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Clostridioides difficile infection:  
approaching a difficult menace

Introduction
Over time, Clostridioides difficile, an anaerobic, 
Gram-positive, spore-forming bacterium, has 
become widespread in industrialized countries 
and is now ubiquitous in the environment, com-
modities, food items, and domesticated and farm 
animals.1–3 C. difficile reportedly colonizes approx-
imately 4–15% of healthy individuals,4 and 
approximately 18–90% healthy newborns and 
infants.5 C. difficile is transmitted person to per-
son via the faecal–oral route,6 and hospitals and 
community healthcare settings may become an 
important source of infection after high-grade 

environmental contamination due to the presence 
of C. difficile-infected patients,7,8 and high resist-
ance of its spores to strong disinfectants9,10 and 
radiation.11

Epidemiological data indicate a progressive 
increase in the incidence and severity of C. difficile 
infection (CDI)12 with clinical outcomes ranging 
from asymptomatic carriage or mild self-limiting 
diarrhoea to fulminant pseudomembranous coli-
tis, toxic megacolon, and even death.1,6–8,12 These 
manifestations are mostly associated with antibi-
otic therapies that, by altering the intestinal 

Invisible steps for a global endemy: 
molecular strategies adopted by 
Clostridioides difficile
Katia Fettucciari , Pierfrancesco Marconi, Andrea Marchegiani, Alessandro Fruganti, 
Andrea Spaterna and Gabrio Bassotti

Abstract: Clostridioides difficile infection (CDI) is on the rise worldwide and is associated 
with an increase in deaths and socio-health burden. C. difficile has become ubiquitous in 
anthropized environments because of the extreme resistance of its spores. Based on the 
epidemiological data and knowledge of molecular pathogenesis of C. difficile, it is possible to 
predict its progressive colonization of the human population for the following reasons: first, 
its global spread is unstoppable; second, the toxins (Tcds) produced by C. difficile, TcdA and 
TcdB, mainly cause cell death by apoptosis, but the surviving cells acquire a senescence state 
that favours persistence of C. difficile in the intestine; third, proinflammatory cytokines, tumour 
necrosis factor-α and interferon-γ, induced during CDI, enhance the cytotoxicity of Tcds and 
can increase the survival of senescent cells; fourth, Tcds block mobility and induce apoptosis 
in immune cells recruited at the infection site; and finally, after remission from primary 
infection or relapse, C. difficile causes functional abnormalities in the enteric glial cell (EGC) 
network that can result in irritable bowel syndrome, characterized by a latent inflammatory 
response that contributes to C. difficile survival and enhances the cytotoxic activity of low 
doses of TcdB, thus favouring further relapses. Since a ‘global endemy’ of C. difficile seems 
inevitable, it is necessary to develop an effective vaccine against Tcds for at-risk individuals, 
and to perform a prophylaxis/selective therapy with bacteriophages highly specific for C. 
difficile. We must be aware that CDI will become a global health problem in the forthcoming 
years, and we must be prepared to face this menace.

Keywords: apoptosis, Clostridioides difficile, colonization, endemy, molecular strategy, 
proinflammatory cytokine, senescence, toxins

Received: 7 March 2021; revised manuscript accepted: 26 June 2021.

Correspondence to: 
Katia Fettucciari 
Biosciences & Medical 
Embryology Section, 
Department of Medicine 
and Surgery, University of 
Perugia, Medical School 
-Piazza Lucio Severi 
1, Edificio B - IV piano; 
Sant’Andrea delle Fratte, 
Perugia, 06132, Italy 
katia.fettucciari@unipg.it

Pierfrancesco Marconi 
Biosciences & Medical 
Embryology Section, 
Department of Medicine 
and Surgery, University of 
Perugia, Perugia, Italy

Andrea Marchegiani 
Alessandro Fruganti 
Andrea Spaterna 
School of Biosciences 
and Veterinary Medicine, 
University of Camerino, 
Macerata, Italy

Gabrio Bassotti 
Gastroenterology, 
Hepatology & Digestive 
Endoscopy Section, 
Department of Medicine 
and Surgery, University of 
Perugia, Perugia, Italy

