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Simple Summary: The spotted scat, Scatophagus argus, is a marine aquaculture fish species that
is economically important in Asia. As the spotted scat exhibits notable sexual dimorphism with
respect to growth, aquaculture efficiency can be increased through the practice of sex control breeding.
However, genomic data from S. argus is lacking. In the present study, a genomic survey was conducted
using next-generation sequencing technologies. Data, including the size of the genome, sequence
repeat ratio, heterozygosity ratio, whole genome sequence and gene annotation were obtained.
This information will serve to support the breeding and aquaculture of S. argus.

Abstract: The spotted scat, Scatophagus argus, is a species of fish that is widely propagated within the
Chinese aquaculture industry and therefore has significant economic value. Despite this, studies of
its genome are severely lacking. In the present study, a genomic survey of S. argus was conducted
using next-generation sequencing (NGS). In total, 55.699 GB (female) and 51.047 GB (male) of
high-quality sequence data were obtained. Genome sizes were estimated to be 598.73 (female) and
597.60 (male) Mbp. The sequence repeat ratios were calculated to be 27.06% (female) and 26.99%
(male). Heterozygosity ratios were 0.37% for females and 0.38% for males. Reads were assembled
into 444,961 (female) and 453,459 (male) contigs with N50 lengths of 5,747 and 5,745 bp for females
and males, respectively. The average guanine-cytosine (GC) content of the female genome was
41.78%, and 41.82% for the male. A total of 42,869 (female) and 43,283 (male) genes were annotated
to the non-redundant (NR) and SwissProt databases. The female and male genomes contained
66.6% and 67.8% BUSCO core genes, respectively. Dinucleotide repeats were the dominant form
of simple sequence repeats (SSR) observed in females (68.69%) and males (68.56%). Additionally,
gene fragments of Dmrt1 were only observed in the male genome. This is the first report of a
genome-wide characterization of S. argus.

Keywords: genome size; illumina sequencing; Dmrt1; sex determining gene; aquaculture; sex control

1. Introduction

The spotted scat, Scatophagus argus, (Perciformes, Scatophagidae), is a popular species of fish
known for both its aesthetic value and human consumption due to its rhombic spotted body and high
nutrient value [1–3]. Moreover, unlike other species, the cultivation of S. argus is relatively easy with
low cost of feeding and high market price, making it an important farmed fish with considerable
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economic value in East and Southeast Asia [4–7]. The S. argus is widely distributed in the littoral
and salt/freshwater rivers of the Indo Pacific, Australia, the Malay Archipelago, the Philippines and
South and South East Asia, including China [8]. Analysis of the gut contents of S. argus has revealed a
combination of both algae and detritus, indicating that it is an omnivorous fish [8]. S. argus is able to
tolerate movement directly from freshwater to seawater, suggesting that it has a robust capacity for
osmoregulation [9]. Furthermore, S. argus is a leading seafood for both its desirable taste and high
nutritional value [1,8]. The adaptability of S. argus to a broad range of temperatures and levels of
salinity, combined with their excellent edibility, has enabled it to become an attractive aquaculture
species in China. However, the main supply of S. argus fingerlings derives from wild capture. In the
absence of proper management, this has the potential to endanger the resource through overfishing [10].
Most studies examining this species have focused on reproduction and the importance of solving
challenges associated with artificial propagation [11–14]. The female S. argus grows significantly faster
and larger than males. Therefore, from an economic perspective, all-female farms will improve the rate
of production and the total market value. Thus, sex control would be a good strategy to employ in
an S. argus breeding program. In addition, understanding the mechanisms of sex determination and
differentiation would be crucial to the effective maintenance of all-female production [15]. In addition,
differences in growth rate between males and females provide a valuable model to explore the
mechanisms of sexual dimorphisms in vertebrates [16]. To date, the genomic information of S. argus is
lacking, essential for basic and applied research of this species [17].

Next-generation, high-throughput sequencing (NGS) is an efficient strategy for generating genomic
resources. This technology is currently in wide use for transcriptomic and genomic studies [18–21].
Many genes in S. argus related to reproduction have previously been identified from the transcriptome
of mixed ribonucleic acid (RNA) from various female and male tissues [4]. Furthermore, a comparative
transcriptomic analysis of testicular and ovarian tissue has discovered many genes involved in sex
determination and differentiation in S. argus [22]. Recently, NGS was used to conduct genomic surveys
which enhanced the field’s understanding of genetic variation, evolutionary analysis, genome structure
analysis, and marker development [23–25]. To further compare the genomes of male and female
S. argus, complete genome sequences were obtained using NGS, the data of which was used to assemble
the genome, perform genome size estimation, evaluate the guanine-cytosine (GC) content and identify
simple sequence repeats (SSR). These data will be the basis of a fundamental genomic resource for
reproduction-related studies. In addition, these data also provide a foundation for future genomic
studies of S. argus.

