro-
cedure goes as follows: first, we calculate the average pre-
cision for predicting DTI at each drug, then we average 
this value over tenfolds. Finally, we calculate mean aver-
age precision (MAP) as the mean of tenfolds average pre-
cision for each drug across all drug nodes in the graph. 
We show  that DTiGEMS+ archives high MAP values, 
over NR, GPCR, IC, and E datasets as 0.88, 0.80, 0.91 and 
0.88, respectively. Thus, the overall performance of our 
model is not likely driven by the hub nodes performance.

DTI prediction and validation of the newly predicted DTIs
To demonstrate the practical use of our model, we 
assessed its ability to predict the novel DTIs in each of 
the benchmark datasets separately. The procedure that 
we follow to predict novel DTIs is as follows: for each 
dataset, we first trained our model using all known inter-
actions (positive labels) and split the unknown interac-
tions (negative labels) into training and testing sets for 
each fold in the tenfold CV. In this manner, we deter-
mined if any of the unknown DTI (negative labels) are 
predicted to be positive DTIs, and then ranked the DTIs 
predicted to be positive, based on their prediction scores. 
We only reported and validated the novel DTIs that were 
not part of the training data (i.e., newly predicted DTIs in 
the testing data).

To verify the novel DTIs, we manually validated the 
top 10 ranked newly predicted DTIs for each benchmark 
dataset. We used biomedical literature and several refer-
ence databases, including KEGG [81, 82], DrugBank [83, 
84], PubChem [85, 86], CheMBLE [87–89], MATADOR 
[90], SuperTarget [90], Comparative Toxicogenomics 
Database (CTD) [91, 92], and the annotated database of 
common toxins and their targets (T3DB) [93]. We found 
evidence that of the top 10 ranked newly predicted DTIs 
for each of the 4 benchmark datasets (i.e., for the 40 
newly predicted DTIs), 28 DTIs (70%) are known interac-
tion. The interaction data was last updated in 2008; this 
may be the reason why we managed to verify so many of 
the newly predicted DTIs. Table  5 shows the top novel 
DTIs for each dataset with the validation evidence for 
these validated interactions. However, if there is no evi-
dence found in the literature, we marked the evidence 
as unknown since there is no proof that this interaction 
exists.

Distinctive characteristics of DTiGEMS+
Table  4 and Fig.  4 show that DTiGEMS+, TriModel, 
and DDR are the three top-performing methods, respec-
tively, and all three methods are graph-based. Being 
graph-based allows these methods to avoid some of the 

limitations associated with the other methods, and they 
have a few common characteristics that boost their per-
formance. The main characteristics of these methods are 
that they formulate the problem as a link prediction in a 
heterogeneous graph, so they constructed the heteroge-
neous graph through the integration of multiple informa-
tion types from different sources. DDR constructed the 
heterogeneous graph through the integration of multiple 
similarities from different sources of information, while 
the TriModel used knowledge graph embedding to infer 
novel DTIs. DTiGEMS+, on the other hand, kind of 
fused these methods, by constructing one heterogeneous 
graph (G1) through the integration of multiple similari-
ties from different sources of information and a second 
graph (G2) using cosine similarity based on node embed-
dings generated by applying node2vec on the initial DTI 
graph (G).

Both DTiGEMS+ and DDR integrating multiple simi-
larities should yield a significant improvement in the 
prediction task. However, some similarities are weak, 
which means they introduce noise into the data along 
with the vital information used in the learning and pre-
diction processes. Thus, instead of integrating all simi-
larities, DTiGEMS+ and DDR used similarity selection 
to identify the optimal subset of similarities that gives 
optimal results while eliminating the noise. In this 
regard, DTiGEMS+ used the FSS algorithm (explained in 
“Similarity-based algorithms” section) to provide useful 
insights into the optimal subset of similarities for drugs, 
as well as for target. This algorithm continues to add 
similarities and only stops when further improvements 
are no longer visible. Thus, this procedure is time-con-
suming but provide a higher probability of determining 
the optimal subset of similarities. On the other hand, 
to select the optimal similarity subset, DDR calculated 
entropy values that indicate if the information carried by 
the similarity matrix is less or more random, then imple-
mented a cut-off to remove similarity matrices carry-
ing weak or random information. The issue here is that 
even though DDR produced excellent results, the cut-off 
used could have removed similarity matrices that contain 
information that contributed to the better performance 
of DTiGEMS+.