Gastroenterology & 
Hepatology Unit, Santa 
Maria della Misericordia 
Hospital, Perugia, Italy

1032797 TAG0010.1177/17562848211032
797Therapeutic Advances in GastroenterologyK Fettucciari, P Marconi
research-article20212021

Review

https://journals.sagepub.com/home/tag
https://uk.sagepub.com/en-gb/journals-permissions
https://uk.sagepub.com/en-gb/journals-permissions
mailto:katia.fettucciari@unipg.it


Therapeutic Advances in Gastroenterology 14

2 journals.sagepub.com/home/tag

microbiota (and causing dysmicrobism), can 
attenuate a series of factors that prevent C. difficile 
from germinating to its vegetative form13,14 and 
producing two C. difficile toxins (Tcds), TcdA 
and TcdB.15 These Tcds are mainly responsible 
for most clinical manifestations of CDI.16 Other 
factors,17 such as advanced age,17,18 obesity,19 
renal disease,20 hypoalbuminaemia,17 and impair-
ment of the immune system21 also favours CDI.

Since its first microbiological identification, the 
continuous and progressive diffusion of C. difficile 
in anthropized environment2,3,7,8 and its ability to 
produce more virulent forms,22 may enable C. dif-
ficile in few years to colonize a greater part of the 
human population, thereby leading to unavoida-
ble issues which can summarized into the follow-
ing points:

1. Spread of C. difficile is uncontrollable 
because of the extreme resistance of its 
spore to the external environment.9–11 
Although the spore is an indispensable form 
for survival and spread of several microor-
ganisms, C. difficile has a process of spore 
germination that is both complex and 
unique compared with that of two other 
well-studied organisms (e.g. Bacillus anthra-
cis and Clostridium perfringens)23 and for its 
peculiar interaction with the host by means 
of its Tcds and cellular microbial factors, 
which will favour its colonization and suc-
cessively infection and recurren
ces.1,4,6–8,23–27 Mortality gradually increases 
with relapses and the epidemiological data 
reported over 500,000 deaths/year and a 
progressive colonization and induction of 
disease even in the absence of antibiotic 
therapies.1,4,6–8

2. Once the large bowel has been colonized by 
C. difficile, the bacterium waits for appro-
priate conditions that favour its passage to 
the vegetative form.27 These favourable 
conditions are more prevalent in ‘developed 
countries’ due to increasing antibiotic ther-
apies7 across all ages and changes in micro-
biota due to heterogeneous external 
factors.28 Therefore, a progressive increase 
of CDI and CDI-related deaths (at present 
in the range of 5–30% with primary infec-
tion)8 is predictable, and with a further pro-
gressive increase of death rates following 
CDI relapses.29,30 At present, the total 
number of CDI-related deaths in the USA 

and Europe is approximately 500,000 per 
year,31,32 and this number may be more 
than 1 million worldwide.33

