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Abstract
COVID-19 is an infectious disease, which has adversely affected public health and the economy across the world. On account 
of the highly infectious nature of the disease, rapid automated diagnosis of COVID-19 is urgently needed. A few recent find-
ings suggest that chest X-rays and CT scans can be used by machine learning for the diagnosis of COVID-19. Herein, we 
employed semi-supervised learning (SSL) approaches to detect COVID-19 cases accurately by analyzing digital chest X-rays 
and CT scans. On a relatively small COVID-19 radiography dataset, which contains only 219 COVID-19 positive images, 
1341 normal and 1345 viral pneumonia images, our algorithm, COVIDCon, which takes advantage of data augmentation, 
consistency regularization, and multicontrastive learning, attains 97.07% average class prediction accuracy, with 1000 labeled 
images, which is 7.65% better than the next best SSL method, virtual adversarial training. COVIDCon performs even better 
on a larger COVID-19 CT Scan dataset that contains 82,767 images. It achieved an excellent accuracy of 99.13%, at 20,000 
labels, which is 6.45% better than the next best pseudo-labeling approach. COVIDCon outperforms other state-of-the-art 
algorithms at every label that we have investigated. These results demonstrate COVIDCon as the benchmark SSL algorithm 
for potential diagnosis of COVID-19 from chest X-rays and CT-Scans. Furthermore, COVIDCon performs exceptionally 
well in identifying COVID-19 positive cases from a completely unseen repository with a confirmed COVID-19 case history. 
COVIDCon, may provide a fast, accurate, and reliable method for screening COVID-19 patients.
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Introduction

Novel coronavirus disease 2019 (COVID-19) is caused by 
severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2).1 Due to the highly infectious nature of the disease, 

it has spread worldwide in a short period of time, adversely 
affecting public health and global economy. In order to 
reduce the rapid spread of COVID-19, fast and accurate 
diagnosis of patients is of primary interest.

The definitive test for COVID-19 is the real-time reverse 
transcriptase polymerase chain reaction (RT-PCR) test, 
which has a sensitivity between 51 and 94% and takes 
around 24 hours to obtain the results [29].2 The long wait-
ing time may increase the chances of spreading the disease 
to others. CT scans and standard chest X-rays—on the other 
hand, may save time for the diagnosis of COVID-19 [74]. 
Cases have been reported where RT-PCR gave false-negative 
results, but radiographic techniques could detect COVID-19 
[26, 67]. Chest X-rays and chest CT scans are, therefore, 
being used to get more information and are being considered 
a screening tool alongside the RT-PCR test [7, 33]. In fact, a 
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study conducted by Ai et al. [3] shows that CT Scan has bet-
ter sensitivity compared to RT-PCR in detecting COVID-19 
and can be used for the diagnosis of the disease. CT-Scans 
can also provide information about the severity of COVID-
19, which cannot be obtained by standard RT-PCR testing.

Chest CT scans and X-rays of COVID-19 patients often 
display abnormal patterns, for example, bilateral, multilobar 
ground glass opacities (GGO) with a peripheral or posterior 
distribution, mainly in the lower lobes and on occasion in 
the middle lobe [70]. The visual differences in chest CT 
scan and X-ray images between COVID-19, pneumonia, and 
normal patients are subtle and require expert radiologists, 
which causes a bottleneck as their number is limited. In this 
context, artificial intelligence/machine learning can help to 
identify positive cases, find abnormalities and provide aid 
to medical personnel.

For the past few years, deep learning models have dem-
onstrated their potentials to be useful to radiologists and 
medical imaging experts for various disease detection and 
classification tasks such as skin cancer [16], brain disease 
[34], arrhythmia [52], breast cancer [39], pneumonia [48], 
etc. A few state-of-the-art supervised models have even 
achieved performance equivalent to experienced radiolo-
gists [48]. Recently, deep learning-based approaches have 
also been applied successfully in diagnosis of COVID-19 
[22] . The extraordinary performance of such deep learn-
ing models based on supervised learning, however, requires 
large amounts of labeled data [11]. A situation that may be 
challenging in medical image analysis, where data collec-
tion and annotation are time-intensive tasks and increase the 
workload on the radiologists.

Semi-supervised learning (SSL) curbs the disadvantages 
of supervised learning methods by utilizing a small amount 
of labeled and a larger amount of unlabeled data [73]. Data 
augmentation, together with transfer learning, can produce 
powerful, more robust models that require less training time. 
In medical imaging, large unlabeled datasets are readily 
available along with smaller high-quality labeled datasets. 
Therefore, SSL methods can be an excellent option for auto-
mated medical image diagnosis.