After selecting the optimal subset of similarities, 
both DTiGEMS+ and DDR used an integration func-
tion to integrate the similarities. In “Similarity-based 
algorithms” section, we showed that SNF is the better 
performing integration function for all datasets, while 
the AVG function performed the second-best for most 
datasets except the GPCR dataset, where its perfor-
mance is identical to SNF. Both DTiGEMS+ and DDR 
implemented SNF, which not only integrates the simi-
larities but also enforces noise reduction as part of the 
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Table 5  Validation of the 10-top ranked newly predicted DTIs for each dataset

Data sets # KEGG: Drug ID Drug name KEGG: Target ID Target name Validation evidence

NR 1 D01132 Tazarotene hsa6097 RORC (RAR Related Orphan 
Receptor C)

Unknown

2 D00182 Norethindrone hsa2099 ESR1 (Estrogen Receptor Alpha) PMID: 27245768
T3DB: T3D4745

3 D00075 Testosterone hsa5241 PGR (Progesterone Receptor) PMID: 23229004
PMID: 23933754
C: CHEMBL386630

4 D01132 Tazarotene hsa190 NR0B1 (Nuclear Receptor Sub-
family 0 Group B Member 1)

Unknown

5 D00094 Tretinoin hsa3174 HNF4G (Hepatocyte Nuclear Fac-
tor 4 Gamma)

Unknown

6 D00554 Ethinyl estradiol hsa2100 ESR2 (Estrogen Receptor 2) CTD: D004997

7 D00327 Fluoxymesterone hsa5241 PGR (Progesterone Receptor) Unknown

8 D01294 Ethynodiol diacetate hsa2100 ESR2 (Estrogen Receptor 2) Unknown

9 D00299 Dihydrotachysterol hsa190 NR0B1 (Nuclear Receptor Sub-
family 0 Group B Member 11)

Unknown

10 D00094 Tretinoin hsa6095 RORA (RAR Related Orphan 
Receptor A)

C: CHEMBL38

GPCR 1 D00283 Clozapine hsa1814 DRD3 (Dopamine Receptor D3) C: CHEMBL42
M: Clozapine (direct)
DB: DB00363

2 D02358 Metoprolol hsa154 ADRB2 (Adrenoceptor Alpha 1B) DB: DB00264

3 D00437 Nifedipine hsa152 ADRA2C (Adrenergic Receptor 
alpha-2C)

C: CHEMBL193

4 D00604 Clonidine hydrochloride hsa147 ADRA1B (Adrenergic Receptor 
alpha-1B)

DB: DB00575

5 D00255 Carvedilol hsa152 ADRA2C (Adrenergic Receptor 
alpha-2C)

DB: DB01136

6 D00451 Sumatriptan hsa3363 HTR7 (5-Hydroxytryptamine 
Receptor 7)

Unknown

7 D00397 Tropicamide hsa1133 CHRM5 (Cholinergic Receptor 
Muscarinic 5)

KG: D00397

8 D00270 Chlorpromazine hsa152 ADRA2C (Adrenoceptor Alpha 
2C)

KG: D00270

9 D02250 Octreotide acetate hsa6751 SSTR1 (Somatostatin Receptor 1) CTD: D015282

10 D01103 Trospium chloride hsa1129 CHRM2 (Cholinergic Receptor 
Muscarinic 2)

KG: D01103

IC 1 D00649 Amiloride hydrochloride hsa8911 CACNA1I (Calcium Voltage-
Gated Channel Subunit 
Alpha1 I)

M: Amiloride (direct)

2 D03365 Nicotine hsa1137 CHRNA4 (Cholinergic Receptor 
Nicotinic Alpha 4 Subunit)

PMID: 17590520 
KG: D03365
DB: DB00184

3 D00775 Riluzole hsa2898 GRIK2 (Glutamate Ionotropic 
Receptor Kainate Type Subunit 
2)

KG: D00775

4 D00438 Nimodipine hsa779 CACNA1S (Calcium Voltage-
Gated Channel Subunit 
Alpha1S)

KG: D00438
DB: DB00393

5 D00726 Metoclopramide hsa1138 CHRNA5 (Cholinergic Receptor 
Nicotinic Alpha 5 Subunit)

Unknown

6 D00552 Benzocaine hsa6331 SCN5A (Sodium Voltage-Gated 
Channel Alpha Subunit 5)

KG: D00552
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integration process. That is, the low-weight edges that 
represent weak similarity have disappeared, captures the 
most informative features. Thus, the better performance 
seen with both DTiGEMS+ and DDR compared to other 
methods, may also be contributed to by the implementa-
tion of SNF, which is the only integration function that 
enforces noise reduction. Additional file 1: Table S2 pro-
vides the set of drug–drug similarities as well as the set of 
target–target similarities that are selected and then fused, 
as well as the best-performing integration function/s.