3. Development of targeted antibiotics toward 
C. difficile, even if effective, increases dys-
microbism and inflammation, which in turn 
favours relapse.34 In fact, persistent dysmi-
crobism facilitates the overgrowth of vari-
ous intestinal pathogens, including 
C. difficile, but there are some peculiarities 
of C. difficile facilitating its growth in such 
an altered environment with a low-grade 
inflammation.7,24–26,28,34–38 The first episode 
of CDI is due to changes in gut microbial 
flora that favours overgrowth of C. difficile, 
also compared to other various intestinal 
pathogens (e.g. C. perfringens), and in turn 
the dysmicrobism depends primarily on the 
type of antibiotic therapy used but also on sev-
eral other factors such as age, proton-pump 
inhibitors, types of foods, medication use, 
physical environment, the genetic and 
immune system of individuals and could be 
also linked to conditions such as obesity, auto-
immune and allergic diseases, diabetes, and 
inflammatory bowel disease (IBD).1,13–16,34–38 
All these predisposing factors widen the 
range of individuals susceptible to coloniza-
tion/infection by C. difficile.1,13–16,34–38 
However, the role of gut flora in regulating 
C. difficile is more complex than previously 
supposed and changes both in terms of bio-
mass (how many microorganism are pre-
sent) and composition (which taxonomic 
groups are present) rather than the simple 
reduction of some taxonomic groups are 
likely more important in preventing C. 
difficile colonization, disease, and recur-
rence, by preserving sufficient density of 
the correct type(s) of species to create an 
environment unfavourable to C. difficile 
expansion.1,13–16,34–38 Then, after initial 
alteration of the intestinal microbial popu-
lation that leads to C. difficile colonization, 
C. difficile can also lead to a perturbation in 
the gut microflora that amplify dysmicro-
bism and inflammation, favouring CDI and 
CDI relapse.1,13–16,34–38 Moreover, the first 
episode of C. difficile by altering the native 
gut microflora could predispose individuals 
to recurrent CDIs, and prolonged antimi-
crobial therapy for C. difficile, in perturbed 
gut microbiome, can give rise to further and 
persistent dysbiosis and inflammation. 
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Additionally, although after the first CDI 
episode the bacterial community is restored 
with time, some bacterial taxa do not 
recover completely and gut microbiome 
keep a reduced resistance to colonization, 
which encourages the growth of pathogenic 
microbes such as C. difficile, changing the 
structure of the gut microbial flora in the 
individual. Periodic use of antibiotics and 
antibiotics toward C. difficile induces an 
increase in the reservoir of antibiotic-resist-
ant genes in the gut microbiome, which are 
conditions that favour recurrent 
CDIs.1,13,14,34–40 Regarding the molecular 
mechanisms responsible for the coloniza-
tion of C. difficile and then CDI/CDI 
relapse, it has been reported that the fol-
lowing can play a key role: an increase of 
primary bile acids and a decrease of sec-
ondary bile acids, an increase of succinate 
that C. difficile metabolizes into butyrate, 
an increase of disaccharide trehalose, and 
increased production of particular sub-
stances from taxonomic groups present in 
perturbed microbiome that could favour C. 
difficile overgrowth against other 
pathogens.23,24,38,41–45

 Further, the cytotoxic synergism (demon-
strated by Fettucciari et  al.46) between the 
low doses of TcdB of C. difficile and the 
proinflammatory cytokines, tumour necrosis 
factor (TNF)-α and interferon (IFN)-γ,46–48 
rapidly modify the cellular microenviron-
ment of the colon with a toxic action.

 Another important factor is the difficulty of 
eradicating C. difficile with antibiotic ther-
apy, which also contributes to favour per-
sistent low-grade inflammation.1,7,8,12,34

4. The emergence of epidemics due to novel 
strains of C. difficile that are or epidemics  
or hypervirulent or multidrug-resistant 
strains (e.g. ribotypes 015, 027, 078 or 
176), many of them also produce C. difficile 
transferase toxin (CTD), and the emer-
gence of C. difficile strains producing Tcd 
variants is worrisome and has elevated the 
threat of C. difficile in the current general 
antimicrobial crisis outlined by the World 
Health Organization,22,37,45,49 because these 
may represent an additional tool for more 
selective host manipulation. In fact, the 
incidence of CDIs between hospital-
acquired CDI (HA-CDI) in adults but also 
for community-acquired CDI (CA-CDI) 

effectively increased due to the emergence 
of the hypervirulent ribotypes 027 and 078 
strain of C. difficile,22,45,49–53 which showed 
high production/germination rate, expres-
sion of different Tcd variants and increased 
toxin production, leading to increased dis-
ease severity, recurrence, and a 15% 
increase in CDI-related mortal-
ity.22,24,36,39,45,49–53 Further, the hyperviru-
lent ribotype 078 was significantly higher in 
patients over 65 years of age, and it is recur-
rently detected in swine, cattle and retail 
meat.24,36,39,45,52–55 Its increased detection 
in humans and ability to cause severe dis-
ease and mortality, suggest the possibility of 
animal contamination or transmis-
sion.45,52,54,55 Epidemiological data have 
revealed that CDI outbreaks around the 
world has been associated with ribotype 
027.22,24,36,39,45,49–53 Overall, the prevalence 
of different ribotypes, in particular ribotypes 
027 and 078, in different geographical areas 
demonstrates the genetic diversity of C. dif-
ficile and its recognition as a progressive 
threat to public health.