Up until now, many SSL models, such as Pseudo-
labelling, [32] VAT, [40] �-Model, [31] Mean Teacher, 
[55] MixMatch, [10] and FixMatch [53] have been imple-
mented successfully for analyzing two-dimensional image 
data. Recently, we also reported a semi-supervised image 
classification algorithm, MultiCon [49], which uses multi-
contrastive learning alongside consistency regularization 
to outperform other semi-supervised approaches in image 
classification.

Consistency regularization is a semi-supervised learn-
ing component that adds a supplementary loss function to 
a network such that the predictions of the network remain 
consistent even after the inputs are perturbed. This is done 

by making use of the unlabeled data to find latent features 
for the additional loss function. Phillip et al. [8] developed 
the first variant of this component which was later made 
popular by Samuli et al. [31] and Mehdi et al. [50] . Some 
of the recent variations include replacing parts of the loss 
function [40], using this component in larger SSL pipeline 
[10, 30] and replacing �2 loss with cross-entropy [66].

Contrastive Learning is the process that allows models 
to learn high level features about the dataset by finding how 
similar or different a pair of data points are from each other. 
This is an unsupervised learning technique that is imple-
mented before any segmentation or classification task. 
Despite being a relatively new area of study, it has been the 
basis for many excellent works such as contrastive predictive 
coding [20, 43], representation learning using Deep InfoMax 
(DIM) [4, 21, 59] or momentum contast [18], learning invar-
iances using Augmented Multiscale DIM [9] or Contrastive 
MultiView Coding [56] etc.

Previous deep learning approaches have shown prom-
ises in identifying COVID-19 cases from chest radiography 
images [5, 13, 14, 19, 22, 46, 61–64, 71, 72], please refer to 
Table 1. But as the performance of these methods depend on 
large labeled dataset, researchers have also tried to explore 
the performance of semi-supervised learning methods in the 
diagnosis of COVID-19 cases [2, 17, 27, 28, 36]. Jun et al. 
[36] used active contour regularization on a region scalable 
fitting (RSF) model to further tune the pseudo-labels of the 
unlabeled CT images. Mohammed et al. [2] proposed a dual 
path few shot semi-supervised segmentation approach that 
uses only a few labeled CT images to accurately segment 
COVID-19 infection. A semi-supervised shallow frame-
work was proposed by Debanjan et al. [28] that diagnosed 
segmentation of CT images produced by parallel quantum-
inspired self-supervised Network (PQIS-Net). Shahin et al. 
[27] used autoencoder based semi supervised approach to 
first extract regions of interest from chest X-ray images 
which are then fed to a deep architecture to classify them.

Herein, we use the state-of-the-art SSL algorithms and 
our algorithm, MultiCon [49], for the classification of grey-
scale X-ray and CT scan images as COVID-19, pneumo-
nia, or normal cases from a publicly available COVID-19 
radiography dataset [47] and a COVID-19 CT Scan dataset 
[71]. In the present work, we refer MultiCon as COVIDCon 
for better understanding to the readers. The loss function of 
COVIDCon is constituted using two loss terms—consist-
ency regularization and multi-contrastive learning Fig. 1. 
The consistency regularization component keeps the prob-
ability distributions of weakly augmented and strongly aug-
mented dataset similar to each other. The multi-contrastive 
learning part keeps the data points of the same class together 
and instances of different classes further apart. The notion 
behind using these two components together is the com-
plementary nature of these components. If consistency 
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regularization is removed, the loss function would be opti-
mized regardless of the labeled data. Similarly, if multi-
contrastive learning is removed, the predictions would be 
inaccurate due to the scarce amount of labeled data.

Methodology

This section presents the methods and materials used in 
this study. Sections 2.1 and 2.2 refer to the descriptions 
of COVID-19 Radiography and CT Scan datasets used for 
training and testing the SSL methods.