2. Materials and Methods

2.1. Sample and Tissue Collection

Specimens of S. argus were obtained from the Zhanjiang Donghai Island Cultivation Base
(Zhanjiang, Guangdong, China). Two adults, one female and one male, were subjected to genome
sequencing. The animals were immediately dissected following tricaine MS-222 anaesthesia. White
muscle tissue was used for DNA extraction. Samples were flash-frozen in liquid nitrogen for 1 h
before storage at −80 ◦C. All animal experiments were conducted in accordance with the guidelines
and approval (201903004) of the Animal Research and Ethics Committees of the Institute of Aquatic
Economic Animals of Guangdong Ocean University.

2.2. Whole Genome Sequencing

Genomic DNA was isolated from muscle using a nucleic acid purification kit (N1173,
DONGSHENG BIOTECON, Guangzhou, China) according to the manufacturer’s instructions.
The DNA was then sheared randomly into small fragments using an ultrasonic shearing device.
Two paired-end libraries with an insert size of 350 base pairs (bp) were constructed from randomly
fragmented genomic DNA, following a standard protocol (Illumina, Beijing, China). The DNA library



Animals 2019, 9, 1117 3 of 11

was then sequenced in paired-end, 150-bp mode using the Illumina HiSeq X Ten platform (Novogene,
Beijing, China) in accordance with the manufacturer’s instructions.

To obtain clean reads, raw reads were filtered using the high-throughput quality control (HTQC)
package [26]. The raw data were cleaned as follows: (1) adaptor sequences introduced during
sequencing library construction were removed; (2) paired reads were removed when at least 10% of
nucleotides were uncertain in either read; (3) paired reads were discarded when low-quality nucleotides
(base quality <5) accounted for >50% of either read. Next, 5,000 clean-read pairs from each library
were randomly selected and blasted against the National Center for Biotechnology Information (NCBI)
nonredundant (NR) nucleotide database to check for obvious sample contamination. All subsequent
analyses were based on these clean reads. Entire read sets were deposited in the short read archive (SRA)
databank (http://www.ncbi.nlm.nih.gov/sra/) and are available under accession number PRJNA559409.

2.3. Genome Size Estimation and Identification of Heterozygosity and Repeat Ratios

A K-mer analysis was performed for each library to estimate the genome size, level of
heterozygosity and repeat frequencies of the genomes by Marçais [27] to assess the genome complexity
of S. argus. The K-mer statistic was used to assign discrete probability distributions for a number of
possible K-mer combinations [28]. To minimize the influence of sequencing errors, low-frequency
K-mers (≤5) were discarded. The copy number of a given K-mer (17-mer) present in all clean Illumina
reads were counted then divided by the total length of each sequence read. The distribution of copy
numbers was then plotted. The K-mer distribution can be used to infer the size of the genome. The
peak value of the frequency curve represents the overall sequencing depth. Genome size was calculated
as follows: K-mer number/peak depth [27],

Revised genome size = genome size × (1 − error rate). (1)

In a heterozygous genome, the single nucleotide polymorphism (SNP) sites will be sparse, and
ideally 2 × K heterozygous K-mers around each SNP site would be present. Heterozygous K-mers will
have half of the expected coverage depth compared to the homozygous K-mers. The heterozygosity
rate can be estimated as follows:

Heterozygosity rate = (a1/2 × nKspecies/(2 × K))/(nKspecies − a1/2 × nKspecies/2) = a1/2 /(K(2 − a1/2)). (2)

In this formula, nKspecies denotes the total number of K-mer species and a1/2 denotes the ratio
of heterozygous K-mer species [29,30]. The difference between the k-mer distribution and Poisson
distribution is large due to the presence of incorrect sequences, or the number of sequence layers,
which affects later estimates. Hence, the repeat rates were calculated according to the percentage of the
total number of K-mers after the main peak, which was 1.8 times of all K-mer numbers [29].