For DTiGEMS+, the KNN that performs noise reduc-
tion is not only a component of SNF, we also used KNN 
(on the drug–drug similarity, target–target similarity) 
augmented with DTI to construct the graph fed to node-
2vec. In this manner, the graph used for generating the 
embeddings needed to construct graph G2 only provides 

the informative edges for the generation of good qual-
ity graph embeddings that capture meaningful proxim-
ity information between nodes. Another advantage of 
applying node2vec on the graph that kept just the KNN 
similar drugs and targets, is that it reduced the node-
2vec model running time since the number of edges for 
each drug similarity graph (and target similarity graph) 
reduced from n (n − 1)/2 to (K*n) where n is the num-
ber of drugs. Second, we computed two cosine similar-
ity matrices based on node2vec feature representations 
for each drug pair and target pair because it gives unique 
similarity between nodes that carry meaningful topologi-
cal, relational, and structural information. So, even if the 
two similar nodes are not close based on the Euclidean 
distance, their feature vectors could still have a small 
angle between them, indicating their high similarity. 

C: ChEMBL; CTD: comparative toxicogenomics database; DB: DrugBank; M: MATADOR; KG: KEGG; PMID: PubMed; T3DB: toxin and toxin–target database

Table 5  (continued)

Data sets # KEGG: Drug ID Drug name KEGG: Target ID Target name Validation evidence

7 D00542 Halothane hsa3736 KCNA1(Potassium Voltage-Gated 
Channel Subfamily A Member 
1)

Unknown

8 D02098 Proparacaine hydrochloride hsa8645 KCNK5 (Potassium Two Pore 
Domain Channel Subfamily K 
Member 5)

Unknown

9 D01599 Gliclazide hsa3758 KCNJ1 (Potassium Inwardly 
Rectifying Channel Subfamily J 
Member 1)

Unknown

10 D00538 Zonisamide hsa6331 SCN5A (Sodium Voltage-Gated 
Channel Alpha Subunit 5)

DB: DB00909
KG: D00538

E 1 D00437 Nifedipine hsa1559 CYP2C9 (Cytochrome P450 Fam-
ily 2 Subfamily C Member 9)

CTD: D009543
PMID: 9929518

2 D00574 Aminoglutethimide hsa1589 CYP21A2 (Cytochrome P450 
Family 21 Subfamily A Member 
2)

M: Aminoglutethimide (indirect)
PMID: 8201961

3 D00410 Metyrapone hsa1583 CYP11A1 (Cytochrome P450 
Family 11 Subfamily A Member 
1)

CTD: D008797

4 D00437 Nifedipine hsa1585 CYP11B2 (Cytochrome P450 
Family 11 Subfamily B Member 
2)

M: Nifedipine- (indirect)
CTD: D009543

5 D00410 Metyrapone hsa1543 CYP1A1 (Cytochrome P450 Fam-
ily 1 Subfamily A Member)

PMID: 9512490

6 D03670 Deferoxamine hsa51302 CYP39A1 (Cytochrome P450 
Family 39 Subfamily A Member 
1)

Unknown

7 D00043 Isoflurophate hsa1991 ELANE (Elastase, Neutrophil 
Expressed)

M: Diisopropylfluorophosphate 
(indirect)

8 D00947 Linezolid hsa4129 MAOB (Monoamine Oxidase B) CTD: D000069349

9 D03670 Deferoxamine hsa4353 MPO (Myeloperoxidase) M: Desferrioxamine
(indirect)

10 D05458 Phentermine hsa4128 MAOA (Monoamine Oxidase A) KG: D05458
DB: DB00191
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Formulating a new graph with these new similarities pro-
vided a better representation of the graph that was used 
to extract the path score features. These factors may pro-
vide DTiGEMS+ with an advantage over the TriModel, 
as they may be contributing to the capturing of quality 
embeddings due to noise reduction and or our method 
identifying potential DTIs excluded from TriModel. 
It is important to mention that we did the experiments 
by feeding the whole graph without removing any edge 
to node2vec and the results of AUPR were close to or 
lower than the experiment results when we used KNN 
drugs similarity and KNN targets similarity which means 
removing weak edges is not causing that we are missing 
important information.