 Moreover, the C. difficile strains that pro-
duces the Tcds variant may contribute to 
the expansion of CDIs because many of 
them are hypervirulent and produce the 
binary toxin CTD, which is associated with 
increased morbidity and mortal-
ity.45,49–51,56–60 It has been shown that CTD 
promotes the formation of long cellular fila-
ments, which become anchor points for 
new C. difficile to epithelial cells and thus 
potentiate the infection.45,49–51,56–61  Further, 
the Tcd variants are highly diverse in terms 
of enzymatic activity, immunogenicity  
and in their receptor preference, with  
relevant implications on the colonic 
pathology.45,49–51,56–60,62

5. The surface antigens of C. difficile, (i.e. 
SlpA, cell wall proteins, pili, flagella, fim-
bria, and biofilms), which have the proper-
ties of colonizing factors or are involved in 
innate immunity,36,56–60 can have an impor-
tant impact on persistence of C. difficile, for 
the following reasons: first, they promote 
adhesion to mucosal epithelial cells and the 
penetration of C. difficile within the mucus 
layers;36,56–60 second, they antagonize some 
aspects of the natural immune respo
nse;36,56–60 and third, they contribute to an 
inflammatory state with cytokine induction 
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such as TNF-α and IFN-γ that enhance the 
cytotoxic action of low doses of TcdB.46–48

6. Tcd-neutralising antibodies have had lim-
ited success and clinical application.63–67

7. Immunization toward Tcds has yielded 
scarce results because of low immunogenic-
ity and inability of immune responses to 
eliminate C. difficile.68,69

Considering the above-mentioned aspects, it is 
crucial to understand the molecular mechanisms 
of the two Tcds, particularly TcdB, wherein 
TcdB is approximately 1,000 times more power-
ful than TcdA, and whether certain molecular 
aspects of Tcd action may favour the progressive 
diffusion of C. difficile to cause a “global endemy” 
with severe health and economic consequences.

Molecular characteristics of TcdA and TcdB
Tcds are single-chain proteins, and TcdA and 
TcdB are 308 kDa and 270 kDa, respectively. 
They share a 48% sequence identity and 66% 
sequence similarity, and their most diverse 
sequence is confined to the C-terminal binding 
domain.57–60 TcdA and TcdB have four domains: 
a glucosyltransferase N-terminal domain, an 
autoprotease domain, a pore-forming and trans-
location domain, and C-terminal binding repeti-
tive oligopeptides (CROPs) domain,57–60 where 
each domain is characterized by specific biologi-
cal and functional properties. The CROPs 
domain and other amino acids outside this 
domain allow the binding of Tcds to the cells for 
subsequent internalization.57–60,70 Although TcdA 
and TcdB CROPs display the solenoid fold, they 
present distinct spatial and sequential arrange-
ments of their repeat units. This is in agreement 
with findings that suggest that both TcdA and 
TcdB bind to different receptors;57 therefore, 
TcdA and TcdB do not follow the rule of one 
toxin, one receptor.57–60,70

While two different receptors have been proposed 
for TcdA, rabbit sucrase isomaltase, and gp96,57–60 
three receptors have been identified for TcdB,70 
chondroitin sulphate proteoglycan 4 (CSPG4), 
poliovirus receptor-like 3 (PVRL3), and Wnt 
receptor frizzled family (FZD). The binding of 
TcdB to CSPG4 receptor induces cell rounding 
and apoptosis in HeLa and HT29 cells at pico-
molar concentrations of TcdB, while binding of 
TcdB to CSPG4 receptor mediate necrotic 
effects at higher concentration of TcdB.70–72 The 

binding of TcdB to PVRL3 receptor induces 
necrosis cell death at high concentrations (the 
nanomolar range) of TcdB.70,72,73 The FZD func-
tions as an alternative receptor to CSPG4; indeed 
the binding of TcdB to FZD receptor induces 
cytopathic effects and apoptosis at picomolar 
concentrations of TcdB.70,72,74 Another important 
peculiarity of TcdB is that TcdB can bind to the 
membrane receptor with amino acid sequences 
that extend beyond the CROP sequences.70,72