2.4. Genome Assembly and GC Content

The software SOAPdenovo (v2.04) was used for de novo genome assembly [31]. All clean reads
were used in the assembly, with a K-mer size of 41 selected as the default parameter used to construct
a de Bruijn graph [32]. The de Bruijn graph was simplified by breaking the connections at repeat
boundaries, with unambiguous sequence fragments outputted as contigs. After realigning all useable
reads to the contig sequences and obtaining aligned paired-end reads, the number of shared paired-end
reads having a relationship between each pair of contigs was calculated, the rate of consistent and
conflicting paired-end reads was rated and scaffolds constructed step-by-step using SOAPdenovo.
Gaps in the scaffolds were closed using GapCloser software (v1.12), and those longer than 100 bases in
length were selected.

To measure the sequencing bias of S. argus, the guanine plus cytosine (GC) content and average
sequencing depth were counted. The GC content is strictly controlled and moderately balanced
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across the genome [33,34]. Ten kb non-overlapping sliding windows were used along the assembled
sequences to calculate the GC average sequencing depth.

2.5. Gene Prediction, Annotation, and Assembly Assessment

GlimmerHMM software (v.3.01) was used for de novo prediction of genes using default parameters
(genemodel = zebrafish) [35]. Next, the predicted genes were used to BLAST the NR and SwissProt
databases using BLASTx (E-value < 1e−5). Gene ontology (GO), Clusters of euKaryotic Orthologous
Groups (KOG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotations were
also assigned to genes using Blast2GO software [36]. In addition, the genes described in this way
were classified into KOG slim and GO categories, then mapped onto the KEGG descriptors. To assess
the completeness of the assembly, a Benchmarking Universal Single-Copy Orthologs (BUSCO, v.3.0)
evaluation was performed using the Actinopterygii_odb9 database [37].

2.6. Alignment of The Male and Female Scaffolds on Dmrt1s Exons

Our previous research indicated that Dmrt1 is linked to the Y chromosome, and the truncated
homologue Dmrt1b, is X chromosome-linked [38]. The predicted Dmrt1 and Dmrt1b genes observed
during S. argus transcriptome analysis were mapped to the draft genome using Localblast software
(NCBI-blast-2.2.27) [22]. Sequence homology alignment of male and female fragments was performed
using the MegAlign application of DNASTAR software (http://www.dnastar.com).

2.7. Identification of SSRs

Sequence repeat search software in the MIcroSAtellite (MISA) model was used to detect simple
repeat sequences (SSRs) in the DNA sequence. The software is divided into two modules. The first
module was used to detect all the SSRs in the DNA sequences. The minimum numbers of SSRs for
mono-, di-, tri-, tetra-, penta- and hexa-nucleotides adopted for identification were 10, 6, 5, 5, 5, and 5,
respectively. The second module was used to filter the results of the first module and then remove
SSRs which were too close.

3. Results

3.1. Genome Sequencing and Sequence Quality Estimation

A total of 55.809 and 51.154 GB of raw data were generated from female and male S. argus,
respectively. After filtering, 55.699 (female) and 51.047 (male) GB of clean data were obtained, with
Q30 scores assigned to 91.94% and 92.03% of the female and male libraries, respectively. The error
rates of these libraries were 0.03% (Table 1). It was observed that the best BLAST results of reads were
enriched for closely related fish species, including Dicentrarchus labrax, Scatophagus argus, Haplochromis
burtoni and Oreochromis niloticus (Table S1).

Table 1. Statistics of sequencing data of female and male S. argus.

Library Insert Size
(bp)

Raw Base
(bp)

Effective Rate
(%)

Clean Base
(bp)

Error Rate
(%)

Q20
(%)

Q30
(%)

GC Content
(%)

female 350 55,808,601,300 99.80 55,699,379,400 0.03 96.60 91.94 41.50
male 350 51,153,870,900 99.79 51,047,381,700 0.03 96.63 92.03 41.52

3.2. Genome Size, Ratio of Heterozygosity, and Repeats by K-Mer Analysis

The K-mer analysis indicated that the depth of female and male S. argus were at 74 and 68×,
respectively (Figure 1, Table 2). The estimated size of the female and male genomes was 613.16 and
612.32 MB, respectively. The revised genome sizes were 598.73 and 597.60 MB, respectively. The rates
of heterozygosity were calculated to be 0.37% and 0.38%, and repeat rates calculated to be 27.06% and
26.99%.

http://www.dnastar.com
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Figure 1. Distribution of 17-mer depth and frequency of female and male S. argus. The x-axis indicates
depth; the y-axis indicates the proportion representing the frequency at that depth divided by the total
frequency of all depths.