COVID‑19 radiography dataset

The COVID-19 radiography dataset [47] has been developed 
by a team of researchers from Qatar University, the Uni-
versity of Dhaka and their collaborators from Pakistan and 
Malaysia with the help of medical doctors. The dataset con-
sists mostly of posterior-to-anterior images of chest X-rays 
with 1024 × 1024 resolution from COVID-19 positive cases, 
viral pneumonia cases, as well as normal cases. COVID-19 
Radiography dataset is available publicly, and it gets updated 
continuously with new X-ray images. As of 14th June 2020, 
the dataset contains a total of 2905 unique images, which are 
distributed over 3 imbalanced classes, namely COVID-19, 
Normal and Viral Pneumonia. The COVID-19 class contains 
219 unique X-ray images, while viral pneumonia and nor-
mal classes contain 1341, 1345 images, respectively. A few 

sample chest X-rays of the COVID-19, viral pneumonia, and 
normal cases are listed in Fig. 2.

COVID‑19 CT scan dataset

The China Consortium of Chest CT Image Investigation 
(CC-CCII) compiled a dataset [71] of CT images, with 512 
× 512 resolution, from cohorts of their patients. The data-
set consists of 617,775 images, which are 2D slices, from 
4154 patients divided into three classes of novel coronavirus 
pneumonia (NCP), common pneumonia (CP), and normal 
cases. The images in the common pneumonia class are a 
mixture of some of the common classes of pneumonia in 
China, such as viral pneumonia and bacterial pneumonia. 
The version used for this experiment (version 2.2) is pub-
licly available for download and was released on 24th April 
2020. Image slices containing lesions were only used to 
train the model, resulting in 21,777 images in the corona-
virus pneumonia class and 36,894 images in the common 
pneumonia class. In order to maintain a balance among the 
data in the three classes, a subset of 24,096 images from the 
normal class was chosen randomly. We used 617,775 CT 
images from 4154 patients. The metadata.csv file (reference 
54) contains the information that each patient is classified 
to individual categories such as: pneumonia (NCP), covid 
(CP) and normal. We took the advantage of this csv file and 
obtained the patient ids classified into different categories. 
From those patient ids we randomly chose 80% for our train 
data and rest 20% patient ids and corresponding scan ids 
in order to segregate between the train and test data. To 

Fig. 1  The framework of COVIDCon. Different input chest X-rays 
with corresponding (weak and strong) augmented transformations 
are projected into embedding features. For the consistency regulariza-
tion, the model prediction works as pseudo-label, �

CR
 aims to make 

the output from strong augmentation match of the pseudo-label. The 

model is trained under the combination of �
CR

 and �
MC

 . The colored 
solid lined circles represent strong augmented data points, the dotted 
circles represent weak augmented data points, and same color repre-
sents same class. Dashed line is the probability distribution of weak 
augmented unlabeled images which are used for pseudo-labeling
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Table 1  Summary of existing deep learning approaches used in the detection of COVID-19 (CXR chest X-ray, CT computed tomography scan, 
AUC  area under the curve)

Entry Imaging modality No of classes Algorithms/methods Accuracy % AUC 

Oztruk et al. [44] CXR 3 DarkNet 87.02 -
Xu et al. [68] CT 3 Resnet-18 86.70 –
Panwar et al. [45] CXR 2 nCOVnet 88.10 0.88
S. Wang et al. [62] CT 2 Deep Learning 89.5 –
Hemdan, Shouman & Karar [19] CXR 2 VGG-19, DenseNEt201, ResNetV2, Incep-

tionV3, InceptionResNetV2, Xception, 
MobileNetV2

90.00 –

Pathak et al.[46] CT 2 ResNet-50 93.02 0.93
Wang et al. [61] CXR 3 COVID-Net 93.30 –
Maghdid et al.[38] CT, CXR 2 AlexNet, Modified CNN 94.0 (CXR) 82.0 (CT) –
Abbas et al. [1] CXR 3 DeTraC 95.12 –
Asnaoui et al. [15] CXR 2 CNN, VGG16, VGG19, InceptionV3, 

Xception, DenseNet201, MobileNetV2, 
InceptionResNetV2, ResNet50

96.61 –

Chowdhury et al. [12] CXR 3 AlexNet, ResNet18, 
DenseNet201,SqueezeNet

97.94 –

Narin et al. [41] CXR 2 ResNet50, ResNetV2, InceptionV3 98.00 –
Uear et al. [58] CXR 3 Deep Bayes-SqueezeNet 98.26 –
Nour et al. [42] CXR 3 CNN, SVM, DT, KNN 98.97 –
Ardakani et al. [6] CT – VGG-16, ResNet-18, ResNet-101, AlexNet, 