This picture underlines the heterogeneity of the 
receptors linked by TcdB and the diversity of the 
effects in relation to the receptor binding and 
concentrations of TcdB.62,70,72–74 Then, TcdB 
may utilize multiple receptors with different bind-
ing sites to broaden the selection of mammalian 
cells it can target.62,70,72–74 Moreover, TcdB vari-
ants are highly diverse for their receptor prefer-
ence, with relevant implications on the colonic 
pathology.45,53,56,62,72

Antibodies against the CROPs domains of both 
TcdA and TcdB can block internalization,57–60,70 
and excess TcdA CROPs domain can compete 
with TcdA holotoxin for cell binding.57–60,70 
However, TcdA and TcdB that lack the CROPs 
domains are still able to enter cells.57–60,70 Thus, 
the type of receptor on target cells is a very impor-
tant consideration for some fundamental aspects 
of the pathogenic strategy of C. difficile. Receptors 
for C. difficile are not well-characterized molecu-
lar structures; however, they are likely to be con-
stituted by a configuration of the polysaccharide 
chain recognized by the TcdA- or TcdB-binding 
domains that behave as a lectin-like structure75 
and probably possess some characteristics of 
intrinsically disordered proteins, and are able to 
modulate their conformation to adapt and more 
effectively bind with the target structure. The 
complex structural characteristics of the Tcd 
receptor allows the Tcds to bind to several and 
extremely different cell types,57–60 such as the sur-
face epithelium of the human colon,76 hepatic 
cells,77 nerve cells,78 EGCs,46 cardiac cells,79 and 
colonic cells.80

However, it is noteworthy to consider why Tcds 
cause damage not only to cell types present at the 
primary site of infection the large bowel (epithe-
lium of the human colon,76 colonic cells,80 
EGCs46) but also to cell types that are not present 
in the large bowel (hepatic cells,77 nerve cells,78 
cardiac cells79), as reported above).
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It is hypothesized that when C. difficile spores 
convert into their vegetative forms and replicate, 
they are more sensitive to the activity of innate 
immune cells,81 such as macrophages, polymor-
phonucleates,51,82 and lymphocytes,83 which 
induce and strengthen the inflammatory response 
that is characterized by secretion of several proin-
flammatory cytokines such as interleukin (IL)-
1,84 IL-6,85 IL-8,86 IFN-γ)87 and TNF-α.88 To 
fight against these immune cells, the Tcds must 
be able to bind to receptors with a pattern of car-
bohydrates that have different configurations and 
this result is obtained by the three types of recep-
tors recognized by TcdB.70 This explain why 
TcdB recognized such a broad range of carbohy-
drate patterns. Therefore, because of incidental 
molecular homology, Tcds could be cytotoxic to 
other cell types that express one or more of the 
receptors recognized by Tcds such as endothelial, 
hepatic, nerve, EGCs, and cardiac cells that are 
unrelated to the infection site.46,57–60,77–79 This 
also explains why Tcds can cause toxic systemic 
effects once they reach the circulation in some 
patients with CDI.17,47,89,90

In addition, the ability of Tcds to bind to colono-
cytes deepens the tissue damage within and 
beyond the submucosa and damaging the muscle 
and enteric nervous system cells creates condi-
tions to expel (for instance, via diarrhoea with liq-
uid faeces) the vegetative forms of C. difficile that 
rapidly become C. difficile spores and can colonize 
other hosts to start new infection cycles as soon as 
appropriate conditions for germination occur. 
Furthermore, if the Tcd receptor domain mutates, 
it is possible that the pathogenicity of C. difficile 
may become more systemic.