DTiGEMS+ has another advantage over other graph-
based methods that used path structure scores as their 
model features, such as in [21, 34]. We analyzed these 
features and recognized that the D–T–D–T path struc-
ture, for example, is not based on informative features. 
That is, the D–T–D–T path structure is generated only 
using the information of known DTIs, which is limited 
in number, causing these features to be sparse. So, we 
removed the sum and max features for such path struc-
ture for both graph G1 and G2.

At the classification stage, some other methods directly 
apply RF as it is a recognized prediction tool that runs 
efficiently on large datasets, and is less prone to overfit-
ting. However, for DTiGEMS+, we accessed the perfor-
mance of three different classifiers (RF, NN, Adaboost) 
on each dataset, then chose the best performing classifier 
for each dataset. NN classifier performed the best for the 
NR dataset. We expected this result as the NN classifier 
is known to perform better when modeling high volatility 
data, which is the case for the NR dataset due to its small 
size. Nonetheless, ensemble learning techniques such 
as RF and Adaboost have proven efficacy when dealing 
with DTI prediction problems [8, 21, 34, 94, 95]. The RF 
classifier combines several individual classifiers that vote 
and nominates the majority voting class as the prediction 
class. On the other hand, the Adaboost classifier creates 
a robust classifier from several weak classifiers by build-
ing a first model from the training data, and then create 
a second model that tries to correct the errors in the first 
model; this process is repeated until the prediction per-
formance of the training data is improved. One advan-
tage of RF over Adaboost is that RF runs in parallel while 
Adaboost runs sequentially, so RF is a much faster clas-
sification process. Nonetheless, Adaboost performance 
was very close to NN for the NR dataset (less by 1% in 
AUPR). Moreover, Adaboost performed better than 
both RF and NN for the other datasets (GPCR, IC, and 
E). It is worth noting that the RF classifier was, however, 

competitive for IC and E datasets (very close AUPR) with 
a more significant number of known interactions.

Conclusion
Our work introduced a novel computational method 
for drug–target interactions prediction named 
(DTiGEMS+). DTiGEMS+ integrated different tech-
niques from ML, graph embedding, graph mining, and 
similarity-based methods. That is, (1) graph embed-
ding was used in node2vec feature representation to 
benefit from the network topology and structural fea-
tures, (2) graph mining was used to extract path score 
features, (3) similarity-based techniques were used to 
select and integrate multiple similarities from differ-
ent information sources, and finally, (4) ML for classi-
fication. The novelty of our method lies in generating 
graph-based path score features from two graphs that 
were constructed using the same DTIs but using dif-
ferent types of similarity matrices that carry unique 
information. For example, Graph G1 used to fuse the 
drug–drug and target–target similarities carry comple-
mentary information from chemical structure and side 
effects for drugs, etc., and gene ontology and amino-
acid sequences for target proteins, etc., while graph, G2 
used drug–drug and target–target cosine similarities 
of generated embedding that carry topological infor-
mation. DTiGEMS+ proved its efficiency by outper-
forming seven state-of-the-art methods using several 
evaluation metrics, and by predicting novel DTIs that 
were validated using published literature and different 
online databases.

For further improvements to DTiGEMS+ , we suggest 
applying different embeddings techniques, integrating 
more similarity measures from more sources, and gen-
erating more graph-based features. Also, as the current 
implementation of DTiGEMS+ constructs negative 
DTIs from the random pairing of drugs and targets that 
have no edges (unknown interaction), in the future, we 
plan to extend the functionality of our method to create 
a reliable set of negative DTIs following [96]. Further-
more, we intend to use our method to predict DTIs for 
new drugs or new targets. Some potential extensions 
of our work include applying DTiGEMS+ to differ-
ent graphs (i.e., network) formulated as a link predic-
tion problem. Popular examples of link prediction in 
the bioinformatics field include but are not limited to, 
drug–drug interactions prediction, drug-disease inter-
actions prediction, gene-disease association prediction. 
Another extension would be amending DTiGEMS+ to 
address DTIs as a regression problem for the prediction 
of the binding affinity between drugs and their target 
proteins.
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