VGG-19, Xception, SqueezeNet, Goog-
leNet, MobileNet-V2, ResNet-50

99.51 0.99

Toğaçar et al. [57] CXR 3 MobileNetV2, SqueezeNet, SVM 99.27 1.00
Wehbe et al. [63] CXR 2 DeepCOVID-XR 82 0.88
Li et al. [35] CT 3 COVNet – 0.96
Jin et al. [25] CT 2 ResNet152, U-Net 94.98 0.97
Ardakani et al. [6] CT 2 AlexNet, VGG16, 19, SqueezeNet, 

GoogleNet, MobileNet-V2, Xception 
ResNet18, 50, 101

99.51 0.99

Ismael et al. [23] CXR 2 ResNet50, SVM 94.74 0.99
Shankar et al. [51] CXR 4 FM-HCF-DLF 94.08 –
Jain et al. [24] CXR 3 Xception Net, ResNeXt 97.97 –
Song et al. [54] CT 2 DRE-Net 94 0.99

Fig. 2  Sample chest X-rays taken from the COVID-19 Radiography 
dataset. a Normal case, b COVID-19 case showing bilateral ground-
glass opacities with prominent peripheral, perihilar and basal distri-
bution within a multilobar involvement, and c viral pneumonia case 
with visible left basilar opacity

Fig. 3  CT images taken from COVID-19 CT Scan dataset. Typical 
examples showing a common pneumonia (CP), b COVID-19 (NCP), 
and c normal CT scan images
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avoid overfitting, we ensured that none of the patient gets 
assigned to both train and test data. A few sample CT scans 
of the COVID-19, common pneumonia and normal cases 
are listed in Fig. 3.

COVID‑19 unseen dataset

The COVID-19 unseen dataset3 has been assembled and 
maintained by the The American College of Radiology 
(ACR). The dataset contains 51 images in total each of 
which are from unique patients diagnosed with COVID-19.

Our algorithm: COVIDCon

For the detection of COVID-19 from the digital chest 
X-Rays and CT scans, we have used our algorithm, COV-
IDCon, which is based on our previously developed algo-
rithm [49]. We have compared the performance of COV-
IDCon with other state-of-the-art SSL methods including 
MixMatch [10], Virtual Adversarial Training (VAT) [40], 
Pseudo-labeling [32], Mean Teacher [55], � model [31], 
Interpolation Consistency Training (ICT) [60] in (Table 2).

Though we applied MultiCon [49] in the field of drug 
classification, the use of contrastive learning is still relatively 
unexplored in the field of medical imaging. We observed 
that, similar to drug classification, X-ray and CT image clas-
sification, especially in the case of COVID-19, is mostly 
dependent on discerning subtle features. MultiCon’s impres-
sive performance in drug classification inspired us to apply 
it to the medical imaging domain as COVIDCon.

COVIDCon is a semi-supervised learning (SSL) tech-
nique that combines consistency regularization and multi-
contrastive learning approach to learn a feature embedding, 
where the augmented views of the same data maintain a 
minimum distance between them. The main inspiration 
behind such a technique is to allow deep neural network 
models to train with the minimal number of labeled data 

and a large unlabeled dataset. This is especially advanta-
geous since unlabeled data is cheap and easy to obtain, and 
it also relieves experts from manually labeling them. The 
proposed algorithm is a three-step process which comprises 
of augmenting the data, followed by pseudo-labelling the 
unlabeled data and then finally obtaining a feature repre-
sentation using a contrastive prediction task. Unlike other 
methods, COVIDCon combines the loss terms from both 
consistency regularization and multi-contrastive learning so 
that the feature embedding can satisfy the positive concen-
trated and negative separated properties.

Data augmentations used in this technique are of two 
types: weak augmentation ( Wa ) and strong augmentation 
Sa . Weak augmentation corresponds to a flip-shift strategy, 
which randomly flips images with a probability of 50% and 
translates them vertically and horizontally up to 12.5%. 
Strong augmentation strategies are based on RandAugment 
[53]. We use color inversion, contrast adjustment, trans-
lation, transformations. RandAugment selects a subset of 
these and randomly assigns how intense they will be within 
a mini-batch.