Intracellular effects of Tcds
After binding to the cell membrane, the Tcds stim-
ulate their internalization by an endocytic vacuole 
in which pH decrease favours a conformational 
change of the Tcds itself. This allows the Tcds to 
insert the catalytic domain outside the membrane 
for cleavage, and thus activate the glycosylation 
process of the catalytic site of Rho-GTPase to 
inhibit its activity.57–60 This inhibition causes sev-
eral biological consequences such as cytoskeleton 
disruption,46,57–60 cell cycle arrest,46,57–60 and cell 
death, which occurs after cycle arrest.46,57–60 These 
phenomena are strictly dependent on the dose of 
Tcds, wherein at high concentration, cell death 
occurs by necrosis.59,70–73,91

It is essential to understand what the molecular 
strategy underlying cytoskeleton alterations and 
cell cycle arrest is. All immune cells that reach the 
replication area of the C. difficile vegetative form 
possess intrinsic motility; therefore, their immo-
bilisation drastically decreases their functional 
effectiveness.57–60 Moreover, the intracellular 
action of Tcds in these immune cells modifies the 
cytokine secretion pattern, which is shifted toward 
a greater production of proinflammatory cytokines 
such as IFN-γ and TNF-α,47,57–60 and anti-
inflammatory cytokines such as IL-10.92 
Cytoskeletal alterations are an early event (appear-
ing in some cells after 30 min) that cause cell 
rounding in most cell types in vitro93 with cell 
detachment; whereas, in vivo there is retraction of 
colonocytes and cells of the basal membrane, 
which allows the more in-depth penetration of 
C. difficile and contributes to the making of a 
highly inflammatory setting that stimulates expul-
sion in the external environment by diarrhoea.94

Following cell cycle arrest, a part of the infected 
cell dies by apoptosis,57–60 a phenomenon that 
highlights another interesting aspect of the molec-
ular strategy of this bacterium. First, while cas-
pase-dependent Tcd-induced apoptosis has been 
extensively investigated,46,57–60,95 there is evidence 
that TcdA can also induce caspase-independent 
apoptosis following cathepsin96 and calpain activa-
tion (i.e. calcium-dependent).96 These three apop-
totic pathways are strongly interconnected at some 
points during their signalling and may display fur-
ther converging points in the induction of reactive 
oxygen species and mitochondrial damage. This 
ability to activate three different pathways of cell 
death is a very important strategy adopted by C. 
difficile, compared with a stressful stimulus induc-
ing cell death, because a cell may display resistance 
to a definite apoptosis pathway depending on the 
cell type. Therefore, Tcds, which can activate dif-
ferent pathways of apoptosis, have a higher likeli-
hood of inducing apoptosis if the target cell 
possesses an intrinsic resistance to one, or two of 
the three pathways. In fact, Tcds are capable of 
inducing death of enterocytes,57–60 colonocytes,57–60 
neuronal cells,57–60,78 EGCs,46,95 and different 
immune cells such as macrophages,57–60,97 lympho-
cytes,57–60,98 and eosinophils.57–60,98

Second, other cells exposed to low doses of Tcds 
could return to their normal functionality after a 
short arrest of their cell cycle, as we have previ-
ously demonstrated for EGCs.46,99 Conversely, 
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EGCs that survive apoptotic concentrations of 
TcdB become senescent as a survival response to 
stressful stimulus mediated by TcdB.46,99 The 
capability of cells surviving the cytotoxic activity 
of Tcds to become senescent may be found on 
cell types that have a long-life span, such as 
EGCs, intestinal neurons and myocytes, that 
guarantee bowel motility.100 The acquisition of a 
senescence state by these cell types could cause 
irritable bowel syndrome (IBS) and IBD due to 
persistent inflammation, transfer of senescence 
status, and stimulation of pre-neoplastic cells.

Thus, we can hypothesize that, after recovery 
from an acute CDI, the number of EGCs decrease, 
their network is impaired, and their functionality 
is subsequently altered; further, EGCs and other 
cells with a long-life span, which survive toxicity, 
may become senescent. Following CDI, the struc-
tural and functional abnormalities induced by the 
Tcds might be long-lasting in a considerable per-
centage of patients with IBS, and cause low-grade 
inflammation and persistent dysmicrobism.101 
Residual C. difficile bacteria that persist after 
remission of an acute infection may take advan-
tage of this situation, and induce relapse that can 
appear even after months, without any apparent 
trigger.102 C. difficile modifies the large bowel envi-
ronment to persist for a long time and induces 
easier relapses; this implies a continuous increase 
in C. difficile carriers in the large bowel environ-
ment characterized by an IBS-like status and a 
latent inflammatory condition.