Table 2. Data statistics and analysis of 17-mer.

Identity K-Mer K-Mer
Depth

K-Mer
Number

Genome Size
(Mbp)

Revised Genome
Size (Mbp)

Heterozygous
Ratio (%)

Repeat
(%)

female 17 74 45,374,105,016 613.16 598.73 0.37 27.06
male 17 68 41,637,691,628 612.32 597.60 0.38 26.99

3.3. Genome Assembly and GC Content

According to the analysis, a total of 444,961 and 453,459 contigs were assembled from female and
male S. argus, with an N50 of 5747 bp and 5745 bp, respectively. Based on the contigs, the genome
assembly contained 335,162 and 340,134 scaffolds, with an N50 of 13,556 and 13,591 bp (Table 3).
The average GC content of female and male S. argus genomes were 41.78% and 41.82%, respectively.
In Figure 2, the red regions represent relatively dense portions of the scatter plot, with the GC depth
being blocked into two layers, partly due to the rate of heterozygosity [39].Animals 2019, 9, x FOR PEER REVIEW 6 of 12 
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Table 3. Statistics of the assembled S. argus genome sequences.

Identity Total
Length (bp)

Total
Number

Max Length
(bp)

N50 Length
(bp)

N90 Length
(bp)

contig female 580,837,740 444,961 123,323 5,747 590
male 582,143,644 453,459 110,347 5,745 576

scaffold
female 585,986,615 335,162 231,008 13,556 821
male 588,188,524 340,134 196,230 13,591 824

3.4. Gene Prediction, Annotation, and Evaluation

Based on our assembled genome sequences, a total of 94,862 female genes and 95,273 male genes
were predicted by GlimmerHMM software. The predicted genes ranged from 101 to 52,424 bp in
length. Among the predicted genes, 42,869 female and 43,283 male genes were functionally annotated
in the NR and SwissProt databases (Table 4). The KOG, KEGG and GO annotation or classification
of these annotated genes were similar in the males and females (Figures S1–S3; Table S2). Among
4584 conserved Actinopterygii genes searched, 3055 (66.6%) and 881 (19.2%) BUSCO core genes were
completed and partially identified, respectively, in the female genome. The BUSCO core genes of the
male genome were similar to those of the female (Table S3). The partially identified core genes in both
sexes were a little high caused by incomplete genome assembly based on short NGS reads.

Table 4. Gene function annotation statistics of S. argus.

Database Number (Female/Male) Percent (Female/Male)

NR 42,825/43,238 45.14%/45.38%
Swissport 33,093/33,359 34.89%/35.01%

KEGG 40,854/41,245 43.07%/43.29%
KOG
GO

26,420/26,680
12,428/15,921

27.85%/28.00%
13.10%/16.71%

Annotated 42,869/43,283 45.19%/45.43%
Unannotated 51,993/51,990 54.81%/54.57%

Total 94,862/95,273 100%/100%

3.5. Characterization of the Dmrt1s Gene

Gene prediction and annotation confirmed that Dmrt1 is male-specific, whereas Dmrt1b is observed
in both male and female fish. Three and four scaffolds containing Dmrt1b and Dmrt1 were obtained
from the female and male genomes, respectively (Figure 3, Supplementary Sequences). Alignment
demonstrated that Dmrt1 exons 1, 2, 3, and 4 had 79.9%, 90.7%, 75.8%, and 84.1% similarity with the
corresponding fragments on Dmrt1b, respectively. The Dmrt1b fragment corresponding to Dmrt1 exon
5 was not found, possibly be due to incomplete sequencing in female fish. The female scalffold49157
had a similarity of 70.2% with the Dmrt1 3’ UTR on the male scalffold152219 in their overlapping region
(~500 bp). In the first and second exons of Dmrt1b, several mutations were observed that resulted
in the premature termination of Dmrt1b. In addition, five male scaffolds (162,645, 106,307, 107,747,
68,937, and 118,347) were found to cover the Dmrt1b region (Figure S4; Supplementary Sequences). The
average length of scaffolds covering Dmrt1b from male and female are 1448 and 3667 bp, respectively.
It seems that the assemble quality of Dmrt1b region in male is relatively lower than that of the female.
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3.6. Identification of SSR