A side effect of using strong augmentations, is that the 
image might differ a lot from the original image. For this rea-
son, the weakly augmented version of each unlabeled image 
is assigned a pseudo label and the model is optimized using 
cross entropy loss by assigning the above pseudo label to the 
corresponding strongly augmented version. The supervised 
cross entropy loss of labeled images and the unsupervised 
loss mentioned above combine together to make consistency 
regularization. Consistency regularization ensures the fact 
that even after the perturbations caused by strong augmenta-
tion, the labeled and unlabeled data follow a similar distribu-
tion. Contrastive learning maximizes the mutual information 
between the differently augmented views of the data. The 
idea behind contrastive learning is to learn representations 
such that similar samples stay close to each other, while 
dissimilar ones are far apart. This results in separation of 
classes where samples form clusters on the basis of their 

Table 2  Comparison between 
different SSL algorithms

Unlike other SSL algorithms, MultiCon works with all three components—(i) artificial augmentation, (ii) 
artificial post-processing, and (iii) contrastive learning

Approach Artificial augmentation Artificial post-processing Contrastive learning

�-model [31] Weak None None
Pseudo-label [32] Weak None None
Mean Teacher [55] Weak None None
VAT [40] None Adversarial None
ICT [60] Weak Sharpening None
MixMatch [10] Multiple weak Sharpening None
FixMatch [53] Weak + strong Pseudo-labeling None
COVIDCon [49] Weak + strong Pseudo-labeling Multi contrastive loss

3 https:// cortex. acr. org/ COVID 19/.

https://cortex.acr.org/COVID19/
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classes in the feature space, which consequently results in 
improved predictions.

After assigning a pseudo label to strongly augmented 
unlabeled images, we select those images in the mini-batch 
whose pseudo labels are predicted with a probability greater 
than a threshold. Of the selected images, we extract their 
feature vectors and reduce distances between vectors of 
images with same class while increasing distances between 
vectors of images with different classes. This strategy results 
in clustering of images with same classes and results in a 
more generalized model.

where qu are the probabilities of the labels of the unlabeled 
image, max(qu) is the probability of the pseudo label, � is 
the threshold, yl is the label for the labeled image, yu is the 
correct label of the unlabeled image, ŷu is the pseudo label 
of the unlabeled image, ŷl is the actual label of the labeled 
image.

In the case of multi-contrastive learning, the augmented 
dataset is clustered with the goal of grouping data from the 
same class and pushing the data from different classes fur-
ther away from each other. Given the similarity measurement 
S(xi, xj) = S(f (xi;�), f (xj;�)) of the sample pair (xi, xj) , the 
multi-contrastive loss �MC is:

where � is the hyperparameter in the Binomial deviance 
[69]. m+ is the number of positive pairs as designated by 
yi = yj and m− is the number of negative pairs as designated 
by yi ≠ yj . Finally, the consistency regularization compo-
nent and multi-contrastive loss sums together and gives the 
overall loss term � : � = �CR + ��MC Where � is a fixed sca-
lar hyperparameter denoting the relative weight of different 
objective function.

COVIDCon is a specialized algorithm developed for two-
dimensional image analysis. It is especially suitable for iden-
tifying subtle visual differences in images and therefore has 
the potential in clinical diagnosis, for example, detection of 
COVID-19 by X-ray image analysis.

(1)

�CR =
1

M

M∑

u=1

[
�
(
max(qu) ≥ 𝜏

)]
LCE(ŷu,P

(
yu|Sa(xu)

)

+ LCE(ŷl,P(yl|Wa(xl))

ŷu = argmax(P(yu|Wa(xu))

ŷl = argmax(P(yl|Wa(xl))

(2)

�MC =

m∑

i=1

{
1

m+

∑

yi=yj

g(�1[� − S(xi, xj)])

+
1

m−

∑

yi≠yj

g(�2[S(xi, xj) − �])

}

s.t g(x) = log(1 + exp(x))

Implementation details

We utilized Pytorch  4 to implement COVIDCon on the 
radiography and CT Scan datasets. The X-ray and CT 
Scan images were resized into 84 × 84 and pretrained 
ResNeXt-101 [65] was used as the deep learning model. The 
ResNeXt model was pretrained in a weakly-supervised fash-
ion on 940 million public images with 1.5K labels matching 
with 1000 ImageNet1K synsets, followed by fine-tuning on 
ImageNet1K dataset 5. For the implementation of COVID-
Con, we randomly initialized and added 3 fully connected 
layers to ResNeXt. COVIDCon was trained for 10 epochs, 
the learning rate was set at 0.01, the size of the mini-batch 
was 128, and the weight decay was 0.001.