Another aspect that highlights the sophisticated 
molecular strategy of C. difficile is that among the 
components of the inflammatory response, IFN-γ 
and TNF-α are of paramount importance as they 
potentiate in vitro cytotoxicity of TcdB.46 
Therefore, it is possible that IFN-γ and TNF-α 
act as drivers of infection by amplification, from 
the very beginning of infection, of apoptotic activ-
ity of low doses of Tcds, and pave the way for 
infection progression.46–48

Thus, it is likely that antibiotic therapy, in addi-
tion to causing dysmicrobism, creates an inflamed 
environment within the large bowel due to release 
of bacterial components from the cells killed by 
bacteriolytic antibiotics. Moreover, an inflamma-
tory environment in the absence of antibiotic ther-
apy could favour CDI in some patient subtypes 
such as those with obesity, or various pathologies 
accompanied by an inflammatory state.103

Conclusions
The key elements of the molecular strategy 
adopted by C. difficile can be summarized as fol-
lows: (1) progressive global diffusion due to 
strong resistance of C. difficile spores to the exter-
nal environment that associated with the peculiar 
characteristics of the complex interaction of C. 
difficile with the host will favour its colonization. 
Further, it has the ability to spread after CDI and 
its relapses, and its episodes are significantly 
increasing on an annual basis due to the emer-
gence of C. difficile strains of the hypervirulent 
ribotypes, producing Tcd variants, and/or pro-
ducing binary toxin CTD, all of which are associ-
ated with increased colonization, morbidity and 
mortality rate; (2) progressive colonization of 
human hosts favoured by endogenous conditions 
(dysmicrobism and inflammation). In fact, dys-
microbism favour C. difficile overgrowth, creating 
an environment conducive to C. difficile expan-
sion, while inflammation enhancing cytotoxic 
activity of low doses of Tcds could damage the 
cellular microenvironment of the colon increasing 
C. difficile colonization of human hosts; (3) pro-
duction of two Tcds that are not only capable of 
causing C. difficile spread in external environ-
ments during infection, but can also modify the 
large bowel environment to ensure its persistence 
in a more inflamed milieu, which can harbour the 
bacterium more easily, with brief periods of repli-
cation and with mild symptoms, and without 
causing a full-blown disease. This strategy ensures 
that C. difficile as an opportunistic pathogen can 
become a progressive colonizer of human beings 
and animals, waiting for suitable growth condi-
tions for its growth and can sometimes cause 
fatality. Thus, C. difficile may become a serious 
global health issue with enormous economic 
costs.

We must urgently adopt a strategy to counter C. 
difficile, keeping in mind that at present we lack 
truly efficacious counter strategies for the follow-
ing reasons: (1) it is not possible to stop the spread 
or eradicate C. difficile from the external environ-
ment because it is not possible to eliminate it 
from hospitals or nursing homes, which represent 
some of the most contaminated environments, 
and which are the most important causes of diffu-
sion;104 (2) until now there has been no available 
antibiotic or eradication treatment that would 
prevent the simultaneous onset of developing 
favourable conditions for subsequent relapse;66 
(3) although very effective, faecal transplantation 
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is still a limited therapeutic option with several 
limitations in its widespread use;50,105 (4) immu-
notherapy with monoclonal antibodies directed 
toward TcdA and TcdB have yielded limited 
results;63–67 and (5) vaccination toward TcdA and 
TcdB has not produced significant results clini-
cally and for eradicating C. difficile.68,69

In conclusion, assuming that C. difficile diffusion 
and human colonization will be unstoppable, 
desirable interventions with wider applications 
could include: (1) development of an effective 
vaccination strategy against Tcds for high-risk 
categories; (2) the availability of a selective proph-
ylaxis against C. difficile based on highly specific 
bacteriophages, to be used as a therapeutic tool. 
Today, more than ever, we are realising that the 
greatest enemies of humanity are pathogens, and 
thus combating pathogen-related diseases is 
increasingly becoming a priority.
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