After filtering the SSR sequences from the contig sequences at both sides (the distances of SSR
sequences to contig sequences at both ends were less than 100 bp), a total of 299,574 and 299,893 SSRs
were detected in female and male fish, respectively (Table 5). In the female, the predominant SSR motif
types observed were dinucleotide repeats, occurring at 205,789 loci (68.69%), followed by trinucleotide
repeats (31,228, 10.42%) (Figure 4). Among the dinucleotide repeat motifs, the AC/GT repeats were
the most abundant, accounting for 75.85% (Figure S5). The most common tri-nucleotide motifs were
AGG/CCT and AAT/ATT, accounting for 31.36% and 27.53%, respectively (Figure S6). In the male fish,
the SSR motif profile was similar to that of the female (Figure 4; Figures S5 and S6; Table 5).

Table 5. SSR (simple sequence repeat) types detected in female and male S. argus.

SSR Mining Total (Female/Male)

Total number of sequences examined 335,162/340,134
Total number of identified SSRs 299,574/299,893

Number of SSR containing sequences 78,202/77,788
Total number of identified SSRs 299,574/299,893

Number of sequences containing more than 1 SSR 39,136/39,104
Number of SSRs present in compound formation 48,384/48,510

Animals 2019, 9, x FOR PEER REVIEW 7 of 12 

scalffold152219 in their overlapping region (~500 bp). In the first and second exons of Dmrt1b, 
several mutations were observed that resulted in the premature termination of Dmrt1b. In addition, 
five male scaffolds (162,645, 106,307, 107,747, 68,937, and 118,347) were found to cover the Dmrt1b 
region (Figure S4; Supplementary Sequences). The average length of scaffolds covering Dmrt1b 
from male and female are 1448 and 3667 bp, respectively. It seems that the assemble quality of 
Dmrt1b region in male is relatively lower than that of the female. 

 
Figure 3. Structure of the Dmrt1 and Dmrt1b genes. Dmrt1 and Dmrt1b are located on the male and 
female sex chromosomes, respectively. Numbers indicate base pairs (loci) of exon and intron 
sequences. Percentages indicate the similarity of Dmrt1 and Dmrt1b. Arrows indicate the start and 
stop codons. Different colored rectangles represent different exons. 

3.6. Identification of SSR 

After filtering the SSR sequences from the contig sequences at both sides (the distances of SSR 
sequences to contig sequences at both ends were less than 100 bp), a total of 299,574 and 299,893 
SSRs were detected in female and male fish, respectively (Table 5). In the female, the predominant 
SSR motif types observed were dinucleotide repeats, occurring at 205,789 loci (68.69%), followed by 
trinucleotide repeats (31,228, 10.42%) (Figure 4). Among the dinucleotide repeat motifs, the AC/GT 
repeats were the most abundant, accounting for 75.85% (Figure S5). The most common 
tri-nucleotide motifs were AGG/CCT and AAT/ATT, accounting for 31.36% and 27.53%, 
respectively (Figure S6). In the male fish, the SSR motif profile was similar to that of the female 
(Figure 4; Figure S5, S6; Table 5). 

Table 5. SSR (simple sequence repeat) types detected in female and male S. argus. 

SSR mining Total (female/male) 
Total number of sequences examined 335,162/340,134 

Total number of identified SSRs 299,574/299,893 
Number of SSR containing sequences 78,202/77,788 

Total number of identified SSRs 299,574/299,893 
Number of sequences containing more than 1 SSR 39,136/39,104 
Number of SSRs present in compound formation 48,384/48,510 

 
Figure 4. Frequency of SSR types in the genomic survey of female and male S. argus.

4. Discussion

According to K-mer (K = 17) analysis, the sizes of female and male S. argus genomes were estimated
to be 598.73 MB and 597.60 MB, respectively. It has been reported that using a bulk fluorometric
assay, the DNA content of S. argus red blood cells is approximately 0.77 pg [40]. According to a mass
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conversion formula, 1 pg DNA equates to approximately 0.978 × 109 bp. Based on this estimation, the
genome size of S. argus is approximately 753.06 MB, which is larger than the K-mer predicted genome
size [41]. The larger genome size estimated by the fluorometric assay could be due to the non-specific
nature of the fluorescent dye used, possibly detecting binding to non-genomic nucleotides. The size
of the genome of S. argus estimated in this study was larger than that of Sillago sinica (534 MB) [42],
but smaller than that of Lateolabrax maculatus (670 MB) [43], Dicentrarchus labrax (675 MB) [44] and
Larimichthys crocea (679 MB) [45].