We used an identical set of hyperparameters ( �1 = 2, �2 
= 40, � = 1 and � = 0.1, � = 0.8 during the training step) 
for all experiments. These hyperparameters are chosen in 
such a way that they empirically gave convergent results. 
For training and testing, we split the dataset into 80:20 ratio, 
respectively. To avoid any overfitting, we ensured that none 
of the image gets assigned to both train and test data. Over-
all, we repeat each experiment five times independently and 
report the average result.

Baseline methods

We consider recent state-of-the-art methods, such as �
-Model [31], Mean Teacher [55], ICT [60], Virtual Adver-
sarial Training [40], Pseudo-Label [32], MixMatch [10], and 
FixMatch, [53] as the baseline methods. We use the official 
codes from the original papers and implement the same net-
work architecture ResNeXt-101, [65] training epoch, and 

Table 3  Comparison of accuracy achieved by COVIDCon and other 
state-of-the-art methods on COVID-19 radiography dataset

COVIDCon outperforms other methods at every label
The numbers highlighted in bold refers to the best performance of the 
respective algorithm

Methods/Labels 50 200 1000

�-model 79.82 ± 0.61 70.04 ± 0.31 73.24 ± 0.15
Mean teacher 67.46 ± 0.72 73.55 ± 0.45 85.04 ± 0.22
ICT 78.93 ± 0.57 79.28 ± 0.36 80.71 ± 0.12
VAT 77.6 ± 0.69 79.55 ± 0.47 89.42 ± 0.25
MixMatch 61.51 ± 0.62 74.75 ± 0.34 85.62 ± 0.12
Pseudo-label 72.35 ± 0.56 77.2 ± 0.41 80.88 ± 0.18
FixMatch 86.29  ± 0.42 90.29 ± 0.17 93.74 ± 0.3
COVIDCon 92.71 ± 0.57 94.22 ± 0.36 97.07 ± 0.14

4 https:// pytor ch. org.
5 http:// www. image- net. org.

https://pytorch.org
http://www.image-net.org
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initialized the hyperparameters in each method based on the 
author’s recommendations. We retuned the hyperparameters 
for each baseline method to ensure a fair comparison with 
COVIDCon.

Results

Results on COVID‑19 radiography dataset

We first employed COVIDCon on the COVID-19 Radiogra-
phy dataset and obtained the average class prediction accura-
cies (Table 3) of the model with different numbers of labeled 
data. COVIDCon outperformed other state-of-the-art SSL 
methods at all labeled data. With just 50 labels, COVIDCon 
achieved an average accuracy of 92.71%, which is slightly 
better than the next best state-of-the-art FixMatch model. 
The performance of FixMatch, however, decreased with 
more labeled data on account of overfitting, an issue, which 
was not observed in the case of COVIDCon. COVIDCon 
reached the highest class prediction accuracy of 97.07% on 
average with 1000 labeled data, which is 7.65% better than 
the next best VAT method.

In order to better understand the performance of COVID-
Con, we analyzed (Fig. 4) the confusion matrix. For 98.73% 
of cases, COVIDCon correctly predicted the true class for 
COVID-19 X-ray images with 1000 labeled data. The predic-
tion accuracies were 96.1% and 97.6% for normal and viral 
pneumonia cases, respectively. At 1000 labels, FixMatch, the 

next best state-of-the-art, obtained accuracies on identify-
ing COVID-19 and viral pneumonia cases with 82.60% and 
91.9%, respectively. Almost 9 COVID cases have been mis-
classified as viral pneumonia at these labels. Given the small 
and imbalanced nature of the dataset, COVIDCon performed 
well in predicting all the three classes. It successfully differ-
entiated all COVID-19 cases from viral pneumonia cases and 
confused only 1.27% COVID-19 cases as normal. Given the 
similarities of the image features in some of the chest X-rays of 
COVID-19 and viral pneumonia cases, COVIDCon performed 
well, and a few mispredictions are well within the limit of 
diagnostic inaccuracy in actual clinical settings.

The class prediction accuracies are improved with 
increasing epoch numbers. At 6 epoch COVIDCon reached 
the accuracy of 94.22%, which is slightly decreased at 10 
epoch with 50 labeled data.