The rate of heterozygosity in the female was 0.37%, which is lower than that of the male fish
(0.38%). Consistently, sex-linked markers demonstrated that the sex-determination system of S. argus
is male heterozygous XY and female homozygous XX. This indicates that the heterozygosity rate of
XY males should be higher than that of female fish [38]. However, the heterozygosity rate difference
between the sexes was only 0.01%. This is possibly because the Y chromosome is still “young” in S.
argus [46]. Consistently, no morphologically distinguishable sex chromosome has been observed in
the species [47]. Because lower rates of heterozygosity tend to simplify genome assembly, the data
presented here suggest that female S. argus would be preferable to males for the development of a
draft genome in future studies [28]. The heterozygosity rate observed here was higher than that of
Oplegnathus fasciatus (0.29%) [48], but smaller than that of Pelteobagrus fulvidraco (0.45%) [49], Seriola
dumerili (0.65%) [50] and Sillago sinica (0.66–0.76%) [42]. The lower heterozygosity rate of S. argus
suggests that wild-caught fish are close to being over-fished.

The genome assembled here appears to be of higher quality than that of S. sihama in spite of the
same sequencing strategy being employed, also in our lab [51]. This might be due to the heterozygosity
rate of S. argus being substantially lower than that of S. sihama (0.92%) [51]. Male-specific Dmrt1 is
the candidate sex determination gene in S. argus [38]. Consistently, gene fragments of Dmrt1 were
present in the male genome (Supplementary Sequences), while being absent in the female genome
(data not shown). The complete Dmrt1 gene sequence is not available at present due to the read
quality and ultimately, assembly status. On the other hand, the Dmrt1 gene is always very long in fish
species. For example, the shortest Dmrt1 gene was found to be 12kb in Takifugu rubripes, which has a
compressed genome [38]. To obtain better-assembled genomes by NGS, long-insert libraries should
be constructed for sequencing [20]. Alternatively, third-generation sequencing technologies, such as
Pacific Biosciences (PacBio) sequencing platform could be used to enhance genome assembly in future
studies [42].

Both male and female genomes appeared capable of developing tremendous SSR markers, which
will help to solve the problem that SSR markers are principally derived from transcriptomic data in
S. argus [4,52]. The number of SSR markers observed in male fish was slightly higher than that of
female fish. The difference might be due to the male proto-Y sex chromosome having more repetitive
elements [38,53].

5. Conclusions

In the present study, the first reference genome of S. argus was sequenced. Two spotted scat,
a female and male, underwent whole-genome sequencing. The genome sizes of the female and male
were 598.73 MB and 597.60 MB, respectively. The genome was annotated with 42,869 female and
43,283 male genes. The S. argus genomes contained 66.6% and 67.8% of the core genes in conserved
Actinopterygii orthologs for each sex, respectively. The rate of genome heterozygosity of the male fish
was slightly higher than that of the female. The number of SSR markers developed from the male was
slightly greater than that of the female fish. These data suggest that the differences between male and
female genomes of S. argus are minor. It was also confirmed that the male-specific Dmrt1 is a good
candidate sex determination gene via genome sequencing. This study provides an important genome
resource for further studies of S. argus.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-2615/9/12/1117/s1,
Figure S1: KOG function classification of predicted genes in S. argus. Figure S2: KEGG pathway annotation of

http://www.mdpi.com/2076-2615/9/12/1117/s1
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predicted genes in S. argus. The different color code represented different category, Figure S3: Gene Ontology
classification of predicted genes in S. argus. Genes were assigned to three categories: biological process, cellular
component and molecular function, Figure S4: The Dmrt1b gene from male genome. Numbers indicate base pairs
(loci) of exon and intron sequences, Figure S5: Percentage of different motifs in di-nucleotide repeats of female
and male S. argus genome, Figure S6: Percentage of different motifs in trinucleotide repeats of female and male
S. argus genome. Table S1: Statistics of top 4 similar species blasted against the NCBI nonredundant nucleotide
database, Table S2: Statistics of KOG function classification of predicted genes in S. argus, Table S3: Assessment of
S. argus genome assembly and completeness using BUSCO. Supplementary Sequences.
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