Results on COVID‑19 CT scan dataset

The class prediction accuracies are improved with increasing 
epoch numbers. At 6 epoch COVIDCon reached the accuracy 
of 98.56%, which increased further to 99.13% at 10 epoch 
with 20,000 labeled data. The confusion matrices in Fig. 5 
show that COVIDCon achieved excellent accuracies to iden-
tify all of the three classes. With increasing labeled data, 
independent class prediction accuracies have also increased. 
For example, with 5000 labeled data, COVIDCon misclas-
sified 3 out of 100 COVID-19 cases as viral pneumonia, 
whereas just 1.6% COVID-19 cases were classified wrongly 
as viral pneumonia. At 5000 and 20000 labels, VAT, the next 
best state-of-the-art, misclassified almost 8 and 11 COVID 
cases as viral pneumonia, respectively. Therefore, COVID-
Con is more accurate compared to other state of the art.

Receiver operator characteristics curve

Receiver operator characteristic areas under the curves 
(ROC-AUC) are obtained (Fig. 6) on the COVID-19 Radiog-
raphy and COVID-19 CT scan datasets at 1000 and 20,000 
labels, respectively. The microaverage Area Under the Curve 
(AUC) is found to be 0.99 and 1, respectively, for both the 
datasets. The ROC-AUC values for individual classes lie in 
the range of 0.98 and 1, proving the efficacy of our method.

Consistent with the results obtained on the radiography 
dataset, COVIDCon outperformed other state-of-the-art SSL 
methods at all numbers of labeled data. The performance of 
COVIDCon on the CT scan dataset is recorded in Table 4. 
With 5000 labeled data, COVIDCon achieved an average 
accuracy of 98.30%, which is 6% better than the next best 
state-of-the-art Pseudo Label model. COVIDCon reached 
the highest-class prediction accuracy of 99.13% on average, 
with 20,000 labeled data, which is 6.45% better than the next 
best state of the art model, Mix Match.

Fig. 4  Confusion matrices from a COVIDCon and b FixMatch show-
ing the proportion of each predicted class (x-axis) for chest X-ray 
images in each true class (y-axis) with 1000 labels on the COVID-19 
Radiography dataset. True class prediction accuracies are highlighted 
in bold. All numbers are rounded to two decimal places
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t‑Distributed stochastic neighbor embedding 
(t‑SNE) analysis

In order to understand the discrimination of learned embed-
ding from our approach, we visualize the final embedding 
using t-SNE [37] implementation, which shows a snapshot 
of the COVID-19 Radiography dataset projected into a 
2-dimensional feature space. We mimic the learning pro-
cedure by randomly selecting 1000 labeled samples under 
10 epochs training. Then we test the learned embedding on 
the test set and show (Fig. 7) the visualizations. The results 
demonstrate the fact that with the assistance of multi-con-
trastive loss, COVIDCon could reduce the intra-class vari-
ances much better in comparison to the next best FixMatch 
approach, and produce well-separated feature embeddings, 
resulting in high prediction accuracy for all of the three 

classes as can be seen from the confusion matrices in Figs. 4 
and 5. Similarly, COVIDCon produces much better well-
separated feature embeddings (Fig. 7) on CT scan datasets 
as well. All these results demonstrate the importance of the 
multi-contrastive loss component (Table 2) of COVIDCon.

Testing COVIDCon on COVID‑19 unseen dataset

Oftentimes machine learning model that works almost per-
fectly using cross-validation fails miserably when tested on 
new unseen data. Therefore we tested COVIDCon on a small 
repository6 of confirmed COVID-19 cases, where each data 
instance has a case history. COVIDCon performed well in 

Table 4  Comparison of 
accuracy achieved by 
COVIDCon and other state-
of-the-art SSL methods on CT 
scan dataset

COVIDCon outperforms others methods at every label
The numbers highlighted in bold refers to the best performance of the respective algorithm

Methods/labels 5000 10,000 20,000 30,000

�-model 82.78 ± 0.53 86.67 ± 0.47 87.06 ± 0.32 84.72 ± 0.19
Mean teacher 91.37 ± 0.51 92.7 ± 0.43 92.46 ± 0.29 93.54 ± 0.42
ICT 89.22 ± 0.18 88.6 ± 0.73 89.18 ± 0.45 89.27 ± 0.26
VAT 90.15 ± 0.43 89.42 ± 0.55 89.07 ± 0.31 92.66 ± 0.28
MixMatch 85.41 ± 0.82 86.93 ± 0.45 89.64 ± 0.11 86.11 ± 0.21
Pseudo-label 92.3 ± 0.67 92.85 ± 0.41 92.68 ± 0.24 91.79 ± 0.14
FixMatch 89.35 ± 0.36 78.8 ± 0.98 88.32 ± 0.38 81.29 ± 0.87
COVIDCon 98.30 ± 0.77 98.79 ± 0.25 99.13 ± 0.29 99.06 ± 0.37

Fig. 5  Confusion matrices from a COVIDCon and b VAT show-
ing the proportion of each predicted class (x-axis) for chest CT scan 
images in each true class (y-axis) with 5000, 20,000 labels on the 

COVID-19 CT Scan dataset, and true class prediction accuracies are 
highlighted in bold. All numbers are rounded to two decimal places

6 https:// cortex. acr. org/ COVID 19/.

https://cortex.acr.org/COVID19/
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identifying COVID-19 positive cases with 98% accuracy. It 
correctly identified all cases in the dataset except for the case 
number 59,638 7 (Fig. 8, which is predicted as normal from 
chest X-ray analysis instead of positive. Furthermore, cases 
numbered 59,554 and 56,442 having unknown COVID-19 
test result, are also identified as positive by COVIDCon. 
Interestingly, the case 56442 has COVID-suspected CT fea-
tures (Fig. 8), and is also identified successfully as COVID-
19 positive by COVIDCon. These results demonstrate the 
accuracy of our model and its potential use in the clinical 
settings.

Ablation study

In order to understand the effect of each loss component of 
COVIDCon, we performed an ablation study. We isolated 

different components of our loss function and investigated 
their impacts on the model’s performance. We evaluated 
supervised cross-entropy (CE), consistency regularization 
(CR), cross-entropy and multi-contrastive (MC) loss, and 
finally COVIDCon. From the prediction accuracies for the 
COVID-19 Radiography and CT Scan datasets, as recorded 
in Table 5, we observed that the contrastive loss in conjunc-
tion with supervised cross-entropy performed quite well on 
its own. But the composition of all components, proposed in 
COVIDCon demonstrated the best performance.

Discussion

Our investigations use state-of-the-art benchmark SSL 
methods for the potential diagnosis of COVID using X-ray 
and CT-Scan for the first time. We observe that COVIDCon 
exhibits significantly improved performance compared to 
other state-of-the-art methods in all settings that we have 
studied. For limited labeled data, COVIDCon performs 
exceptionally well. For instance, at 1000 labels, on the 
COVID-19 Radiography Dataset, it achieves an accuracy 
of 97.07%, which is 7.65% better than the next best VAT 
model [40]. The improved performance of COVIDCon on 
such a small dataset signifies its use in the medical diagno-
sis domain, where it is often difficult to obtain large anno-
tated datasets. COVIDCon also works extremely well on a 
larger COVID-19 CT Scan Dataset. It achieves an accuracy 

Table 5  Ablation study of COVIDCon on COVID-19 radiography 
and CT scan dataset

The numbers highlighted in bold refers to the best performance of the 
respective algorithm

Loss function COVID-19 radiogra-
phy (1000 labels)

COVID-19 CT 
scan (30000 
labels)

Supervised CE 55.21 96.93
Semi-supervised CR 96.13 98.4
CE + MC 96.34 98.51
COVIDCon 97.07 99.06

Fig. 6  ROC-AUC curves on a Radiography and b CT scan Datasets, class 0: COVID-19, class 1: normal, class 2: viral pneumonia

7 https:// cortex. acr. org/ COVID 19/.

https://cortex.acr.org/COVID19/
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of 99.13%, which is 6.5% superior to its closest competi-
tor, Pseudo-label. These results demonstrate COVIDCon 
as the benchmark SSL algorithm for potential diagnosis of 
COVID-19 from chest X-rays and CT-Scans.

Furthermore, COVIDCon performs exceptionally well 
in identifying COVID-19 positive cases from completely 
unseen chest X-rays and CT scans; therefore has poten-
tials to be used in clinical settings. In that context, addi-
tional attributes, such as demographic information, race, 
etc. can also be included in COVIDCon for strengthening 
the ground for classification. It will be also important to 
understand the possibilities of identifying asymptomatic 
COVID-19 cases and differentiate them from normal cases 
from X-rays and CT scans screening using COVIDCon. For 
that, a large amount of data from normal, asymptomatic, as 
well as symptomatic COVID-19 cases will be required and 
collaborative work between hospitals and machine learning 
scientists will be necessary. Future studies will be focused 
on making the proposed approach available to the society for 
use in early and efficient detection of COVID-19.
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